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The aim of this paper is to investigate the stability and the stabilizability of stochastic time-delay deference system. To do this, we
use mainly two methods to give a list of the necessary and sufficient conditions for the stability and stabilizability of the stochastic
time-delay deference system. One way is in term of the operator spectrum and𝐻-representation; the other is by Lyapunov equation
approach. In addition, we introduce the notion of unremovable spectrum of stochastic time-delay deference system, describe the
PBH criterion of the unremovable spectrum of time-delay system, and investigate the relation between the unremovable spectrum
and the stabilizability of stochastic time-delay deference system.

1. Introduction

The stochastic time-delay system is one of the fundamental
research branches in the theory of control systems, which is
usually applied in the fields of electronics, machinery, chemi-
cals, life sciences, economics, and so on. As is well known, the
stability is an essential concept in linear system theory, which
is relative to the system matrix root-clustering in subregions
of the complex plane, and also the spectral operator approach
is effective in the study of the eigenvalue placement of a
matrix (see [1]). Since two classic books [2, 3] appeared,
stochastic stability and stabilization of Itô differential systems
have been investigated by many researchers for several
decades; we refer the reader to [4–6] and the references
therein. More specifically, for linear time-invariant stochastic
(LTIS) systems, most work is concentrated on the investi-
gation of mean square stabilization, which has important
applications in system analysis and design. Some necessary
and sufficient conditions for the mean square stabilization
of LTIS systems have been obtained in terms of generalized
algebraic Riccati equation (GARE) or linearmatrix inequality
(LMI) in [7–14] or spectra of some operators in [5, 9, 15].
For the stochastic delay-time systems, the present results
were mainly obtained by Lyapunov functional approach. We
concentrate our attention upon the stability and stabilization
of stochastic systems by the operator spectrum.

The structure of this paper is as follows. In Section 2,
with the aid of the operator spectrum,𝐻-representation, and
Lyapunov equation approach, some necessary and sufficient
conditions are given for the stability and the stabilizability of
stochastic delay-time systems. In Section 3, the unremovable
spectrum of stochastic delay-time systems is introduced, and
PBH criterion of the stabilizability of stochastic delay-time
systems is presented.

For convenience, we adopt the following traditional
notations. 𝑆

𝑛: the set of all symmetric matrices, whose
components may be complex; 𝑁 = {0, 1, 2, . . .}; 𝐴(Ker(𝐴)):
the transpose (kernel space) of a matrix𝐴;𝐴 ≥ 0 (𝐴 > 0) is a
positive semidefinite (positive-definite) symmetric matrix𝐴;
𝐼: identity matrix; 𝜎(𝐿): spectral set of the operator or matrix
𝐿; 𝐶−(𝐶−0): the open left (closed left) hand side complex
plane. 𝐷(0, 𝛼) = {𝜆 | ‖𝜆‖ < 𝛼}; ‖ ⋅ ‖ is the 𝑙

2
-norm;

𝐿
2

F
𝑡

(𝑅
+

, 𝑅
𝑛
𝑥): space of nonanticipative stochastic processes

𝑥(𝑡) ∈ 𝑅
𝑛
𝑥 with respect to an increasing 𝜎-algebra {F

𝑡
}
𝑡≥0

satisfying 𝐸‖𝑥(𝑡)‖
2

< ∞. Finally, we make the assumption
throughout this paper that all systems have real coefficients.

2. The Stability of Stochastic
Delay-Time Systems

In this section, we will investigate the stability and stabiliz-
ability of the stochastic time-delay deference system using
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the spectrum of operator and Lyapunov equation approach.
At first, we introduce a Lyapunove operator. Consider the
following linear difference system with constant delays:

𝑥 (𝑡 + 1) = 𝐹
0
𝑥 (𝑡) + 𝐺

0
𝑥 (𝑡) 𝑤 (𝑡)

+

𝑚

∑

𝑗=1

[𝐹
𝑗
𝑥 (𝑡 − 𝑗) + 𝐺

𝑗
𝑥 (𝑡 − 𝑗)𝑤 (𝑡)] , 𝑡 ∈ 𝑁,

(1)

with the initial condition

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = 0, −1, −2, . . . , −𝑚. (2)

Here,𝑥 ∈ 𝑅
𝑛 is a column vector,𝐹

𝑗
, 𝐺
𝑗
∈ 𝑅
𝑛×𝑛, 𝑗 = 0, 1, . . . , 𝑚,

are constant coefficient matrices, 𝜑(𝑘) ∈ 𝑅
𝑛 is a deterministic

initial condition, {𝑤(𝑡) ∈ 𝑅, 𝑡 ∈ 𝑁} is a sequence of real
random variables defined on a complete probability space
{Ω,F,F

𝑡
, 𝜇} which is a wide sense stationary, second-order

process with 𝐸(𝑤(𝑡)) = 0 and 𝐸(𝑤(𝑡)𝑤(𝑠)) = 𝛿
𝑠,𝑡
, where 𝛿

𝑠,𝑡
is

the Kronecker delta withF
𝑡
= 𝜎{𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡}.

Definition 1. The trivial stationary solution 𝑥(𝑡) = 0 of the
system (1) is called mean square stable if, for any arbitrarily
small number 𝜀 > 0, there exists a number 𝛿 > 0, when ‖𝜑‖ <
𝛿, such that

𝐸‖𝑥(𝑡)‖
2

< 𝜀, (3)

for a solution 𝑥(𝑡) = 𝑥(𝑡, 𝜑) of (1).

Definition 2. The trivial stationary solution 𝑥(𝑡) = 0 of the
system (1) is called asymptotically mean square stable if it is
stable in the sense of Definition 1 and, moreover, any solution
𝑥(𝑡) = 𝑥(𝑡, 𝜑) of (1) satisfies

lim
𝑡→+∞

𝐸‖𝑥(𝑡)‖
2

= 0. (4)

We consider the problem of finding criteria and sufficient
conditions for the mean square asymptotic stability of the
trivial stationary solution 𝑥(𝑡) = 0 by operator spectra. Since
the stochastic system (1) is a systemwith time-delays, it seems
impossible to construct the operator directly for (1) like the
operator in [15]. So, first of all, we introduce the following
column vector 𝑥(𝑡) of new variables of dimension 𝑛(𝑚 + 1):

𝑥 (𝑡) = [𝑥


(𝑡), 𝑥


(𝑡 − 1), . . . , 𝑥


(𝑡 − 𝑚)]


. (5)

The stochastic system (1) with time-delays can now be
written in the form of an equivalent stochastic system of
dimension 𝑛(𝑚 + 1) without delay; namely,

𝑥 (𝑡 + 1) = [𝐹 + 𝐺𝜔 (𝑡)] 𝑥 (𝑡) , (6)

where 𝐹 and 𝐺 denote the following 𝑛(𝑚 + 1) × 𝑛(𝑚 + 1)

matrices:

𝐹 = (

𝐹
0
𝐹
1
⋅ ⋅ ⋅ 𝐹
𝑚−1

𝐹
𝑚

𝐼 0 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ 𝐼 0

) ,

𝐺 = (

𝐺
0
𝐺
1
⋅ ⋅ ⋅ 𝐺

𝑚−1
𝐺
𝑚

0 0 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ 0 0

) .

(7)

If we set 𝑋(𝑡) = 𝐸𝑥(𝑡)𝑥


(𝑡), 𝑋(𝑡) satisfies the following
difference equation:

𝑋 (𝑡 + 1) = 𝐹𝑋 (𝑡) 𝐹


+ 𝐺𝑋 (𝑡) 𝐺


. (8)

Motivated by (8), we introduce the following linear Lyapunov
operator:

L
𝐹,𝐺

: 𝑋 ∈ 𝑆
𝑛(𝑚+1)

→ 𝐹𝑋 (𝑡) 𝐹


+ 𝐺𝑋 (𝑡) 𝐺


∈ 𝑆
𝑛(𝑚+1)

. (9)

With the use of the Kronecker matrix product, the matrix
equation (8) can be rewritten in the vector matrix form as
follows:

�⃗� (𝑡 + 1) = 𝐹�⃗�, (10)

where �⃗�(𝑡) denotes the 𝑛
2

(𝑚 + 1)
2-dimensional column

vector

�⃗� (𝑡) = [𝑋
1,1

(𝑡) , . . . , 𝑋
1,𝑛

(𝑡) , . . . ,

𝑋
1,𝑛(𝑚+1)

(𝑡) , . . . , 𝑋
𝑛(𝑚+1),𝑛(𝑚+1)

(𝑡)]


(11)

and 𝐹 ∈ 𝑅
𝑛
2
(𝑚+1)

2
×𝑛
2
(𝑚+1)

2

has the form 𝐹 = 𝐹 ⊗ 𝐹 + 𝐺 ⊗ 𝐺.
Now, we are in a position to give a spectral description for

the stability of system (1) by𝐻-representation in [14].

Lemma 3. Let𝐻
𝑛(𝑚+1)

be a 𝑛2(𝑚 + 1)
2

×(𝑛(𝑚+1)[𝑛(𝑚+1)+

1]/2)matrix and rank(𝐻
𝑛(𝑚+1)

) = (𝑛(𝑚+1)[𝑛(𝑚+1)+1])/2;
then𝐻



𝑛(𝑚+1)
𝐻
𝑛(𝑚+1)

is invertible.

Theorem 4. The trivial solution 𝑥(𝑡) = 0 of system (1) is
asymptotically mean square stable if and only if 𝜎(L

𝐹,𝐺
) ⊂

𝐷(0, 1).

Proof. If we set𝑋(𝑡) = 𝐸𝑥(𝑡)𝑥


(𝑡),𝑋(𝑡) satisfies

𝑋 (𝑡 + 1) = 𝐹𝑋 (𝑡) 𝐹


+ 𝐺𝑋 (𝑡) 𝐺


,

𝑋 (𝑘) = 𝑥 (𝑘) 𝑥


(𝑘) ∈ 𝑆
𝑛(𝑚+1)

,

𝑘 = 0, −1, −2, . . . , −𝑚, 𝑡 ∈ 𝑁.

(12)

Since 𝑋(⋅) is real symmetric, (12) is a linear matrix equation
with 𝑛(𝑚 + 1)[𝑛(𝑚 + 1) + 1]/2 different variables; that is, it is
in fact an 𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 th-order linear system.We
define a map L̃ from 𝑆

𝑛(𝑚+1) to 𝐶𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 as follows.
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For any 𝑌 = (𝑌
𝑖𝑗
)
𝑛(𝑚+1)×𝑛(𝑚+1)

∈ 𝑆
𝑛(𝑚+1), set

�̃� = L̃ (𝑌) = (𝑌
11
, . . . , 𝑌

1,𝑛(𝑚+1)
, . . . , 𝑌

𝑛(𝑚+1)−1,𝑛(𝑚+1)−1,

𝑌
𝑛(𝑚+1)−1,𝑛(𝑚+1)

, . . . , 𝑌
𝑛(𝑚+1),𝑛(𝑚+1)

)


;

(13)

then there exists an unique matrix 𝜃(𝐻
𝑛(𝑚+1)

) ∈

𝑅
(𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2)×(𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2), by 𝐻-representation

of [14], such that (12) is equivalent to

𝑋 (𝑡 + 1) = L̃ (L
𝐹,𝐺

(𝑋)) = 𝜃 (𝐻
𝑛(𝑚+1)

)𝑋 (𝑡) ,

𝑋 (𝑘) = [𝐻


𝑛(𝑚+1)
𝐻
𝑛(𝑚+1)

]
−1

𝐻


𝑛(𝑚+1)

× �⃗� (𝑘) ∈ 𝑅
𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2

,

𝑘 = 0, −1, −2, . . . , −𝑚, 𝑡 ∈ 𝑁,

(14)

where 𝜃(𝐻
𝑛(𝑚+1)

) = [𝐻


𝑛(𝑚+1)
𝐻
𝑛(𝑚+1)

]
−1

𝐻


𝑛(𝑚+1)
[𝐹 ⊗ 𝐹 +

𝐺 ⊗ 𝐺]𝐻
𝑛(𝑚+1)

, 𝑋 ∈ 𝑅
𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2. Obviously, since

the system of (14) for moments is deterministic, the proof
of the theorem is carried out by the standard method
for deterministic difference equations. Seeking the general
solution of system (14) in the exponential form 𝑋(𝑡) = 𝑐𝜆

𝑡,
where 𝑐, 𝜆 = const, we arrive at the characteristic equation
det(𝜆𝐼 − 𝜃(𝐻

𝑛(𝑚+1)
)) = 0. That is, lim

𝑡→+∞
𝐸𝑥(𝑡)𝑥



(𝑡) =

lim
𝑡→+∞

𝑋(𝑡) = 0 ⇔ lim
𝑡→+∞

𝑋(𝑡) = 0 ⇔ 𝜎(𝜃(𝐻
𝑛(𝑚+1)

)) ⊂

𝐷(0, 1).
By (9) and (14), for any eigenvalue𝜆 and its corresponding

eigenvector 𝑌 = (𝑌
𝑖𝑗
)
𝑛×𝑛

∈ 𝑆
𝑛 of L

𝐹,𝐺
, from L

𝐹,𝐺
(𝑌) =

𝜆𝑌, we have L̃(L
𝐹,𝐺

(𝑌)) = 𝜃(𝐻
𝑛(𝑚+1)

)�̃� = 𝜆�̃�, which
yields 𝜎(L

𝐹,𝐺
) = 𝜎(𝜃(𝐻

𝑛(𝑚+1)
)). The above discussion

concludes the proof of Theorem 4. The proof of Theorem 4
is complete.

Remark 5. InTheorem 4, a necessary and sufficient condition
for the asymptotically mean square stability of system (1)
via the spectrum of L

𝐹,𝐺
is presented, which can be called

“spectral criterion.”

Theorem 6. The trivial solution 𝑥 = 0 of system (1) is
asymptotically mean square stable if and only if, for any 𝑄 ∈

𝑆
𝑛(𝑚+1) with 𝑄 > 0, there exists a 𝑃 ∈ 𝑆

𝑛(𝑚+1) such that 𝑃 > 0

and 𝑃 is a solution of the following Lyapunov equation:

𝑃 −L
𝐹,𝐺

(𝑃) = 𝑄. (15)

Proof. We introduce an 𝑛
2

(𝑚 + 1)
2-parameter stochastic

Lyapunov function as a quadratic form:

𝑉(�⃗� (𝑡)) = �⃗�


𝑃�⃗�, 𝑃 ∈ 𝑆
𝑛(𝑚+1)

. (16)

The role of parameters is played by 𝑛2(𝑚 + 1)
2 elements

of the positive-definite matrix, which should be determined.
The statement of the theorem can be established in a way
that is standard for the method of Lyapunov functions for
stochastic difference equations. So the trivial solution 𝑥(𝑡) =

0 of system (6) is asymptotically mean square stable if and

only if for any 𝑄 > 0, the Lyapunov equation (15) has a
solution𝑃 > 0. By the proof ofTheorem 4, the trivial solution
𝑥 = 0 of system (1) is asymptotically mean square stable
if and only if the trivial solution 𝑥(𝑡) = 0 of system (6) is
asymptotically mean square stable.The proof ofTheorem 6 is
complete.

From the proof of Theorem 4 and the method of Lya-
punov functions for difference equations, we immediately get
the following result.

Theorem 7. The trivial solution 𝑥 = 0 of system (1) is
asymptotically mean square stable if and only if, for any
𝑄 ∈ 𝑆

𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 with 𝑄 > 0, there exists a 𝑃 ∈

𝑆
𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 such that 𝑃 > 0 and 𝑃 is a solution of the
following Lyapunov equation:

𝑃 − 𝐹


𝑃𝐹 = 𝑄. (17)

Corollary 8. If 𝜎(L
𝐹,𝐺

) ⊂ 𝐷(0, 1), then 𝜎(𝐹) ⊂ 𝐷(0, 1).

Proof. By Theorems 4 and 6, 𝜎(L
𝐹,𝐺

) ⊂ 𝐷(0, 1) holds if and
only if there is a matrix 𝑃 ∈ 𝑆

𝑛(𝑚+1) such that 𝑃 > 0 and 𝑃 is a
solution of the following Lyapunov equation:

𝑃 −L
𝐹,𝐺

(𝑃) = 𝑄, (18)

for any 𝑄 > 0. So, there exists a 𝑃 ∈ 𝑃 ∈ 𝑆
𝑛(𝑚+1) such that

𝑃 > 0 and 𝑃 is a solution of the following Lyapunov equation:

𝑃 − 𝐹


𝑃𝐹 > 0, (19)

which is equivalent to 𝜎(𝐹) ⊂ 𝐷(0, 1); that is, the system

𝑥 (𝑡 + 1) = 𝐹
0
𝑥 (𝑡) +

𝑗=𝑚

∑

1

𝐹
𝑗
𝑥 (𝑡 − 𝑗) ,

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = 0, −1, −2, . . . , −𝑚, 𝑡 ∈ 𝑁,

(20)

is asymptotically Lyapunov stable.The proof of Corollary 8 is
complete.

Now, we present some results about mean square stability
of system (1). From the process of Theorems 4–7, we easily
obtain the followingTheorems 9–10, so we omit their proofs.

Theorem 9. If the trivial stationary solution 𝑥 = 0 of the
system (1) is mean square stable, then 𝜎(L

𝐹,𝐺
) ⊂ 𝐷(0, 1).

Theorem 10. 𝜎(L
𝐹,𝐺

) ⊂ 𝐷(0, 1) if and only if one of the
following conditions holds.

(1) For any 𝜀 > 0 and 𝑄 > 0, the following Lyapunov
equation

𝑃 −L
𝑒
−𝜀
𝐹,𝑒
−𝜀
𝐺
(𝑃) = 𝑄 (21)

has a positive-definite solution 𝑃.
(2) 𝜎(L

𝑒
−𝜀
𝐹,𝑒
−𝜀
𝐺
) ⊂ 𝐷(0, 1).

Corollary 11. If 𝜎(L
𝐹,𝐺

) ⊂ 𝐷(0, 1), then 𝜎(𝐹) ⊂ 𝐷(0, 1).
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Proof. Since 𝜎(L
𝐹,𝐺

) ⊂ 𝐷(0, 1), we have, for any sufficient
small 𝜀 > 0, 𝜎(L

𝑒
−𝜀
𝐹,𝑒
−𝜀
𝐺
) ⊂ 𝐷(0, 1). By Theorem 4,

(𝑒
−𝜀

𝐹, 𝑒
−𝜀

𝐺) is mean square stable, which implies 𝜎(L
𝑒
−𝜀
𝐹
) ⊂

𝐷(0, 1) by Corollary 8. Let 𝜀 → 0, we have 𝜎(𝐹) ⊂ 𝐷(0, 1)

by continuity of spectrum [16]. The proof of Corollary 11 is
complete.

Remark 12. 𝜎(𝐹) ⊂ 𝐷(0, 1) does not imply 𝜎(L
𝐹,𝐺

) ⊂

𝐷(0, 1), which is one of the essential differences between
stochastic system and deterministic system.

Theorem 13. The trivial solution 𝑥 = 0 of system (1) is mean
square stable if and only if, for any 𝑄 ≥ 0, there exists a 𝑃 ∈

𝑆
n(𝑚+1) such that 𝑃 > 0 and 𝑃 is a solution of the following
Lyapunov equation:

𝑃 −L
𝐹,𝐺

(𝑃) = 𝑄. (22)

Proof. We introduce an 𝑛2(𝑚 + 1)
2-parameter stochastic Lya-

punov function as a quadratic form:

𝑉(�⃗� (𝑡)) = �⃗�


𝑃�⃗�, 𝑃 ∈ 𝑅
𝑛(𝑚+1)×𝑛(𝑚+1)

. (23)

By the method of Lyapunov functions for stochastic differ-
ence equations, we can get the result.The proof ofTheorem 13
is complete.

Now, we give an example to show how to solve the
spectrum of stochastic time-delay deference system by 𝐻-
representation.

Example 14. Consider the following stochastic system:

𝑥 (𝑡 + 1) = 𝑎𝑥 (𝑡) + 𝑏𝑥 (𝑡 − 1) + 𝑐𝑥 (𝑡) 𝜔 (𝑡) + 𝑑𝑥 (𝑡 − 1) 𝜔 (𝑡) .

(24)

Letting 𝑥(𝑡) = (𝑥(𝑡), 𝑥(𝑡 − 1))
,

𝑥 (𝑡 + 1) = (
𝑎 𝑏

1 0
) 𝑥 (𝑡) + (

𝑐 𝑑

0 0
) 𝑥 (𝑡) 𝜔 (𝑡) . (25)

Letting𝑋(𝑡) = 𝐸𝑥(𝑡)𝑥


(𝑡),

𝑋 (𝑡 + 1) = (
𝑎 𝑏

1 0
)𝑋 (𝑡) (

𝑎 1

𝑏 0
) + (

𝑐 𝑑

0 0
)𝑋 (𝑡) (

𝑐 0

𝑑 0
) .

(26)

Letting 𝐹 = ( 𝑎 𝑏
1 0

), 𝐺 = ( 𝑐 𝑑
0 0

), �⃗�(𝑡) = (𝑥
11
, 𝑥
12
, 𝑥
12
, 𝑥
22
)
,

�⃗� (𝑡 + 1) = (𝐹 ⊗ 𝐹 + 𝐺 ⊗ 𝐺) �⃗� (𝑡)

= (

𝑎
2

+ 𝑐
2

𝑎𝑏 + 𝑐𝑑 𝑎𝑏 + 𝑐𝑑 𝑏
2

+ 𝑑
2

𝑎 0 𝑏 0

𝑎 𝑏 0 0

1 0 0 0

)�⃗� (𝑡) .

(27)

Choose

𝐻
2
= (

1 0 0

0 1 0

0 1 0

0 0 1

) . (28)

Let𝑋(𝑡) = (𝑥
11
, 𝑥
12
, 𝑥
22
)
; then �⃗�(𝑡) = 𝐻

2
𝑋(𝑡) and

𝑋(𝑡 + 1) = (𝐻


2
𝐻
2
)
−1

𝐻


2
(𝐹 ⊗ 𝐹 + 𝐺 ⊗ 𝐺)𝐻

2
𝑋 (𝑡) . (29)

So 𝜎((𝐻


2
𝐻
2
)
−1

𝐻


2
(𝐹 ⊗ 𝐹 + 𝐺 ⊗ 𝐺)𝐻

2
) = 𝜎(L) if we choose

𝑎 = 1, 𝑏 = 0, 𝑐 = 0, 𝑑 = 1/4, and 𝜎(L) = {0, 1/2, 1/2}.
For a state feedback control law 𝑢(𝑡) = 𝐾𝑥(𝑡), we

introduce a linear operator L
𝐾
associated with the closed-

loop system:

𝑥 (𝑡 + 1) = 𝐹
0
𝑥 (𝑡) + 𝑀

0
𝑢 (𝑡) + (𝐺

0
𝑥 (𝑡) + 𝑁

0
𝑢 (𝑡)) 𝑤 (𝑡)

+

𝑚

∑

𝑗=1

[𝐹
𝑗
𝑥 (𝑡 − 𝑗) +𝑀

𝑗
𝑢 (𝑡 − 𝑗)

+ (𝐺
𝑗
𝑥 (𝑡 − 𝑗) + 𝑁

𝑗
𝑢 (𝑡 − 𝑗))𝑤 (𝑡)] ,

𝑥 (𝑘) = 𝜑 (𝑘) ∈ 𝑅
𝑛

, 𝑘 = 0, −1, . . . , −𝑚, 𝑡 ∈ 𝑁,

(30)

where𝑥 ∈ 𝑅
𝑛 is a columnvector,𝐹

𝑗
, 𝐺
𝑗
∈ 𝑅
𝑛×𝑛, 𝑗 = 0, 1, . . . , 𝑚

are constant coefficientmatrices,𝜑(𝑘) is a deterministic initial
condition, and 𝑢(𝑡) ∈ 𝑅

𝑛 is a control input.

Definition 15. The trivial stationary solution 𝑥(𝑡) = 0 of
the system (30) is called mean square stabilization if there
exists an input feedback𝐾 such that, for any arbitrarily small
number 𝜀 > 0, one can find a number 𝛿 > 0, when ‖𝜑‖ < 𝛿,
satisfying

𝐸‖𝑥(𝑡)‖
2

< 𝜀, (31)

for a solution 𝑥(𝑡) = 𝑥(𝑡, 𝜑) of (30).

Definition 16. The trivial stationary solution 𝑥(𝑡) = 0 of the
system (30) is called asymptotically mean square stabilization
if it is stable in the sense of Definition 15 and, moreover,

lim
𝑡→+∞

𝐸‖𝑥(𝑡)‖
2

= 0. (32)

We introduce the following column vectors 𝑥(𝑡) and 𝑢(𝑡)

of new variables of dimension 𝑛(𝑚 + 1):

𝑥 (𝑡) = [𝑥


(𝑡), 𝑥


(𝑡 − 1), . . . , 𝑥


(𝑡 − 𝑚)]


,

𝑢 (𝑡) = [𝑢


(𝑡) , 𝑢


(𝑡 − 1) , . . . , 𝑢


(𝑡 − 𝑚)]


.

(33)

The stochastic system (30) with time-delays can now be
written in the form of an equivalent stochastic system of
dimension 𝑛(𝑚 + 1) without time-delay; namely,

𝑥 (𝑡 + 1) = 𝐹𝑥 (𝑡) + 𝑀𝑢 (𝑡) + (𝐺𝑥 (𝑡) + 𝑁𝑢 (𝑡)) 𝜔 (𝑡) , (34)
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where

𝐹 = (

𝐹
0
𝐹
1
⋅ ⋅ ⋅ 𝐹
𝑚−1

𝐹
𝑚

𝐼 0 ⋅ ⋅ ⋅ 0 0

...
... ⋅ ⋅ ⋅

...
...

0 0 ⋅ ⋅ ⋅ 𝐼 0

) ,

𝐺 = (

𝐺
0
𝐺
1
⋅ ⋅ ⋅ 𝐺

𝑚−1
𝐺
𝑚

0 0 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ 0 0

) .

(35)

𝑀 = (

𝑀
0
𝑀
1
⋅ ⋅ ⋅ 𝑀

𝑚−1
𝑀
𝑚

0 0 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...

0 0
... 0 0

),

𝑁 = (

𝑁
0
𝑁
1
⋅ ⋅ ⋅ 𝑁

𝑚−1
𝑁
𝑚

0 0 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ 0 0

) .

(36)

Take a control input 𝑢(𝑡) = 𝐾𝑥(𝑡) with

𝐾 = (

𝐾 0 ⋅ ⋅ ⋅ 0 0

0 𝐾 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ 0 𝐾

) , (37)

and set 𝑋(𝑡) = 𝐸𝑥(𝑡)𝑥


(𝑡); 𝑋(𝑡) satisfies the following
difference equation:

𝑋 (𝑡 + 1) = (𝐹 +𝑀𝐾)𝑋(𝑡)(𝐹 +𝑀𝐾)


+ (𝐺 + 𝑁𝐾)𝑋 (𝑡) (𝐺 + 𝑁𝐾)


.

(38)

Motivated by (38), we introduce the following linear Lya-
punov operator:

L
𝐾
: 𝑋 ∈ 𝑆

𝑛(𝑚+1)

→ (𝐹 +𝑀𝐾)𝑋 (𝑡) (𝐹 +𝑀𝐾)


+ (𝐺 + 𝑁𝐾)𝑋 (𝑡) (𝐺 + 𝑁𝐾)


∈ 𝑆
𝑛(𝑚+1)

.

(39)

With the use of the Kronecker matrix product, the matrix
equation (38) can be rewritten in the vector matrix form as
follows:

�⃗� (𝑡 + 1) = 𝐴�⃗�, (40)

where �⃗�(𝑡) denotes the 𝑛
2

(𝑚 + 1)
2-dimensional column

vector

�⃗� (𝑡) = [𝑋
1,1

(𝑡) , . . . , 𝑋
1,𝑛

(𝑡) , . . . ,

𝑋
1,𝑛(𝑚+1)

(𝑡) , . . . , 𝑋
𝑛(𝑚+1),𝑛(𝑚+1)

(𝑡)]


(41)

and 𝐴 = (𝐹 + 𝑀𝐾) ⊗ (𝐹 + 𝑀𝐾) + (𝐺 + 𝑁𝐾) ⊗ (𝐺 + 𝑁𝐾) ∈

𝑆
𝑛
2
(𝑚+1)

2

.
From Theorems 4–13, we can easily obtain the following

results.

Corollary 17. The trivial solution 𝑥 = 0 of system (30) is
asymptotical mean square stabilizaton if and only if 𝜎(L

𝐾
) ⊂

𝐷(0, 1).

Corollary 18. The trivial solution 𝑥(𝑡) = 0 of system (30) is
asymptotically mean square stable if and only if, for any 𝑄 ∈

𝑆
𝑛(𝑚+1) with 𝑄 > 0, there exists a 𝑃 ∈ 𝑆

𝑛(𝑚+1) such that 𝑃 > 0

and 𝑃 is a solution of the following Lyapunov equation:

𝑃 −L
𝐹+𝑀𝐾,𝐺+𝑁𝐾

(𝑃) = 𝑄. (42)

Corollary 19. The trivial solution 𝑥 = 0 of system (30)
is asymptotically mean square stable if and only if, for any
𝑄 ∈ 𝑆

𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 with 𝑄 > 0, there exists a 𝑃 ∈

𝑆
𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 such that 𝑃 > 0 and 𝑃 is a solution of the
following Lyapunov equation:

𝑃 − 𝜃(𝐻
𝐾

𝑛(𝑚+1)
)


𝑃𝜃 (𝐻
𝐾

𝑛(𝑚+1)
) = 𝑄, (43)

where

𝜃 (𝐻
𝐾

𝑛(𝑚+1)
) = [𝐻



𝑛(𝑚+1)
𝐻
𝑛(𝑚+1)

]
−1

𝐻


𝑛(𝑚+1)

× [(𝐹 +𝑀𝐾) ⊗ (𝐹 +𝑀𝐾)

+ (𝐺 + 𝑁𝐾) ⊗ (𝐺 + 𝑁𝐾)]𝐻
𝑛(𝑚+1)

.

(44)

Corollary 20. The trivial solution 𝑥 = 0 of system (30) is
asymptotically mean square stable if and only if, for any 𝑄 ∈

𝑆
𝑛
2
(𝑚+1)

2

, 𝑄 > 0, there exists a 𝑃 ∈ 𝑆
𝑛
2
(𝑚+1)

2

such that 𝑃 > 0

and 𝑃 is a solution of the following Lyapunov equation:

𝑃 − 𝐴


𝑃𝐴 = 𝑄. (45)

Corollary 21. The trivial solution 𝑥 = 0 of system (30) is mean
square stable if and only if, for any 𝑄 ∈ 𝑆

𝑛(𝑚+1) with 𝑄 ≥ 0,
there exists a 𝑃 ∈ 𝑆

𝑛(𝑚+1) such that 𝑃 > 0 and 𝑃 is a solution of
the following Lyapunov equation:

𝑃 −L
𝐹+𝑀𝐾,𝐺+𝑁𝐾

(𝑃) = 𝑄. (46)

Corollary 22. The trivial solution 𝑥 = 0 of system (1) is mean
square stable if and only if, for any 𝑄 ∈ 𝑆

𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 with
𝑄 ≥ 0, there exists a 𝑃 ∈ 𝑆

𝑛(𝑚+1)[𝑛(𝑚+1)+1]/2 such that 𝑃 > 0

and 𝑃 is a solution of the following Lyapunov equation:

𝑃 − 𝜃(𝐻
𝐾

𝑛(𝑚+1)
)


𝑃𝜃 (𝐻
𝐾

𝑛(𝑚+1)
) = 𝑄, (47)

where

𝜃 (𝐻
𝐾

𝑛(𝑚+1)
) = [𝐻



𝑛(𝑚+1)
𝐻
𝑛(𝑚+1)

]
−1

× 𝐻


𝑛(𝑚+1)
[𝐹 ⊗ 𝐹 + 𝐺 ⊗ 𝐺]𝐻

𝑛(𝑚+1)
.

(48)
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Corollary 23. The trivial solution 𝑥 = 0 of system (1) is mean
square stable if and only if, for any 𝑄 ≥ 0, there exists a 𝑃 ∈

𝑆
𝑛
2
(𝑚+1)

2

such that 𝑃 > 0 and 𝑃 is a solution of the following
Lyapunov equation:

𝑃 − 𝐴


𝑃𝐴 = 𝑄. (49)

3. Popov-Belevith-Hautus Criterion
of the Stabilizability

In this section, we will investigate the properties of unremov-
able spectrumof time-delay deference systemand the relation
between unremovable spectrum and the stabilizability of
time-delay deference system. Consider the following linear
stochastic system with time-delays:

𝑥 (𝑡 + 1) = 𝐹
0
𝑥 (𝑡) + 𝑀

0
𝑢 (𝑡) + (𝐺

0
𝑥 (𝑡) + 𝑁

0
𝑢 (𝑡)) 𝑤 (𝑡)

+

𝑚

∑

𝑗=1

[𝐹
𝑗
𝑥 (𝑡 − 𝑗) +𝑀

𝑗
𝑢 (𝑡 − 𝑗)

+ (𝐺
𝑗
𝑥 (𝑡 − 𝑗) + 𝑁

𝑗
𝑢 (𝑡 − 𝑗))𝑤 (𝑡)] ,

𝑥 (𝑘) = 𝜑 (𝑘) ∈ 𝑅
𝑛

, 𝑘 = 0, −1, −2, . . . , −𝑚, 𝑡 ∈ 𝑁.

(50)

Definition 24. We say that 𝜆 is an unremovable spectrum of
system (50) with state feedback if there exists𝑍 ̸= 0 ∈ 𝑆

𝑛(𝑚+1),
such that,for any𝐾 ∈ 𝑅

𝑛(𝑚+1)×𝑛(𝑚+1),

L
∗

𝐾
(𝑍) = (𝐹 +𝑀𝐾)



𝑍(𝐹 +𝑀𝐾)

+ (𝐺 + 𝑁𝐾)


𝑍(𝐺 + 𝑁𝐾) = 𝜆𝑍

(51)

holds.

Remark 25. It is easy to see that the operatorL∗
𝐾
is the adjoint

operator of the operatorL
𝐾
with the inner product ⟨𝑍, 𝑌⟩ =

trace(𝑍∗, 𝑌) for any 𝑍,𝑌 ∈ 𝑆
𝑛(𝑚+1). As we restrict the

coefficients to real matrices, 𝜎(L∗
𝐾
) = 𝜎(L

𝐾
). By Corollaries

17–23, we know that any one of them can characterize the
stabilizability of system (50).

Obviously, if 𝜆 is an unremovable spectrum, then it can
be regarded as an uncontrollable mode as in deterministic
systems. We give a theorem with respect to the unremovable
spectrum below.

Theorem 26. (Stochastic PBH criterion) 𝜆 is an unremovable
spectrum of system (50) if and only if there exists 𝑍 ̸= 0 ∈

𝑆
𝑛(𝑚+1), such that the following three equalities hold simulta-
neously:

𝐹


𝑍𝐹 + 𝐺


𝑍𝐺 = 𝜆𝑍,

𝐹


𝑍𝑀 + 𝐺


𝑍𝑁 = 0,

𝑁


𝑍𝑁 = −𝑀


𝑍𝑀.

(52)

Proof. Note that (51) can be written as

𝐹


𝑍𝐹 + 𝐾


𝑀


𝑍𝑀𝐾 + 𝐺


𝑍𝐺


+ 𝐾


𝑁


𝑍𝑁𝐾

+ (𝐹


𝑍𝑀 + 𝐺


𝑍𝑁)𝐾 + 𝐾


(𝑀


𝑍𝐹 + 𝑁


𝑍𝐺) = 𝜆𝑍,

(53)

so if (52) holds, then (53) automatically holds. So the
sufficiency is proved.

To prove the necessity, we first take 𝐾 = 0 in (51), then

𝐹


𝑍𝐹 + 𝐺𝑍𝐺


= 𝜆𝑍 (54)

holds. Again, from (53), it follows that

𝐾


𝑀𝑍𝑀


𝐾 + 𝐾𝑁𝑍𝑁


𝐾


+ (𝐹


𝑍𝑀 + 𝐺


𝑍𝑁)𝐾 + 𝐾


(𝑀


𝑍𝐹 + 𝑁


𝑍𝐺) = 0.

(55)

Let F = 𝐹


𝑍𝑀 + 𝐺


𝑍𝑁, M = 𝑀𝑍𝑀
, N = 𝑁𝑍𝑁

; then
(55) becomes

F𝐾 + 𝐾


F


= −𝐾


M𝐾 − 𝐾


N𝐾. (56)

Since the left-hand side in (56) is linear with respect to𝐾, we
must have M + N = 0. In fact, due to the linearity of the
following equation

(𝐾 + 𝐾)


(M +N) (𝐾 + 𝐾)

= 4𝐾


(M +N) 𝐾 = 2𝐾


(M +N) 𝐾,

(57)

𝐾


(M + N)𝐾 = 0. Because of the arbitrariness of 𝐾, it is
necessary that M + N = 0; that is, 𝑀𝑍𝑀



= −𝑁𝑍𝑁
. To

proveF = 0 or𝐹𝑍𝑀+𝐺


𝑍𝑁 = 0, we note that (56) becomes
𝐾


F = −F𝐾. DenoteF = (𝑓
𝑖𝑗
)
𝑛(𝑚+1)×𝑛(𝑚+1)

, and take

𝐾 = 𝐾
𝑖𝑗
= (𝑘
𝑙𝑠
)
𝑛(𝑚+1)×𝑛(𝑚+1)

= {
1, 𝑙 = 𝑖, 𝑠 = 𝑗,

0, otherwise.
(58)

From 𝐾


F = −F𝐾, one knows that 𝑓
𝑖𝑗

= 0, 𝑖, 𝑗 =

1, 2, . . . , 𝑛(𝑚 + 1); that is, F = 0. The proof of Theorem 26
is complete.

Theorem 27. If system (50) is asymptotically mean square
stabilizable, then all unremovable spectra of system (50) must
belong to𝐷(0, 1).

Proof. If there is an unremovable spectrum 𝜇 of (50) with
|𝜇| ≥ 1, then, by Theorem 26, there exists 𝑍 ̸= 0 ∈ 𝑆

𝑛(𝑚+1),
such that the following three equalities hold simultaneously:

𝐹


𝑍𝐹 + 𝐺


𝑍𝐺 = 𝜇𝑍,

𝐹


𝑍𝑀 + 𝐺


𝑍𝑁 = 0,

𝑁


𝑍𝑁 = −𝑀


𝑍𝑀.

(59)
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So, for any feedback gain 𝐾, we obtain L
𝐾
(𝑍) = 𝜇𝑍, 𝜇 ∉

𝐷(0, 1). The proof of Theorem 27 is complete. It follows that,
for any 𝐾, 𝜇 ∈ 𝜎(L

𝐾
), which contradicts the asymptotical

mean square stabilization of system (50).
By Theorems 26 and 27, the deterministic Popov-

Belevith-Hautus Criterion can be stated in another form as
follows.

Corollary 28. Assume that𝐺
𝑗
= 𝑁
𝑗
= 0, 𝑗 = 0, 1, . . . , 𝑚; then

system (50) is asymptotically stabilizable if and only if all of the
unremovable spectra of system (50) belong to 𝐷(0, 1); that is,
there does not exist a nonzero 𝑍 ∈ 𝑆

𝑛(𝑚+1), and 𝜆 ∉ 𝐷(0, 1)

satisfying

𝐹


𝑍𝐹 = 𝜆𝑍, 𝑍𝑀 = 0. (60)

Proof. The necessity is obvious. To prove the sufficiency part,
we note that if (𝐹

0
,𝑀
0
) is not stabilizable, then, by Popov-

Belevith-Hautus Criterion, there exists a nonzero 𝜉 ∈ 𝐶
𝑛(𝑚+1),

𝜆 ∉ 𝐷(0, 1) satisfying 𝜉


𝐹 = 𝜆𝜉
, 𝜉𝑀 = 0. Take 𝑍 =

𝜉𝜉
, then (60) holds, which contradicts the given condition.

Corollary 28 is proved.

Remark 29. Corollary 28 indicates that there is no difference
between unremovable spectrum and uncontrollablemode for
deterministic systems.

Theorem 30. If system (50) is mean square stabilizable, then
all the existing unremovable spectra of (50) must belong to
𝐷(0, 1).

Proof. If there is an unremovable spectrum 𝜇 of system
(50) with 𝜇 ∉ 𝐷(0, 1), then, by Theorem 26, there exists
𝑍 ̸= 0 ∈ 𝑆

𝑛(𝑚+1), such that the following three equalities hold
simultaneously:

𝐹


𝑍𝐹 + 𝐺


𝑍𝐺 = 𝜇𝑍,

𝐹


𝑍𝑀 + 𝐺


𝑍𝑁 = 0,

𝑁


𝑍𝑁 = −𝑀


𝑍𝑀.

(61)

So for any feedback gain 𝐾, we obtain L∗
𝐾
(𝑍) = 𝜇𝑍,

𝜇 ∉ 𝐷(0, 1). It follows that, for any 𝐾, 𝜇 ∈ 𝜎(L
𝐾
), which

contradicts mean square stabilization of system (50). The
proof of Theorem 30 is complete.

4. Conclusion

In this paper, we investigate the stability and stabilizability of
stochastic delay-time systems. By 𝐻-representation, present
the spectral criteria of the stability and stabilizability. By
generalized Lyapunov equation approach, the equivalent
conditions of mean square stabilizability and asymptotically
mean square stabilizability of system (50) are given. We
introduce the notion of unremovable spectrum of stochastic
time-delay deference system, present the PBH criterion of
the unremovable spectrum of stochastic time-delay system,

and investigate the relation between the unremovable spec-
trum and the stabilizability of stochastic time-delay deference
system.
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