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Estimation of sinusoid frequency is a key research problem related to radar, sonar, and communication systems. The results of
numerous investigations on frequency estimation have been reported in the literature. Nevertheless, to the best of our knowledge,
none of themhave dealt with credibility evaluation, which is used to decidewhether an individual frequency estimate of the sinusoid
is accurate or not. In this study, the credibility problem is modeled as a hypothesis test based on Chebyshev’s inequality (CI). The
correlation calculated from the received signal and the reference signal generated according to the frequency estimate is used as a
test statistic. A threshold is determined based on CI, and the analytical expression for the frequency estimation credibility detection
performance is derived. Simulations show that the proposed method performs well even at low signal-to-noise ratios.

1. Introduction

Frequency estimation of a sinusoid signal is an important
problem concerning applications related to commercial and
military signal processing systems. For some methods, esti-
mation of frequency is the precondition for estimating the
other parameters of sinusoid signals [1] as well as frequency
estimation of modulated signals [2, 3]. Many algorithms have
been proposed for estimation of frequency from received
signals [4–12]. Performance evaluation of frequency estima-
tion algorithms is also a key operation in practical signal
processing systems and can be considered from two points
of view. Algorithm designers focus on the overall statistical
performance that can be evaluated by comparing the mean
square error with the Cramér-Rao lower bound (CRLB).
On the other hand, users consider the credibility (or con-
fidence) of individual frequency estimation important. In
a noncooperative context, especially at low signal-to-noise
(SNR) ratios, it is important to decide whether an individual
frequency estimate is accurate or not when the true value of
the frequency is unknown at the receiver side. For example,
in the pulse sorting system, pulse radio frequency is one of
the five key parameters that are pulse duration (PD), pulse
amplitude (PA), pulse radio frequency (RF), angle of arrival

(AOA), and time of arrival (TOA). Therefore, the sorting
performance may be affected by the accuracy and credibility
of pulse radio frequency. As another example in electronic
intelligence (Elint), it is helpful for the users to determine the
parameter limit and to remove the outlier estimates by using
the credibility checking of each estimate [13].

Recently, investigations conducted have been devoted
to the confidence evaluation of blind modulation recogni-
tion results to enhance the reliability of the overall signal
processing units and conserve both software and hard-
ware resources. The confidence measurement of modulation
recognition becomes the key output information of the
signal processing system in military applications and is used
to identify unknown radar signals [14]. As IEEE 1990.6
for cognitive radio (CR) [15] expressed, the modulation
recognition confidence rating is regarded as additional output
information in some civilian signal processing devices; an
example is Agilent’s option MR1 for E3238S signal detection
and monitoring systems. Nevertheless, the detailed method
of evaluating the reliability of modulation recognition is
not described in both [10, 11]. Fehske et al. [16] defined
the half value of the maximum and the second maximum
output of the back propagation- (BP-) based classifier as
the confidence metric of modulation classifying results for
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CR. Lin and Liu [17] proposed a confidence measurement
method based on the information entropy to measure the
confidence of modulation recognition results in single-input
and single-output (SISO) as well as multiple-input multiple-
output (MIMO) channels of CR. Still, credibility evaluation of
frequency estimation of a sinusoid remains an inadequately
addressed research problem.

In this paper, we propose a method to automatically
decide the credibility of an individual frequency estimate
of a sinusoid without any a priori knowledge about the
parameters of the received signal. Section 2 of this paper
presents the sinusoid signal model and a hypothesis test
for credibility evaluation. The null hypothesis is defined
as that when the absolute frequency estimation error of
the sinusoid is less than a quarter of a discrete frequency
interval and the alternative one is the contrary. In Section 3,
the statistic is defined by calculating the magnitude of the
correlation between the received signal and the reference
signal generated according to a frequency estimator. If the
absolute estimation error is less than a quarter of the discrete
frequency interval, it shows that the mean of the correlation
under the null hypothesis is different from that under the
alternative hypothesis. By using this property, Section 4
presents a decision rule for the credibility test for frequency
estimation of sinusoid based on Chebyshev’s inequality (CI).
Finally, Section 5 summarizes the proposed algorithm, and
Section 6 reports the simulation results.

2. Signal Model and Basic Assumptions

2.1. Signal Model. A complex sinusoid contaminated by
noises can be described by the following signal model:

𝑥 (𝑛) = 𝑠 (𝑛) + 𝑤 (𝑛)

= 𝐴 exp [𝑗 (2𝜋𝑓
0
𝑛Δ𝑡 + 𝜃)] + 𝑤 (𝑛) ,

0 ≤ 𝑛 ≤ 𝑁 − 1,

(1)

where𝐴, 𝑓
0
, and 𝜃 denote, respectively, the amplitude, carrier

frequency, and initial phase of the sinusoid signal 𝑠(𝑛). Δ𝑡
is the discrete sampling interval, and 𝑁 corresponds to the
length of the samples. The additive noise 𝑤(𝑛) is supposed to
be a white complex Gaussian process with a zero mean and
variance 𝜎2 whose real and imaginary parts are independent
of each other.

2.2. Hypothesis Model for Credibility Evaluation. In the non-
cooperative environment, both the modulation format and
signal parameters are unknown at the receiver side.Generally,
processing of the sinusoid is performed in two main steps:
modulation recognition and carrier frequency estimation.
For a certain processing cycle, credibility evaluation of
the frequency estimator is aimed at detecting whether the
individual frequency estimate is accurate or not. In practice,
for the widely used fast Fourier transform- (FFT-) based
estimators, if the signal-to-noise ratio (SNR) is greater than
the moderate threshold, the maximum absolute bias of the
frequency estimation (|Δ𝑓|) is less than a quarter of the

discrete sampling frequency interval (Δ𝐹) [18]. Therefore, we
describe the credibility assessment as the following hypothe-
sis test:

𝐻
0
:
󵄨
󵄨
󵄨
󵄨
Δ𝑓

󵄨
󵄨
󵄨
󵄨
≤ 0.25Δ𝐹,

𝐻
1
:
󵄨
󵄨
󵄨
󵄨
Δ𝑓

󵄨
󵄨
󵄨
󵄨
> 0.25Δ𝐹.

(2)

3. Statistic Selection and Analysis

3.1. Feature Analysis. Assuming that the observed signal is a
single-tone sinusoid, the reference signal can be constructed
by the sinusoid model as follows:

𝑦 (𝑛) = exp (−𝑗2𝜋 ̂
𝑓
0
𝑛Δ𝑡) , 0 ≤ 𝑛 ≤ 𝑁 − 1, (3)

where ̂
𝑓
0
is estimated by the maximum likelihood (ML)

method or the other suboptimal estimators. The correlation
between the observed signal 𝑥(𝑛) and the reference signal
𝑦(𝑛) can be expressed as

𝑍 =

𝑁−1

∑

𝑚=0

[𝑠 (𝑚) + 𝑤 (𝑚)] 𝑦 (𝑚) = 𝑠 + 𝑤, (4)

where 𝑠 and 𝑤 are the signal part and noise part of 𝑍,
respectively. The signal part 𝑠 can be further derived as

𝑠 = 𝐴

sin (𝜋Δ𝑓Δ𝑡𝑁)

sin (𝜋Δ𝑓Δ𝑡)
𝑒
𝑗𝛽
, (5)

where 𝛽 = 𝜋(𝑁 − 1)Δ𝑓Δ𝑡 + 𝜃 is the phase of 𝑠. Letting 𝛿 =

Δ𝑓/Δ𝐹, the magnitude of 𝑠 is given by

𝑠 = 𝐴

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin (𝜋Δ𝑓Δ𝑡𝑁)

sin (𝜋Δ𝑓Δ𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≈ 𝑁𝐴 sinc (𝛿) , (6)

where 𝛿 is the factor of the frequency estimation error and
sinc(𝑥) = sin𝜋𝑥/𝜋𝑥 is the sinc function.

Rewrite 𝑍 to the algebraic form as

𝑍 = 𝑍
𝑅
+ 𝑗𝑍
𝐼
, (7)

where 𝑍
𝑅
, 𝑍
𝐼
are the real and imaginary parts of 𝑍, respec-

tively.They are independent Gaussian distributions. Now, the
mean and variance of 𝑍

𝑅
and 𝑍

𝐼
can be expressed as follows:

𝐸 (𝑍
𝑅
) = 𝜇
𝑧𝑅

= 𝑁𝐴 |sinc (𝛿)| cos𝛽,

𝐸 (𝑍
𝐼
) = 𝜇
𝑧𝐼
= 𝑁𝐴 |sinc (𝛿)| sin𝛽,

𝐷 (𝑍
𝑅
) = 𝐷 (𝑍

𝐼
) =

1

2

𝐷 (𝑍) =

𝑁𝜎
2

2

= 𝜎
2

𝑧
.

(8)

For the appropriate frequency estimator, if the SNRs are
above a certain threshold [5, 14], the absolute estimation error
is less than the discrete sampling frequency interval Δ𝐹; that
is, 0 ≤ 𝛿 ≤ 1. Consider the magnitude of the mean of 𝑍 as

|𝐸 (𝑍)| = |𝑠| = √𝜇
2

𝑧𝑅
+ 𝜇
2

𝑧𝐼
= 𝑁𝐴 sinc (𝛿) . (9)
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Figure 1: Relationship between 𝑟 and 𝛿.

Under hypothesis𝐻
0
, assuming that the absolute error is

relatively small, that is, |Δ𝑓| ≤ 0.25Δ𝐹 and 𝛿 ≤ 0.25, it follows
that

󵄨
󵄨
󵄨
󵄨
𝐸 (𝑍
0
)
󵄨
󵄨
󵄨
󵄨
= 𝑁𝐴 |sinc (𝛿)| ≥ 𝑁𝐴 sinc (0.25) ≈ 0.9003𝑁𝐴.

(10)

Under hypothesis 𝐻
1
, because of the low SNR or other

possible reasons, the maximum magnitude of the observed
signals’ spectrums might not be located in the correct point
or the discrete frequency interval and the estimation errorΔ𝑓
is larger than Δ𝐹/4; that is, 𝛿 ≥ 0.25. Thus,

󵄨
󵄨
󵄨
󵄨
𝐸 (𝑍
1
)
󵄨
󵄨
󵄨
󵄨
= 𝑁𝐴 sinc (𝛿) ≤ 0.9003𝑁𝐴. (11)

In order to explain the relationship between the frequency
estimation error and the magnitude of the mean of 𝑍, we
define the ratio as

𝑟 =

|𝐸(𝑍)|𝛿

|𝐸(𝑍)|0

≈ sinc (𝛿) , (12)

where |𝐸(𝑍)|
𝛿
is the magnitude of the mean of 𝑍 at a

given 𝛿. According to the sinc function, the ratio decreases
monotonically with the frequency estimating error factor 𝛿
supposing 0 ≤ 𝛿 ≤ 1. As Δ𝑓 increases, 𝛿 increases and
the ratio 𝑟 decreases. This relationship is shown in Figure 1.
For 𝛿 ≤ 0.25, the ratio 𝑟 > 0.9003 and it decreases slowly
departing from 1 with the increase of 𝛿. For 𝛿 > 0.25, the
ratio decreases dramatically. Hence, we can infer the absolute
error of certain frequency estimation depending on the ratio
𝑟 and obtain the credibility metric of the estimation.

In order to facilitate convenient handling of the formula
derivation, the statistic used to decide 𝐻

0
and 𝐻

1
can be

defined as follows:

𝑉 =

|𝑍|
2

𝜎
𝑧

. (13)

Clearly, the random variable 𝑉 under 𝐻
𝑖
, 𝑖 = 0, 1,

follows a standard noncentral law and its contribution can be
represented as [19]

𝑝
𝑉|𝐻𝑖

(V) =
{

{

{

1

2

exp [−1
2

(V2 + 𝜆
2

𝑖
)] 𝐼
0
(√𝜆
𝑖
V) , V ≥ 0

0, V < 0,

(14)

where 𝐼
0
(𝑥) is the zero-order modified Bessel function and

𝜆
𝑖
= (𝜇
2

𝑧𝑅𝑖
+ 𝜇
2

𝑧𝐼𝑖
)/𝜎
2

𝑧
denotes the noncentrality.

Under the assumption relating to𝐻
0
, that is, 𝛿 ≤ 0.25, we

obtain

𝜆
0
≥ 𝜆
𝑡
=

2 [𝑁𝐴 sinc (0.25)]2

𝑁𝜎
2

≈ 1.6211𝑁 SNR, (15)

where 𝜆
𝑡
is the noncentrality parameter when 𝛿 = 0.25.

Similarly, under the𝐻
1
assumption, we obtain

𝜆
1
= 2 [sinc(𝛿)]2𝑁 SNR < 𝜆

𝑡
. (16)

From the above discussion, we find that, under each assump-
tion, 𝐻

0
or 𝐻
1
, the statistic 𝑉 follows a standard noncentral

law with different parameters. Therefore, the hypothesis
test defined by (2) can be transformed to a parameter test
involving 𝜆 that is given by

𝐻
0
: 𝜆 ≥ 𝜆

𝑡
, 𝐻

1
: 𝜆 < 𝜆

𝑡
. (17)

3.2. Decision Rule and the Threshold. We first consider the
degradation form of (17) given as

𝐻
󸀠

0
: 𝜆 = 𝜆

𝑡
, 𝐻

󸀠

1
: 𝜆 ̸= 𝜆

𝑡
. (18)

Consequently, letting 𝑐 = 2 + 𝜆, 𝑏 = 𝜆/𝑐, the statistic 𝑉 can
be approximated to a Gaussian distribution by𝑊 = (𝑉/𝑐)

1/3

[20] whose mean and variance are given by

𝐸 (𝑊) = 1 −

2 (1 + 𝑏)

9𝑐

, 𝐷 (𝑊) =

2 (1 + 𝑏)

9𝑐

, (19)

respectively. Thus, the standard variable

𝑈 =

𝑊 − 𝐸 (𝑊)

√𝐷 (𝑊)

∼ 𝑁 (0, 1) (20)

and the hypothesis test expressed by (17) can be simplified by

𝐻
󸀠

0
: 𝜇
𝑈
= 0, 𝐻

󸀠

1
: 𝜇
𝑈

̸= 0, (21)

where 𝜇
𝑈
denotes the mean of 𝑈.

As the means of 𝑈 between the two assumptions are
different, CI can be used as the decision rule to perform the
hypothesis test. Hence, we write CI as

𝑃 {|𝑈| ≤ 𝜀} ≥ 1 −

1

𝜀
2
, (22)

where 𝜀 > 0 is a certain real number. As 𝑈 approximately
follows a standard Gaussian law, the probability of the
samples located in the range of threefold the standard error is



4 Mathematical Problems in Engineering

0 1 2 3 4 5 6 70.00

0.25

0.50

0.75

1.00

p
(u
)

u

−
10 −
9

−
8

−
7

−
6

−
5

−
4

−
3

−
2

−
1

= −3.719, 𝛼 = 0.001

𝛿 = 0.1

𝛿 = 0.25

𝛿 = 0.4

𝛾

Figure 2: Distribution of the statistic 𝑈 for 𝛿 = 0.1, 0.25, 0.4 at
SNR = 0 dB. The carrier frequency is set to 19.081MHz, the length
of received samples is 1024, the initial phase is 𝜋/6, and the number
of simulations is 1000.

greater than 0.9973 and we can adjust 𝜀 to obtain the desired
probability. Hence, we decide𝐻󸀠

1
if

−𝜀 ≤ 𝑈 ≤ 𝜀. (23)

Consequently, the hypothesis test of (2) can be rewritten as

𝐻
0
: 𝜇
𝑈
≥ 0, 𝐻

1
: 𝜇
𝑈
< 0. (24)

Therefore, we decide𝐻
1
if

𝑈 ≥ 𝛾 = −𝜀, (25)

where 𝛾 is the threshold.The probability of false alarm can be
defined as

𝑃
𝑟
{𝑈 < 𝛾;𝐻

0
} ≈ Φ (𝛾) = 𝛼, (26)

where Φ(𝑥) = (1/√2𝜋) ∫

𝑥

−∞
𝑒
−𝑡
2
/2
𝑑𝑡 is the distribution

function of a standard Gaussian variable and 𝛼 is a given
false alarm. Taking the inverse function of (26) leads to the
threshold

𝛾 = Φ
−1
(𝛼) , (27)

whereΦ−1(𝑥) denotes the inverse of the distribution function
of a standard Gaussian probability density function (pdf).

Figure 2 shows the histogram and the fitted pdfs of the
statistic 𝑈 for different frequency estimator factors. It can be
seen that, under a certain SNR, the proposed statistic based
onCI approximated to the standardGaussian and the selected
threshold can be used to distinguish𝐻

0
and𝐻

1
assumptions

effectively.

4. Algorithm Summary

The proposed credibility test algorithm is composed of the
following steps.

(1) Estimation of the frequency of the signal by using a
certain estimation method.

(2) Construction of the reference signal 𝑦(𝑛) with (3) by
using the estimated frequency ̂

𝑓
0
.

(3) Computation of the correlation between the received
signal and the reference signal and contraction of the
statistic 𝑈 with (20).

(4) Computation of the test threshold 𝛾 from the proba-
bility of false alarm with (27).

(5) Evaluation of the credibility of frequency estimation
by comparing the statistic 𝑈 to the threshold 𝛾 with
(25).The hypothesis𝐻

0
is chosen if𝑈 < 𝛾. Otherwise

𝐻
1
is accepted.

5. Performance Analysis

Under 𝐻󸀠
0
assumption with 𝜆 = 𝜆

𝑡
, the statistic defined in

(20) is expressed as

𝑈
𝜆𝑡

𝐻
󸀠

0

=

(𝑉/𝑐
𝑡
)
1/3

− [1 − (2/9) (1 + 𝑏
𝑡
) /𝑐
𝑡
]

√(2/9) (1 + 𝑏
𝑡
) /𝑐
𝑡

∼ 𝑁 (0, 1) , (28)

where 𝑐
𝑡
= 2 + 𝜆

𝑡
and 𝑏 = 𝜆

𝑡
/𝑐
𝑡
, respectively.

For 𝜆 ≥ 𝜆
𝑡
, the statistic is

𝑈
𝜆

𝐻0
=

(𝑉/𝑐)
1/3

− [1 − (2/9) (1 + 𝑏) /𝑐]

√(2/9) (1 + 𝑏) /𝑐

∼ 𝑁 (0, 1) . (29)

We note that, for 𝜆 > 𝜆
𝑡
, it can be rewritten as

𝑈
𝜆𝑡

𝐻0
=

(𝑉/𝑐
𝑡
)
1/3

− [1 − (2/9) (1 + 𝑏
𝑡
) /𝑐
𝑡
]

√(2/9) (1 + 𝑏
𝑡
) /𝑐
𝑡

=

(𝑉/𝑐)
1/3

− 𝜍
1/3

[1 − (2/9) (1 + 𝑏
𝑡
) /𝑐
𝑡
]

𝜍
1/3
√(2/9) (1 + 𝑏

𝑡
) /𝑐
𝑡

= ((

𝑉

𝑐

)

1/3

− [1 −

(2/9) (1 + 𝑏)

𝑐

]

+ [1 −

(2/9) (1 + 𝑏)

𝑐

]

− 𝜍
1/3

[1 −

(2/9) (1 + 𝑏
𝑡
)

𝑐
𝑡

])

× (𝜍
1/3
√
(2/9) (1 + 𝑏

𝑡
)

𝑐
𝑡

)

−1

,

(30)

where 𝜍 = 𝑐
𝑡
/𝑐 and 𝜍 ≥ 1. According to the property of the

Gaussian distribution, the statistic is given by

𝑈
𝜆𝑡

𝐻0
∼ 𝑁(𝜇

𝜆𝑡

𝐻0
, 𝜎
𝜆𝑡

𝐻0
) , (31)
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where

𝜇
𝜆𝑡

𝐻0
= 𝐸 (𝑈

𝜆𝑡

𝐻0
)

=

1 − (2/9) (1 + 𝑏) /𝑐 − 𝜍
1/3

[1 − (2/9) (1 + 𝑏
𝑡
) /𝑐
𝑡
]

𝜍
1/3
√(2/9) (1 + 𝑏

𝑡
) /𝑐
𝑡

(32)

and the variance is

𝜎
𝜆𝑡

𝐻0
= √𝐷(𝑈

𝜆𝑡

𝐻0
) = 𝜍
−1/3

√

(1 + 𝑏) /𝑐

(1 + 𝑏
𝑡
) /𝑐
𝑡

. (33)

Hence, we obtain the probability of false alarm as

𝑃FA = 𝑃 {𝑈
𝜆𝑡

0
≤ 𝛾 | 𝐻

0
}

= ∫

𝛾

−∞

1

√2𝜋𝜎
𝜆𝑡

𝐻0

exp[

[

−

(𝑥 − 𝜇
𝜆𝑡

𝐻0
)

2

2 (𝜎
𝜆𝑡

𝐻0
)

2

]

]

𝑑𝑥

≈ Φ(

𝛾 − 𝜇
𝜆𝑡

𝐻0

𝜎
𝜆𝑡

𝐻0

) .

(34)

Similarly, under𝐻
1
assumption with 𝜆 < 𝜆

𝑡
, the statistic

𝑈
𝜆𝑡

𝐻1
=

(𝑉/𝑐
𝑡
)
1/3

− [1 − (2/9) (1 + 𝑏
𝑡
) /𝑐
𝑡
]

√(2/9) (1 + 𝑏
𝑡
) /𝑐
𝑡

= ((

𝑉

𝑐

)

1/3

− [1 −

(2/9) (1 + 𝑏)

𝑐

]

+ [1 −

(2/9) (1 + 𝑏)

𝑐

]

− 𝜉
1/3

[1 −

(2/9) (1 + 𝑏
𝑡
)

𝑐
𝑡

])

× (𝜉
1/3
√
(2/9) (1 + 𝑏

𝑡
)

𝑐
𝑡

)

−1

,

(35)

where 𝜉 = 𝑐
𝑡
/𝑐 and 0 ≤ 𝜉 ≤ 1. From (35), 𝑈𝜆𝑡

𝐻1
∼ 𝑁(𝜇

𝜆𝑡

𝐻1
, 𝜎
𝜆𝑡

𝐻1
)

with the mean and variance are, respectively, given by

𝜇
𝜆𝑡

𝐻1
= 𝐸 (𝑈

𝜆𝑡

𝐻1
)

= (1 −

(2/9) (1 + 𝑏)

𝑐

− 𝜉
1/3

[1 −

(2/9) (1 + 𝑏
𝑡
)

𝑐
𝑡

])

× (𝜉
1/3
√
(2/9) (1 + 𝑏

𝑡
)

𝑐
𝑡

)

−1

,

𝜎
𝜆𝑡

𝐻1
= √𝐷(𝑈

𝜆𝑡

𝐻1
) = 𝜉
−1/3

√

(1 + 𝑏) /𝑐

(1 + 𝑏
𝑡
) /𝑐
𝑡

.

(36)
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Figure 3: Effect of the false alarm probability on the detection
probability obtained by the credibility test of a frequency estimate.

Thus, the detection probability can be expressed by

𝑃
𝐷
= Pr {𝑈𝜆𝑡

𝐻1
≤ 𝛾 | 𝐻

1
}

= ∫

𝛾

−∞

1

√2𝜋𝜎
𝜆𝑡

𝐻1

exp[

[

−

(𝑥 − 𝜇
𝜆𝑡

𝐻1
)

2

2 (𝜎
𝜆𝑡

𝐻1
)

2

]

]

𝑑𝑥

≈ Φ(

𝛾 − 𝜇
𝜆𝑡

𝐻1

𝜎
𝜆𝑡

𝐻1

) .

(37)

From (34) and (37), we observe that the detection perfor-
mance depends largely on the parameter 𝜆, which is the
function of the number of samples received, the SNR, and the
frequency estimation error factor.

6. Simulation Results

Monte Carlo simulations were carried out to study the behav-
ior of the proposed algorithm in different environments. The
simulations were aimed at detecting whether the absolute
error of a certain estimated frequency is greater than a quarter
of the discrete sampling frequency. Ten thousand Monte
Carlo trials were performed for each condition. Monte Carlo
trials were run in each of the following conditions: (1) the
sinusoid signal contaminated by additive white Gaussian
noises is received; (2) SNR = 10 log

10
𝐴
2
/𝜎
2; (3) the sampling

frequency is set to 100MHz except in 6.6.

6.1. Influence of False Alarm. Figure 3 shows the detection
behavior for the credibility test by using the CI method with
respect to the false alarm and the comparisonswith the values
theoretically calculated using (37). The carrier frequency of
the sinusoid is 19.801MHz, while the sample size is 1024. The
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Figure 4: Effect of the frequency estimation error factor on the
detection probability obtained by the credibility test of a frequency
estimate.

initial phase is 𝜋/6, and the frequency estimation error factor
is 0.5. The SNR is varied from −15 dB to 6 dB in steps of 3 dB.
The values of probability of false alarm are fixed as 0.1, 0.01,
and 0.001, respectively.

In the three cases, the probability of detection (𝑃
𝐷
) is close

to 1 at an SNR greater than 0 dB. The detection probability is
increased by a higher value of probability of false alarm.With
𝛼 = 0.1, the probability of detection is close to 1 for an SNR
of −6 dB. Moreover, the derived theoretical 𝑃

𝐷
is close to the

simulated value.

6.2. Influence of the Frequency Estimation Error. Figure 4
shows the probability of detection with respect to the carrier
frequency estimation error and the comparisonswith the the-
oretically calculated values. The carrier frequency estimation
error is, respectively, equal to 0.3, 0.4, and 0.5 for a sinusoid
with 1024 samples and the probability of false alarm equals
0.01. The rest of the parameter settings of the signal in the
simulation remain the same as that stated in Section 6.1. The
detection probability is increased by increasing the carrier
frequency estimation error factor. For 𝛿 = 0.5 and an SNR
close to −9 dB, the probability of detection is approximately
equal to 1.

In fact, a larger frequency estimation error factor
improves the mean of the proposed statistic 𝑈, and the dis-
crimination between nonnull and null is easier. In addition,
it can be observed from Figure 3 that the derived theoretical
𝑃
𝐷
is very close to the simulated values in the three cases.

6.3. Influence of the Number of Received Samples N. Figure 5
shows the detection performance of the credibility test versus
the received samples of the signal and the comparisons with
the theoretical calculated values. The number of samples is
equal to 512, 1024, and 2048, respectively. The carrier fre-
quency estimation error is set to 0.4.The rest of the parameter
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Figure 5: Effect of the number of received samples on the detection
probability obtained by the credibility test of a frequency estimate.

settings are the same as that stated in Section 6.2. In the
three cases with different sample numbers, the detection
probability is close to 1 for an SNR of 0 dB.The credibility test
performance is enhanced by the greater number of received
samples at the same SNR. When the number of samples
is 2048, the detection probability is close to 1 for an SNR
of −6 dB. We can observe from Figure 5 that the derived
theoretical𝑃

𝐷
is very close to the simulated values in the three

cases.

6.4. Influence of Frequency Discretization. We evaluated the
performance of our method in the case of different carrier
frequencies. Figure 6 shows the performance of detection
versus the carrier frequency selected in the simulations. We
defined the discretization factor as 𝑑 = (𝑓

0
− 𝑘
0
Δ𝐹) where

𝑘
0

= 199 and five frequencies were generated by setting
𝑑 = 0, 0.1, 0.3, 0.5, 0.7. Clearly, if 𝑑 = 0, the frequency
equals 19.53125MHz, which is just located on the discrete
frequency bin. When 𝑑 ̸= 0, it indicates that the selected
frequencies are not located on the discrete frequency bin.
The parameters are 𝑁 = 1024, 𝛿 = 0.4, 𝜃 = 𝜋/6, and
𝛼 = 0.01. Figure 6 shows that the detection probability does
not depend on the frequencies we selected by using different
discretization factors, and the same levels of performance are
achieved in the five cases and are approximately identical to
the theoretically calculated performance in all the cases.

6.5. Influence of the Initial Phase. We investigated the impact
of the initial phase on the performance of our method.
Figure 7 shows the performance of detection versus the initial
frequency used in the simulations. We set three initial phases
as 𝜋/12, 𝜋/6, and 𝜋/3 and the sample size as 1024. The rest
of the parameters set in each simulation are the same as
that mentioned in Section 6.3. Figure 7 shows that the initial
phase of the sinusoid does not affect the detection probability
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Figure 6: Effect of the frequency discretization of the signal on the
detection probability obtained by the credibility test of a frequency
estimate.
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Figure 7: Effect of the initial phase of the signal on the detection
probability obtained by the credibility test of a frequency estimate.

and the same levels of performance are achieved in the two
cases and are identical to the theoretical performances as the
statistic defined in (13) is not relevant to the phase because of
the use of the modulus operation.

6.6. Influence of the Sampling Frequency. We now clarify
the impact of the sampling frequency on the performance
of the proposed method. Figure 8 shows the performance
of detection versus the sampling frequency selected in the
simulations. The other parameters are 𝑓

0
= 19.081MHz,

𝑁 = 1024, 𝛿 = 0.4, 𝜃 = 𝜋/6, and 𝛼 = 0.01. From the figure,
we observe that the performance of detection is not affected
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Figure 8: Effect of the sampling frequency of the signal on the
detection probability obtained by the credibility test of a frequency
estimate.
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Figure 9: Probability of detection and probability of false alarm
comparison between the proposed scheme and others method.

by the sampling frequency and is identical to the theoretical
performance.

6.7. Comparison to Other Methods. Comparative experi-
ments were also carried out for the proposed statistic,
Aboutanios-Mulgrew (AM) method-based [21] detector, and
a combination of them by OR and AND rules, respectively.
We have described the AM-based detector that can also
be used to test the credibility of the frequency estimate,
in the appendix. The parameters are 𝑓

0
= 19.081MHz,

𝑁 = 1024, 𝛿 = 0.4, 𝜃 = 𝜋/6, and 𝛼 = 0.01. The
curves of probabilities of detection for different SNRs are
shown in Figure 9. We can observe that, under an SNR
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less than −3 dB, the probabilities of detection of the AM-
basedmethod are greater than those of the CI-basedmethod.
For the fusion method, the probabilities of detection using
the “AND” rule are slightly greater than those of the AM-
based method, and vice versa for the “OR” rule; that is,
the probability of detection is the smallest when the SNR is
less than −3 dB. When the SNRs are greater than −3 dB, the
probabilities of detection of the four detectors all approach
1. Therefore, under lower SNRs, the more efficient fusion
methods combining the CI and AM methods need to be
further developed.

It should be noted that calculating the threshold is
difficult because the exact probability distribution function of
the AM-based statistic 𝑇AM, defined in the appendix, is hard
to be expressed analytically. Therefore, here we introduce
the bootstrap-based method [22, 23] to obtain the thresh-
old without depending on the analytical probability of the
statistic based on AM, but the computational load increases
many times because of repeated resampling operations in the
bootstrap-based hypothesis test procedures.

6.8. Case Study. In this section, we use the CI-based credibil-
ity test statistic to evaluate three commonly used frequency
estimators: the Rife algorithm [4], the maximum likelihood
estimator [6] by Newton iteration, and the Aboutanious-
Mulgrew estimator [21].The carrier frequency of the sinusoid
is 19.081MHz, the initial phase is 𝜋/6, and the sample size is
1024. The range of SNR is from −18 dB to −6 dB. The value
of probability of false alarm is set to 0.05. If we let 𝐷

𝑖
(𝑖 =

0, 1) be the event associated with the decision of choosing
𝐻
𝑖
(𝑖 = 0, 1), 𝑛

𝑖𝑗
stands for the number of times that deciding

𝐷
𝑗
when hypothesis 𝐻

𝑖
is correct. Therefore, Type I error

probability and Type II error probability can be calculated
using 𝑛

01
/(𝑛
00

+ 𝑛
01
) and 𝑛

10
/(𝑛
10

+ 𝑛
11
), respectively. The

error probability of the test can be expressed by 𝑃
𝐸
= (𝑛
01
+

𝑛
10
)/10000, while 𝑃

𝐷
= 𝑛
11
/(𝑛
11
+ 𝑛
10
) indicates the ability

of the proposed method to detect the unreliable frequency
estimate, which means that the maximum absolute bias of a
certain frequency estimate (|Δ𝑓|) is less than a quarter of the
discrete sampling frequency interval (Δ𝐹).

Table 1 illustrates the performance of the credibility test
for the ML frequency estimator of the sinusoid by using the
proposed CI-based statistic. It should be remarked that the
credibility test performance is enhanced by increasing the
SNR. If the SNR is −6 dB, all the 10000 frequency estimates
based on ML are reliable, and the error probability of the
proposed test approximates to 0. When the SNR decreases to
−12 dB, 61 estimates are unreliable among 10000 simulations.
By using the proposed statistic, all the 61 unreliable estimates
can be detected, indicating a detection rate of about 100%.
Among the 9939 reliable estimates, there are 21 times when
estimates are mistakenly decided as unreliable; in other
words, the error probability is about 0.21%. When the SNR is
decreased to −15 dB, the error probability is about 0.81% and
the detection rate is greater than 95%.

Table 2 depicts the performance of the credibility test for
the Rife-based sinusoid frequency estimator. The credibility
test performance is enhanced by a larger SNR. For an SNR of
−6 dB, all the 10000 times, the frequency estimates obtained

Table 1: Credibility test performance of ML frequency estimator.

SNR
𝑛
00

𝑛
01

𝑛
11

𝑛
10

𝑃
𝐸

𝑃
𝐷(dB)

−18 6962 0 919 2119 0.2119 0.302502
−17 8304 12 1233 451 0.0463 0.732185
−16 9141 23 779 57 0.008 0.931818
−15 9521 61 398 20 0.0081 0.952153
−12 9918 21 61 0 0.0021 1.000000
−9 9988 5 7 0 0.0005 1.000000
−6 10000 0 0 0 0 /

Table 2: Credibility test performance of Rife frequency estimator.

SNR
𝑛
00

𝑛
01

𝑛
11

𝑛
10

𝑃
𝐸

𝑃
𝐷(dB)

−18 6834 1 1195 1970 0.1971 0.377567
−17 8212 9 1349 430 0.0439 0.758291
−16 9041 33 831 95 0.0128 0.897408
−15 9489 40 426 45 0.0085 0.904459
−12 9904 25 70 1 0.0026 0.985915
−9 9987 8 5 0 0.0008 1.000000
−6 10000 0 0 0 0 /

Table 3: Credibility test performance of Aboutanious-Mulgrew
estimator.

SNR
𝑛
00

𝑛
01

𝑛
11

𝑛
10

𝑃
𝐸

𝑃
𝐷(dB)

−18 7386 0 224 2390 0.239 0.085692
−17 8803 11 650 536 0.0547 0.548061
−16 9515 38 358 89 0.0127 0.800895
−15 9850 50 81 19 0.0069 0.81
−12 9966 34 0 0 0 /
−9 9994 6 0 0 0 /
−6 10000 0 0 0 0 /

by using the Rife algorithm are reliable (𝐻
0
) and the error

probability is approximately equal to 0. When the SNR
declines to −12 dB, there are 71 unreliable estimates among
10000 simulations. By using the CI-based credibility test
statistic, these 70 unreliable estimates can be detected and
the detection rate is about 98.6%. On the other hand, among
the 9929 reliable estimates, there are 25 times when the
estimates are mistakenly decided as unreliable; that is, the
error probability is about 0.26%. With the SNR decreased to
−15 dB, the error probability is about 0.85% and the detection
rate is greater than 90%.

Table 3 provides the performance of the credibility test for
the AM-based sinusoid frequency estimator. The credibility
test performance is enhanced by a larger SNR. Similar to that
data in Tables 1 and 2, the test performance is improved by
a larger SNR. With the SNR decreased to −15 dB, the error
probability is about 0.69% and the detection rate is greater
than 80%.
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Overall, from Tables 2 and 3, we can observe that the
proposed credibility test statistic can be used for effectively
identifying unreliable frequency estimates by using ML, AM,
and Rife algorithms with a high detection probability and a
low error probability when the SNR is greater than −15 dB.
Compared to the estimator performances summarized in
Tables 1 and 2, the estimator performance summarized in
Table 3 is the lowest because AM-based estimation has a
better performance than that of bothML and Rife algorithms
and the frequency estimation factors are small.

In practice, for the detected unreliable estimate, we can
abandon the results or estimate the frequency of the signal
again, thereby enhancing the reliability of the entire signal
processing unit. For example, if the FFT-based coarse fre-
quency estimator is used in practice andwe set the parameters
as 𝑓
𝑠
= 100MHz, 𝑓

0
= 19.55MHz, 𝑁 = 1000, and the

number of DFT𝑀 = 1000, there are two cases.

(1) Case 1. When the SNRs (e.g., SNR = −23 dB) are
below the SNR threshold, the maximum spectrum
line cannot be detected correctly. In this case, the
estimate error is larger than 0.25Δ𝐹 and the estimate
will be judged as incredible by the proposed CI-based
statistic. If we perform resampling over the frequency
grid by setting 𝑀 = 2000, the maximum spectrum
line still cannot be detected. As the absolute estima-
tion errors are the same under the two scenarios,
the resampling action cannot enhance the credibility
of the estimate and this kind of incredible estimate
should be abandoned.

(2) Case 2.When an SNR is greater than the SNR thresh-
old, an incredible frequency estimate is detected
because of the displacement of the maximum spec-
trum line by the discretization. In this case, if
we enlarge 𝑀 to 2000 by resampling in the fre-
quency domain, 𝑓

0
can be just moved to the dis-

crete frequency bin. Hence, the estimation error can
be decreased and the credibility can be enhanced.
However, in practice, the true frequency cannot be
known by the user; hence it is difficult to adjust
the resampling parameter to match the estimation
exactly. In this case, we need to select the more
accurate estimating method or abandon the result
obtained by original estimation.

7. Conclusion

The paper presented a CI-based credibility test algorithm for
frequency estimation of a sinusoid. A credibility assessment
testing model is defined to analyze the mathematical charac-
teristics of the correlations between the observed signal and
the reference signal under different hypotheses. The test is
performed with the proposed threshold that is based on CI.
Experimental results revealed that a good performance was
achieved even at low SNRs. Credibility tests were performed
with the ML frequency estimator using the proposed thresh-
old based on CI as well with the Rife frequency estimator and
the Aboutanious-Mulgrew estimator. Experimental results

revealed that a good performance was achieved by the
proposed method even at low SNRs.

Appendix

Thefrequency estimation credibility testmethod based on the
AM estimator includes

(1) estimation of the frequency of the signal by using a
certain estimation method,

(2) construction of the reference signal 𝑦(𝑛) with (3) by
using the estimated frequency ̂

𝑓
0
,

(3) computation of the correlation between the received
signal and the reference signal and estimation of
the frequency displacement Δ ̂

𝑓 by the Aboutanios-
Mulgrew frequency estimator [21],

(4) evaluation of the credibility of frequency estimation
by comparing the statistic 𝑇AM = ||Δ

̂
𝑓| − 0.25Δ𝐹| to

the threshold th that can be calculated by a given false
alarm 𝛼. The hypothesis 𝐻

0
is chosen if 𝑇AM < th.

Otherwise𝐻
1
is accepted.
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