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This paper presents an effective approach for aero-engine fault diagnosis with focus on rub-impact, through combination of
improved local discriminant bases (LDB) with support vector machine (SVM). The improved LDB algorithm, using both the
normalized energy difference and the relative entropy as quantification measures, is applied to choose the optimal set of orthogonal
subspaces for wavelet packet transform- (WPT-) based signal decomposition. Then two optimal sets of orthogonal subspaces have
been obtained and the energy features extracted from those subspaces appearing in both sets will be selected as input to a SVM
classifier to diagnose aero-engine faults. Experiment studies conducted on an aero-engine rub-impact test system have verified the
effectiveness of the proposed approach for classifying working conditions of aero-engines.

1. Introduction

Aero-engine is one of the key components in an airplane
and its reliability directly affects the flight safety of the
airplane. However, in order to maintain good performance
under high speed running condition, the clearance between
rotor and stator in the aero-engine is getting smaller and
smaller. This increases the possibility of rub-impact [1],
which will generate unexpected vibrations, making the aero-
engine not functioning well and even causing catastrophic
consequences. Therefore, identifying the rub-impact fault in
the aero-engine at its early stage is of great significance to both
research and industrial communities.

As it is known that the rub-impact fault information is
often carried by the weak transient vibrations, which are
mixed together with other vibration sources, as a result, it
is difficult to observe the fault symptom directly from the
measured signals. With the development of modern signal
processing, some advanced technologies, such as wavelet
transform and Hilbert-Huang transform, have been utilized
as viable tools for extracting fault-related features from vibra-
tion signals. As a classical time-frequency analysis method

with solid mathematical foundation, wavelet transform in
both continuous and discrete forms has been widely used for
fault diagnosis [2-7]. As an extension of the discrete wavelet
transform (DWT), the WPT has also been successfully
applied to the field of fault diagnosis. For example, Boskoski
and Juric¢i¢ [8] proposed a novel approach for the diagnosis
of gearboxes in presumably nonstationary and unknown
operating conditions by making use of information indices
based on the Renyi entropy derived from coeflicients of the
WPT of measured vibration records. Shen et al. [9] extracted
statistical parameters from the signals obtained via the WPT
at different decomposition depths and proposed a support
vector regressive- (SVR-) based generic multiclass solver to
identify the different fault patterns of rotating machinery.
Keskes et al. [10] utilized stationary WPT for feature extrac-
tion under lower sampling rate to detect broken-rotor-bar
and used the multiclass SVM to automatically recognize the
faults. They utilized WPT to decompose multiclass signals
into a library of time-frequency subspaces and calculated the
wavelet packet energy in each subspace to produce a feature
vector in each signal for classification [11].



Among these researches, most of researchers use the
wavelet packet coefficients in the last decomposition level
to extract the defect features of signals. It should be noted
that the WPT has various wavelet packet subbands; thus
there are multiple ways (> 2%) to analyze a signal using
a L-level decomposition. This implies that the subbands in
the last decomposition level may not best reflect the signal
feature and makes it necessary to optimize the decomposition
process and improve its effectiveness. A widely applied
criterion for optimal WPT-based signal decomposition is the
Shannon entropy, which can be used to identify orthogonal
subspaces with high-energy concentration that correlate with
transients of interest by search for the minimum Shannon
entropy [12]. But this criterion is mainly for signal rep-
resentation. For classification problem, it is better to find
optimal set of orthogonal subspaces that can yield high
discriminant information for differentiating various classes
as much as possible. In this study, local discriminant bases
(LDB) algorithm has been employed to solve this problem.
It selects the optimal set of orthogonal subspaces that can
provide maximum dissimilarity information among different
classes [13, 14]. Up to date, LDB has been applied to deal
with real-world classification problems in the areas of audio
signal analysis [15, 16], physiological signal classification
[17, 18], and vibration data processing [13, 19]. From these
applications, it can be seen that the results of LDB algorithm
for a given dataset are driven by the nature of the dataset and
the dissimilarity measures. At present, various dissimilarity
measures, such as Euclidean distance, symmetric relative
entropy, relative entropy, energy difference, correlation index,
and nonstationarity, have been successfully utilized in many
cases. In fact, accuracy of the classification results is highly
influenced by the extent of class separation in feature space
generated by the chosen dissimilarity measure and most
researchers mainly use a single discriminant measure for the
optimal subspace selection.

Motivated by these research efforts, an integrated
approach that combines improved LDB algorithm with SVM
is investigated for area-engine fault diagnosis in this study.
The improved LDB utilizes two outstanding dissimilarity
measures to choose the optimal set of orthogonal subspaces
derived from WPT, and SVM obtains input from energy
features derived from the optimal wavelet packet subspaces
to classify working conditions of the aero-engine. This
paper is organized as follows. Section2 introduces the
principle of the WPT; then the improved LDB algorithm is
illustrated in Section 3; subsequently, Section 4 presents a
multiclass classification method based on SVM. After that,
the scheme for fault diagnosis using improved LDB and
SVM is described and experiment study is conducted on an
aero-engine rub-impact device to verify the effectiveness of
the proposed method in Section 5. Finally, conclusions are
drawn in Section 6.

2. Brief Introduction of WPT

WPT is an extension of DWT and can be obtained by a
generalization of the fast pyramidal algorithm [20]. Math-
ematically, a wavelet packet consists of a set of linearly
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combined wavelet functions, which are generated using the
following recursive relationships:

() = V2 Y h(my* (2t -n),

)
) = V2 Y gyt et -n),

where 1//°(t) = ¢(t) is the scaling function and wl(t) =
y(t) is the wavelet function. The symbols h(n) and g(n)
represent coefficients of a pair of quadrature mirror filters
(QMEF) associated with the scaling function and the wavelet
function. Furthermore, h(n) and g(n) are related to each other
by g(n) = (=1)"h(1-n). Using the QME, a time-domain signal
a(t) can be decomposed recursively as

@gm=;hm-mmﬂm

2k+1 k (2)
%lm:ZgW—MMﬂm

where (x;‘ (t) denotes the wavelet packet coefficients at the jth
level and kth subband. The symbol m represents the number
of the wavelet coeflicients at the kth subband within the level
j. Using this equation, each detailed coefficient vector and
approximation coefficient vector can be both decomposed
into two parts and then a signal contained in Q, space can
be decomposed into 2/ wavelet packet nodes (denoted as
subspace (2;;) with the form of a full binary tree as shown
in Figure 1. Each subspace Q);; can be spanned by a series

N
of base vectors{a j,k,m}:,"qz(z) !, where 2V corresponds to the

length of the signal. Then a signal x; can be represented by a
set of coefficients as

x; = Z [‘xj,k,m]i'wj,k,m' (3)

joksm

Through the 3-level decomposition process as shown in
Figure 1, it can be seen that the WPT has various styles for the
selection of orthogonal subspaces, such as {Q;, Q3,, Q3,,
Q335 Qg4 Qs 5, Qa6 Q3701 1O 0, Q395 Q35 D3y, Qs 5,
Q;7, 1 0r {Qy0, Q, 15 Qy 5, Q365 Q3 7). Therefore, the optimal
selection of orthogonal subspace set needs to be investigated.

3. Improved LDB Algorithm

The LDB algorithm is a pruning algorithm which identifies
the subspaces that exhibit high discrimination between signal
classes by using a given dissimilarity measure [21]. LDB
selects an orthogonal basis from a dictionary of bases in a
wavelet packet to distinguish different classes in a given set
of data belonging to several classes and is used to select the
optimal set of complete orthogonal subspaces derived from
the WPT.

Suppose that A ;; represents the desired local discrimi-
nant basis restrictec{ to the span of B;, which is a set of basis
vectors at (j, k) node. Then, for a given dataset consisting of L
(l)}f\_ﬁ

classes of signals {{x;"},”| }IL:1 with N; being the total number
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Level 2 | Q,
H G H G H G H G
Level3| Qs | | Qs | | Q3 | | Qs3 | | Q34 | | Qs 5 | | Q36 | | Q7 |

H: low pass filter
G: high pass filter

FIGURE 1: A 3-level decomposition tree in a wavelet packet.

of signals in class /, the traditional LDB algorithm with an
additive dissimilarity measure D can then be summarized as
follows.

(1) The WPT is used to decompose the signals contained
in the training dataset.

(2) The time-frequency energy maps C; for / = 1,...,L
on the wavelet packet coefficients according to (3) and
(4) are constructed:

N (T (1))2
Yin1 (wj,k,mxi

e

(3) Assume A, = By, and set A, = D({C,(J, k, ')})lep
where the array containing the dissimilarity measure
of the node (j,k), for k = 0,..., 2/7! the best
subspaces A ;, can be obtained through the following
condition.

C, (j,k,m) = 4)

IEA i 2 Aok + A i pker> namely, the dissimilarity

measure of the parent node is greater than those

of cumulative dissimilarity measure of the children

nodes, then A ;; = B;;.

Else A = A1 k@A ppe andset A=A 5+
j+1,2k+1-

(4) After a complete set of orthogonal subspaces are
found in the decomposition results, their correspond-
ing basis functions are ranked from higher to lower
according to their discrimination power, and the ¢
(much less than #) most discriminant basis functions
can be used for constructing classifiers.

From the algorithm above, it should be noted that the
optimal choice of LDB subspaces for a given dataset is
significantly affected by the dissimilarity measures used to
distinguish among classes. The dissimilarity measure indi-
rectly controls the classification accuracy achieved. In order
to obtain good classification results, a significant dissimilarity
measure, which is capable of discriminating among different
classes as much as possible, should be studied. However,
when dealing with complex datasets such as the vibration
signals of aero-engines, using a single dissimilarity measure

for the optimal subspace selection may not be able to capture
all the characteristic information of its class while using
multiple dissimilarity measures provides additional feature
dimensions for classification. Hence, instead of using a single
dissimilarity measure, a combination of two dissimilarity
measures (D; and D,) with varying complexity is studied to
select the LDB with different characteristics to achieve high
classification accuracies in the presented approach.

The first dissimilarity measure D, is defined as the dif-
ference in the normalized energy between the corresponding
wavelet packet nodes of the training signals from different
classes. The normalized energy difference D, is given by

D" = |E;, - E},|, (5)
where E},k and Ez-’k are the normalized energy of the corre-

sponding wavelet packet nodes (j, k), which can be calculated
by

zm:Z"O_j—l (az )
E.. = m=0 Jsk,m
Jok E >

(6)

Xi
where j = 0,1,...,], k = 0,1,...,2/ -1, n, = log,n > J
(n is the signal size and n,, is the maximum level of signal
decomposition). In addition, a;,, is the wavelet packet
coeflicient of the corresponding nodes (j, k) at position (1)
and E, represents the total energy of the vibration signals.
The second dissimilarity measure D, calculates the dis-
tribution difference of two classes at the wavelet node (j, k),
which is described as the relative entropy and expressed as

e . P
D, = Zpi log ﬁ, (7)
i=1 i

1

where n = 277 — 1, Y, pfl) =), pfz) = 1,and p,,(j,k) =
ocjz.’k)m /Y |ocj)k’i|2 stands for the energy proportion of some
wavelet coefficient a; ,, making up the total energy of the
wavelet node (j, k).

It can be seen in (5) and (7) that D, and D, are always
nonnegative and will be zero if distributions of E; . or p from
two classes are the same. Furthermore, the further the two



distributions are, the higher the dissimilarity measures D,
and D, will be.

Similarly, for multiple class (L > 2) problems, the
normalized energy difference and the relative entropy can be
expressed as

-1 L
Dy=) 3 D

i=1 j=i+1

-1 L
D=y YDy’ ®

i=1 j=i+1

Based on the normalized energy difference and relative
entropy, the improved LDB selection process in searching the
optimal wavelet packet subspaces is shown in Figure 2 and
described below.

The vibration signals are first decomposed by the WPT.
Then the normalized energy difference and relative entropy
of each subspace are calculated among classes using (5) and
(7). After that, the wavelet packet tree is pruned from bottom
to top according to the following rules: if the discriminative
measure of the parent node is larger than that of the
cumulative discriminative measure of the children nodes,
the parent node is kept and the children nodes need to be
deleted; otherwise, the children nodes need to be kept and
the dissimilarity measure of the parent node should be set as
the sum of the dissimilarity measure of the children nodes.
At the end of this iterative process, the tree structure contains
only those terminal nodes, which contribute to maximizing
the distance among different classes. Since we utilized two
dissimilarity measures, two optimal local discriminant bases
are obtained at last. As D, is expected to reveal the energy
concentration locations on the time-frequency plane for
different types of vibration signals while D, describes the
degree of separation between different distribution series,
the nodes that exist in both sets possess high discriminatory
values among all the classes for both of the given dissimilarity
measures and can be used to form feature vectors.

In this study, the energy feature of each subspace is
investigated for constructing the feature vector. The energy
of each subspace is defined as

M
E =) &), ©)
i=1

where M is the number of the wavelet packet coeflicients
in each subspace and «, (i) is the wavelet packet coefficient.
Then, for the t chosen subspaces that exist in both sets in LDB,
a feature vector can be constructed from all the subspaces as

F =[E,E,,....E]. (10)

The vector F will be selected as input to a classifier for
identifying aero-engine working conditions.

4. Multiclass SVM Classifier

SVM is a linear learning method that finds an optimal
hyperplane to separate two classes. As a supervised classifi-
cation approach, SVM seeks to maximize the distance to the
closest training point from either class in order to achieve
better classification performance on test data [22]. Due to
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the small-sample characteristic of the SVM, it is suitable to
distinguish different classes with a small number of data. As
the training data is often limited in real-time fault diagnosis,
SVM is utilized as a classifier in this study to diagnose
different aero-engine working conditions. However, the SVM
cannot be directly applied to the multiclassification problems
since traditional SVM is designed to deal with the two-
class problem. For multiclass problems, SVM can solve this
dilemma through the combination of two-class problems.

The crucial widely used multiclass SVM (MSVM) strategy
is the one-against-all (OAA) strategy and one-against-one
(OAO) strategy. OAA is the simplest MSVM strategies. It
involves k binary SVM classifiers, one for each class. Each
binary SVM is trained to separate one class from the rest.
The winning class is the one that corresponds to the SVM
with the highest output. OAO involves k(k—1)/2 binary SVM
classifiers. Each classifier is trained to separate each pair of
classes. The advantage of OAA is the fastness of classification;
therefore, a multiclass classification method based on OAA
strategy is used in this study.

The multiclass classification method can be clearly
described in Figure 3: for K-class sample training, K—1 SVMs
are trained and the first samples are seen as positive samples
while the other K — 1 classes are viewed as negative samples
to train the SVMI; then the first samples are removed, and
the same process will repeat until the (K — 1)th classifier is
designed. During the test process, the samples are treated
as input to the first classifier and the test will be over only
if the output is “1,” which means that the sample class is
the corresponding category of the classifier; otherwise, the
samples will be sent to the next classifier until the test samples
are distinguished.

5. Fault Diagnosis Scheme with
Experimental Verification

Following the knowledge as explained in previous sec-
tions, the proposed aero-engine fault diagnosis approach
is depicted in Figure 4. It includes two parts: training and
testing parts. For training, vibration signals from each of
the working conditions are decomposed into wavelet packet
trees with a selected wavelet function. After that, the cor-
responding nodes of the trees are compared using a set of
dissimilarity measures to identify the nodes that exhibit high
discriminative values among various aero-engine working
conditions. After selecting the significant LDB nodes, a
new wavelet packet tree is constructed, and all the signals
are then decomposed using this new wavelet packet tree.
Features are finally extracted from the LDB nodes to train a
multiclass SVM classifier. For testing, energy features which
are extracted from those selected LDB nodes are input to
the trained multiclass SVM classifier for working condition
identification.

In order to verify the effectiveness of the proposed aero-
engine fault diagnosis approach, an experimental study was
carried out on a twin-shaft aero-engine test system. The
vibration signals were acquired at 64 kHz sampling rate by
a velocity sensor, which was mounted on the outside of
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1

Decompose signals by WPT

1

Initialize the number of
dissimilarity measures i = 1

N

Suppose Aj; = By and
set Ajy = D;

!

Initialize decomposition level j = J - 1,
k=0,...,27 — 1, where ] is the given
decomposition level

Compare the dissimilarity measure
Bik 2 Bjpiop + Djrroke?

Keep Aj,k = Bj,k

Set Ay = Aj1 k@A ji10k41
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Prune wavelet packet tree
from bottom to top j = j—1

Use the next dissimilarity measure
i=i+1

Yes

i< 32

No

Two optimal local discriminant bases A ;

J

Use the nodes that exist in both sets for
feature extraction

End

FIGURE 2: Flow chart of the improved LDB algorithm.

the aero-engine casing. Due to the complex structure of
the aero-engine, the signals often contain vibrations gen-
erated by low pressure shaft, high pressure shaft, and the
transmission system, causing nonstationarity. Three different
working conditions, that is, faultless, rub-impact fault, and

unbalance fault, were considered in this study. Figure 5 shows
waveforms of the sampled signals.

The proposed approach is then used to process the
vibration signals. It should be noted that an appropriate
wavelet function should be chosen for WPT, as it will affect
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FIGURE 3: The multiclass SVM classifier.
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FIGURE 4: Block diagram of the aero-engine fault diagnosis scheme.
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FIGURE 5: Aero-engine vibration signals of three different working
conditions: (a) faultless, (b) rub-impact, and (c) unbalance.

the decomposition performance. In this study, a mutual infor-
mation criterion is used for guiding the selection of wavelet
function [23]. In information theory, mutual information is
usually used to measure the degree of similarity between two
groups of data sequence. The greater the mutual information
is, the more similar the two groups of data sequence will be.
Such a relationship is applicable to wavelet function selection
for aero-engine fault diagnosis by taking the vibration signal
and wavelet packet coefficients as data sequences X and Y,
respectively. By comparison, the wavelet function that max-
imizes the mutual information between the vibration signal
and the reconstruction signal represents the most appropriate
wavelet for rub-impact vibration extraction. Based on this
criterion, a total of 30 candidate wavelet functions (e.g., Haar,
Db2, Db4, Coifl, Coif2, Biorl.3, Bior5.5, etc.) are evaluated,
and the Bior5.5 wavelet is considered as the most appropriate
wavelet function to process the rub-impact signals. After
that the aero-engine vibration signals are processed using
the selected wavelet function for a 4-level decomposition
and the improved LDB is utilized to select the optimal
subspaces derived from the decomposition results. Figure 6
shows the selected wavelet packet nodes (marked with black
block) that contain the best discriminant information to
classify different working conditions using the dissimilarity
measures D, (normalized energy difference) and D, (relative
entropy), respectively. These blocks in each figure represent
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TABLE 1: Results of the experimental study.

Target classes Sample size

Faultless

Recognition results
Rub-impact

Recognition rate [%] Total [%]

Unbalance

Faultless 20 20 0
Rub-impact 20 0 20
Unbalance 20 0 0

0 100
0 100
20 100

100.00

Level

Level
[ ]

(b)

FIGURE 6: (a) Selected wavelet packet nodes (dissimilarity measure
D,, bior5.5 wavelet). (b) Selected wavelet packet nodes (dissimilarity
measure D,, bior5.5 wavelet).

TaBLE 2: Classification performance using different dissimilarity
measures.

Dissimilarity measures Recognition rate [%]

D, 95.00
D, 91.67
D, and D, 100.00

the complete information of the signal with the capability
of differentiating various aero-engine working conditions, as
manifested by the nature of LDB algorithm.

For two dissimilarity measures (D, and D,), altogether
30 LDB nodes as shown in Figure 6 are identified. Some of

TasLE 3: Classification performance using different classifiers.

Classifier types
SVM classifier
Bayes classifier
HMM classifier
BP NN classifier

Recognition rate [%]
100.00
98.33
78.33
98.33

the nodes are selected by both dissimilarity measures. These
nodes that exist in both of the LDB trees demonstrate rela-
tively high discriminatory behavior among the combinations
of all working conditions for both of the given dissimilarity
measures. In other words, these nodes demonstrate high
statistical distance among all working conditions for both
of the given dissimilarity measures. Therefore, the LDBs
appearing in both of the LDB trees are used to extract features.

Generally, the basis vector coefficients from each of the
selected LDB nodes can be directly used as features. However,
considering that more features may not necessarily increase
the performance of a given classifier, the energy content of
the selected LDBs calculated by (9) is extracted as features. In
this study, the energy values of the 12 LDB nodes that exist in
both of the LDB trees (40 groups of training signals and 20
groups of testing signals, each containing 1,024 data points)
are input to the multiclass SVM classifier for characterizing
aero-engine working conditions.

Table 1 lists the classification results of this experimental
study. It can be seen that the SVM classifier results in much
high classification accuracies scoring 100%, which indicates
that the developed approach is suitable for aero-engine fault
diagnosis.

For the purpose of performance comparison, the single
dissimilarity measure is also used to select the LDB nodes
and the corresponding energy features are used as input to the
SVM classifier. The classification results are shown in Table 2,
which indicates that the diagnosis approach using multiple
dissimilarity measures can achieve better classification per-
formance than that using single dissimilarity measure.

The effect of different classifiers, such as the Bayes
classifier, hidden Markov model (HMM) classifier, and back-
propagation (BP) neural network (NN) classifier, on the
classification performance, is also studied. As it is shown
in Table 3, the SVM classifier performs the best; this is
contributed by its good ability of dealing with small size of
samples.

In addition, the effect of wavelet functions on the classifi-
cation performance is investigated in this study. Three differ-
ence wavelet functions, including Haar wavelet, Db2 wavelet,
and Bior5.5 wavelet, are used to process the aero-engine



Mathematical Problems in Engineering

TaBLE 4: Classification performance using different wavelet functions.

Wavelet function

Classification accuracy [%]

Recognition rate [%]

Faultless Rub-impact Unbalance
Haar 100 100 85 95.00
Db2 100 100 85 95.00
Bior5.5 100 100 100 100.00

vibration signals, and the final classification performance is
shown in Table 4. It can be seen that the Bior5.5 wavelet
function chosen by the quantitative mutual information
measure leads to higher classification rate than the other two
wavelet functions.

6. Conclusions

Based on the improved LDB and SVM, an integrated ap-
proach for aero-engine fault diagnosis has been developed.
The results of experimental study conducted on an aero-
engine test system indicate that the proposed approach has
good ability to classify different aero-engine working con-
ditions. Furthermore, the comparison study shows that the
improved LDB algorithm can improve the classification
accuracy, and an appropriate wavelet function provides better
signal decomposition. Further study is being conducted for
providing effective and efficient solutions on aero-engines
condition monitoring and fault diagnosis.
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