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A number of acceleration schemes for speeding up the time-consuming bilateral filter have been proposed in the literature. Among
these techniques, the histogram-based bilateral filter trades the flexibility for achieving O(1) computational complexity using box
spatial kernel. A recent study shows that this technique can be leveraged for O(1) bilateral filter with arbitrary spatial and range
kernels by linearly combining the results of multiple-box bilateral filters. However, this method requires many box bilateral filters to
obtain sufficient accuracywhen approximating the bilateral filter with a large spatial kernel. In this paper, we propose approximating
arbitrary spatial kernel using a fixed number of boxes. It turns out that the multiple-box spatial kernel can be applied in manyO(1)
acceleration schemes in addition to the histogram-based one. Experiments on the application to the histogram-based acceleration
are presented in this paper. Results show that the proposed method has better accuracy in approximating the bilateral filter with
Gaussian spatial kernel, compared with the previous histogram-based methods. Furthermore, the performance of the proposed
histogram-based bilateral filter is robust with respect to the parameters of the filter kernel.

1. Introduction

The bilateral filter is proposed by Tomasi and Manduchi
in [1]. Before this name, it is called SUSAN filter [2]. The
general idea of the bilateral filter stems from the earlier
work of the neighborhood filter [3] and the sigma filter
[4]. The bilateral filter is a noniterative, nonlinear spatial
filter which imposes both the geometric affinity and the
intensity similarity when aggregating the contribution of
each neighboring pixel within the spatial support. Hence the
shape of the filter kernel is data adaptive, which enables the
filter to preserve abrupt edges when smoothing out small
variations. Such an edge-avoiding smoothing property is
later demonstrated to be of much potential use in many
applications in computer vision and graphics. It has become
a general tool in image processing literature, where it is
employed in noise cancelation [1, 5–8], high-dynamic-range
tone mapping [9–11], image enhancement [12–14], and many
other applications [15–17].

On the flip side of its convenient properties for image- and
video-based applications, the direct implementation of the
standard bilateral filter requires 𝑂(𝜎2

𝑠
) operations per pixel,

where 𝜎
𝑠
is the radius of the effective support of the spatial

kernel. The computational complexity is too intensive for
time-critical applications. Consequently, a plenty of studies
on its simplification and acceleration can be found in the
literature. Durand and Dorsey proposed a piecewise linear
bilateral filter in [9]. They quantize the intensity into several
segments and performFFT-based linear filtering for each seg-
ment.The final results are pooled using a linear interpolation
on these linearly filtered images. The complexity of Durand’s
piecewise linear bilateral filter is 𝑂(log𝜎

𝑠
). Pham and van

Vliet [18] decomposed the 2D bilateral convolution using
two 1D bilateral convolutions and reduced the complexity to
𝑂(𝜎
𝑠
). Paris et al. [19] and later Chen et al. [11] generalize the

idea of the piecewise linear bilateral filter by Durand et al. to
form a 3-D bilateral grid. Then the bilateral filtering can be
interpreted as a linear convolution of a vector-valued image.
Based on an equipollent subsampling in the augmented data
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space, the complexity of this method is 𝑂(1 + |R|/𝜎
𝑠
𝜎
𝑟
),

where |R| denotes the number of grids of the intensity and
𝜎
𝑟
is the bandwidth of the range kernel. Thus the bilateral

grid method runs faster with larger spatial kernel. Weiss
[20] develops an 𝑂(log𝜎

𝑠
) algorithm for local histogram

calculation, which is later used to derive an𝑂(log𝜎
𝑠
) bilateral

filter with box spatial kernel. Porikli [21] proposes an 𝑂(1)

box bilateral filter by virtue of the 𝑂(1) integral histogram
[22]. Porikli [21] and Yang et al. [23] and later Chaudhury
et al. [24, 25] suggest the use of some series of the intensity
to approximate arbitrary range kernel and employ 𝑂(1)

algorithms to efficiently compute the spatial filtering for each
term of the series.

Based onPorikli’s𝑂(1) single-box bilateral filter proposed
in [21], Gunturk proposes an 𝑂(1) bilateral filter with arbi-
trary spatial and range kernels by linearly combiningmultiple
single-box bilateral filters [26].The accuracy can be improved
comparedwith the single-box bilateral filter in approximating
the bilateral filter with arbitrary spatial kernel. However,
when the radius of the effective spatial support is large,
a large number of single-box bilateral filters are required
to guarantee the accuracy. Furthermore, no instruction for
the selection over all the possible box spatial kernels is
presented when the number of single-box bilateral filter is
limited. Consequently, Gunturk’s method does not produce
sufficiently good approximation with only a few additional
single-box bilateral filters when the spatial kernel is large.
More details about the limitations of Gunturk’s method are
shown in the following text.

In this paper, we focus our attention on approximating
arbitrary spatial kernel with a fixed number of boxes. With
this constraint, the MSE-based optimization becomes a well-
known sparse representation problem. We then employ the
Batch-OMP method published recently in [27] to solve the
problem for the radiuses and the coefficients of the boxes. In
addition to the application to the histogram-based bilateral
filter, the proposedmethod can be employed in other acceler-
ation schemes by substituting the spatial filtering with a fixed
times of box filtering. Hence a number of𝑂(1) bilateral filters
are produced. Afterwards, the application to the histogram-
based bilateral filter is discussed with some representative
experiments. Results show that the proposed histogram-
based bilateral filter is robust and sufficiently accurate over
a large range of the size of the spatial kernel and outperforms
the other congeneric methods in both the accuracy and the
robustness.

The rest of this paper is arranged as follows. Brief
descriptions of the original bilateral filter and its acceleration
schemes are provided in Section 2, where the previous
accelerations are categorized into several types and analyzed,
respectively. Then in Section 3, the proposed method for
approximating arbitrary spatial kernel with a fixed number
of boxes is deduced in detail. The application to some
popular acceleration schemes is also provided in this section.
Afterwards, the application to the histogram-based bilateral
filter is tested in Section 4, together with some comparisons
with the previous histogram-based methods. Finally, the
conclusions are drawn in Section 5, followed by some further
discussions.

2. Related Works

Thebilateral filter is proposed byTomasi andManduchi in [1].
It is a normalized convolution in which the contribution of
a neighboring pixel depends on both the geometric distance
and the intensity difference with regard to the center pixel.
Generally, arbitrary kernels can be applied to both the spatial
and range filtering to measure the affinity between one pixel
and its neighbors. The discrete form of the bilateral filter
with arbitrary spatial and range kernels can be formulated as
follows:

𝑢
BF
(x) =

∑y∈𝑁(x)𝐾𝑠 (x − y)𝐾
𝑟
(V (x) − V (y)) V (y)

∑y∈𝑁(x)𝐾𝑠 (x − y)𝐾
𝑟
(V (x) − V (y))

, (1)

where V and 𝑢 are, respectively, the original image and the
filtered image and𝑁(x) denotes the effective spatial support
of the filtering kernel, which is centered at x. 𝐾

𝑠
and 𝐾

𝑟

are, respectively, the spatial and range kernels. The original
bilateral filter employs Gaussian kernels for both the spatial
and range filtering, which provides intuitive control over
the similarity measure with the variances, respectively, for
these two kernels. However, the brute-force implementation
of the Gaussian bilateral filter is rather time consuming and
is thus too slow for real-time applications. Consequently,
many research papers have been devoted to accelerating the
computation of the bilateral filter, and many publications can
be found during the past decade.

2.1. Kernel Separation. Pham and Vliet proposed a method
to approximate the 2-D data-adaptive convolution using
two 1-D data-adaptive convolutions [18]. The computational
complexity is reduced from 𝑂(𝜎

2

𝑟
) operations per pixel to

𝑂(𝜎
𝑟
) operations per pixel, where 𝜎

𝑟
denotes the radius of

the effective spatial support. This method performs well in
regions with simple structure. However, it does not produce
satisfactory results in textured regions.

2.2. Piecewise Linear Approximation. Durand and Dorsey
proposed a piecewise linear approximation of the bilateral
filter in [9]. The authors first quantize the original intensity
into several segments. Then for each segment 𝑖

𝑘
, a range-

weighted image pair (𝐽
𝑘
,𝑊
𝑘
) is calculated. Afterwards, a

linearly filtered result 𝑢
𝑘
for each 𝑖

𝑘
is generated by linear

filtering with the corresponding range-weighted image pair,
which can be formulated as follows:

𝑢
𝑘
(x) =

∑y∈𝑁(x)𝐾𝑠 (x − y) 𝐽
𝑘
(y)

∑y∈𝑁(x)𝐾𝑠 (x − y)𝑊
𝑘
(y)

, (2)

where𝑊
𝑘
(y) = 𝐾

𝑟
(𝑖
𝑘
−V(y)) and 𝐽

𝑘
(y) = 𝑊𝑘(y)V(y).Then the

final result is obtained by linearly interpolating between two
closest filtered images; that is, for V(x) ∈ [𝑖

𝑘
, 𝑖
𝑘+1

], the filtered
output at x is given as follows:

𝑢
BF
(x) =

(𝑖
𝑘+1

− V (x)) 𝑢
𝑘
(x) + (V (x) − 𝑖

𝑘
) 𝑢
𝑘+1

(x)
𝑖
𝑘+1

− 𝑖
𝑘

. (3)

The computational complexity is dramatically reduced
since the implementation requires only 𝑂(log𝜎

𝑟
) operations
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per pixel using fast Fourier transform (FFT) to compute each
𝑢
𝑘
. It is further accelerated by performing a subsampling in

the spatial domain.
Recently, based on Durand’s formulation, Yang et al.

[23] employedDeriche’s recursive approximation of Gaussian
kernel [28] to calculate the spatial filtering, which can be
implemented in constant time and can be realized in real time
in some graphic processing units (GPU).

2.3. 3-D Bilateral Grid Manipulations. The piecewise linear
bilateral filter is later generalized and further accelerated by
Paris et al. in [19].The authors express the filtering in a higher-
dimensional space where another dimension for the intensity
is added to the original spatial dimensions.Then the bilateral
filtering can be expressed as simple linear convolutions with
a vector-valued image in this augmented space, followed by a
point-by-point division. With the new representation of the
data, simple criteria are derived for subsampling the data to
achieve significant acceleration of the bilateral filter. With the
same computational time, this method is more accurate than
the piecewise linear bilateral filter by Durand and Dorsey in
[9].

Built upon the technique by Paris et al. in [19], Chen et al.
[11] extend the higher-dimensional approach and introduce a
new compact data structure—the bilateral grid.This enables a
variety of fast edge-preserving image processing applications.
The authors parallelize the bilateral-grid algorithm in mod-
ern graphics hardware with graphic processing units (GPU).
The GPU-based implementation is two orders of magni-
tude faster than the equivalent CPU-based implementations.
This enables the real-time edge-preserving manipulations
on high-definition images. The authors demonstrate the use
of the bilateral-grid method on a variety of applications
including image editing, high-dynamic-range tone mapping,
and image enhancement.

The computational complexity of the bilateral-grid meth-
ods is 𝑂(1 + |R|/𝜎

𝑠
𝜎
𝑟
) operations per pixel, where R is the

dynamic range of the intensity and |R| is the number of grids
occupied by the range dimension. This results in a paradox-
ical property that the algorithm proceeds faster when the
size of the spatial kernel is larger, due to larger subsampling
rate. However, the exact output is dependent on the phase
of subsampling. Furthermore, the operations with small 𝜎

𝑠

and 𝜎
𝑟
require fine subsampling.This requires largermemory

andmore computation time. Furthermore, the aggregation of
the final result relies on a trilinear interpolation among the
results on the grids. Better accuracy can be obtained using
higher-order interpolations. Consequently, there is a tradeoff
between the quality and the computational cost using this
type of bilateral filters.

2.4. Histogram-Based Approximation Using Box Spatial
Kernel. Weiss developed an iterative method to compute
local histogram with 𝑂(log𝜎

𝑟
) complexity in [20]. He later

demonstrated that such fast local histogram computation can
be applied for the 𝑂(log𝜎

𝑟
) bilateral filter when the spatial

kernel is a uniform box. Similar to Weiss’ work, Porikli
proposed an 𝑂(1) bilateral filter [21] based on his earlier

work on𝑂(1) integral histogram [22].The bilateral filter with
single-box spatial kernel is formulated as follows:

𝑢
bBF

(x) =
∑y∈𝐵(x)𝐾𝑟 (V (x) − V (y)) V (y)
∑y∈𝐵(x)𝐾𝑟 (V (x) − V (y))

, (4)

where 𝐵(x) denotes the box with uniform weight centered at
x. Then the above formulation can be further expressed in
terms of local histograms as follows:

𝑢
bBF

(x) =
∑
𝑃

𝑝=1
𝐻x (𝐼𝑝)𝐾𝑟 (V (x) − 𝐼𝑝) 𝐼𝑝

∑
𝑃

𝑝=1
𝐻x (𝐼𝑝)𝐾𝑟 (V (x) − 𝐼𝑝)

, (5)

where 𝑃 is the number of histogram bin, 𝐼
𝑝
denotes the

intensity level of the 𝑝th histogram bin, and𝐻x(𝐼𝑝) indicates
the number of pixels in the 𝑝th histogram bin within the
spatial neighborhood centered at x. Then the computational
time is constant with 𝑂(1) integral histogram technique
[22]. And the calculation can be further accelerated by the
quantizing the intensity into a small number of histogram
bins.

Based on Porikli’s single-box bilateral filter, Gunturk
proposed a method to approximate the bilateral filter with
arbitrary spatial and range kernels using a weighted sum
of multiple single-box bilateral filters [26], which can be
formulated as follows:

𝑢
BF
(x) ≈

𝑀

∑

𝑚=1

𝑘̂
𝑚
𝑢
bBF
𝑚

(x) ≐ 𝑢𝑚bBF (x) . (6)

The coefficients {𝑘̂
𝑚
} are then obtained by solving a set of

linear equations which minimize the squared error between
the discrete forms of

𝐾
𝑠
(x − y)𝐾

𝑟
(V (x) − V (y)) ,

𝑀

∑

𝑚=1

𝑘
𝑚
𝐵
𝑚
(x − y)𝐾

𝑟
(V (x) − V (y)) .

(7)

This improvement provides better approximation of the
bilateral filter with arbitrary spatial and range kernels by
costing a little computation time compared with the single-
box bilateral filter. However, further study shows that the
approximation given by (6) only performs well when the size
of spatial kernel is relatively small. As the radius of the spatial
support increases, more single-box bilateral filters should be
combined to guarantee the approximation accuracy accord-
ing to Gunturk’s scheme.Thus the computational complexity
will be unbearable for efficient applications if the size of the
spatial kernel is too large.

2.5. Accelerations Based on Series Expansion of the Range
Kernel. In [21], Porikli proposes another 𝑂(1) bilateral filter
with arbitrary spatial kernel and Gaussian range kernel,
which employs Taylor series expansion of the range kernel.
Then the bilateral filtering is decomposed into a set of
spatial filtering steps with the image series computed prior
to the convolution. To guarantee a constant-time processing,
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the author proposes to subsample the separable 1D linear
spatial filters to a constant number of taps asymmetrically.
However, the accuracy is poor using a low order Taylor
expansion when the variance of Gaussian range kernel
is small. Moreover, the range weight blows up when the
intensity difference is too large with respect to the variance.
Hence, the decaying monotonicity for an admissible kernel is
broken.

As an extension of Porikli’s polynomial bilateral filter
in [21], Chaudhury et al. propose a constant-time bilateral
filter with trigonometric range kernels in [24]. Based on the
fact that the raised cosine series converges to a Gaussian,
the trigonometric range kernel is applied to approximate
Gaussian range kernel. The authors show that the bilateral
filter using trigonometric series is more accurate than the
one using Taylor series with the same number of terms.
The computation time of the trigonometric bilateral filter is
constant with respect to the variance of the spatial kernel.
However, the complexity is 𝑂(|R|

2
/𝜎
2

𝑟
) with respect to the

variance of the range kernel, where |R| denotes the number
of quantization levels of the intensity and 𝜎

𝑟
is the variance

of the range kernel. Consequently, the bilateral filtering with
small 𝜎

𝑟
will be time consuming using trigonometric range

kernel.
More recently in [25], the trigonometric bilateral filter is

accelerated using truncations when 𝜎
𝑟
is small and further

extended to a larger class of data-dependent filters including
the well-known nonlocal means filter.

3. Fast Implementation of the
Bilateral Filter Using Sparse Approximation
with Fixed Number of Boxes

In this paper, we propose a method to approximate arbitrary
spatial kernel with multiple boxes, which can then be lever-
aged for the constant-time implementation of the bilateral
filter with arbitrary spatial and range kernels. Let 𝐿 be the
radius of the spatial support of the given spatial kernel 𝐾

𝑠

applied in the bilateral filter. Then all the candidate boxes
together form a series {𝐵

𝑙
}, where 𝑙 is the radius of the box 𝐵

𝑙

and 𝑙 = 0, 1, 2, . . . , 𝐿. For arbitrary𝐾
𝑠
, it can be approximated

using the weighted sum of all the candidate boxes, which is
formulated as follows:

𝐾
𝑠
(x − y) ≈

𝐿

∑

𝑙=0

𝑘
𝑙
𝐵
𝑙
(x − y) . (8)

Because of the symmetry andmonotonicity of any admis-
sible spatial kernel, it is possible to find a real positive series
{𝑘
𝑙
} that minimizes the following squared error:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐾
𝑠
−

𝐿

∑

𝑙=0

𝑘
𝑙
𝐵
𝑙

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

, (9)

where the spatial dependency is omitted for simplicity.

3.1. Approximating Arbitrary Spatial Kernel with Fixed Num-
ber of Boxes. For that the number of boxes is great when

𝐿 is large, the computational cost will become unbearable
for real-time applications. In order to handle this problem,
we add a constraint that the number of boxes used in the
approximation should not be larger than a preset number𝑁,
such that the constrained minimization of the squared error
can be further formulated as follows:

min
𝑘𝑙

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐾
𝑠
−

𝐿

∑

𝑙=0

𝑘
𝑙
𝐵
𝑙

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

, s.t. # {𝑙 | 𝑘
𝑙
̸= 0} ≤ 𝑁. (10)

The left part of the above formulation is again the least
squared error norm. And the right part is employed to
limit the number of boxes used in the approximation, which
denotes the number of boxes that have nonzero coefficients.
For any 𝑙 ∈ [0, 𝐿], we align the center of the corresponding
box with that of 𝐾

𝑠
and pad it with zeros up to the same size

as𝐾
𝑠
.Then the columns of each padded box are concatenated

to form a column vector b
𝑙
.We then put these column vectors

together to form a matrix B of size 𝑆 × (𝐿 + 1), where 𝑆 =

(2𝐿+1)
2 is the number of elements in𝐾

𝑠
. Correspondingly, we

concatenate the columns of𝐾
𝑠
to form a column vector q. By

definingk as a columnvector containing all the coefficients𝑘
𝑙
,

the optimization problem given in (10) can be reformulated
as follows:

k̂ = argmin
k
‖q − Bk‖2, s.t. ‖k‖0 ≤ 𝑁, (11)

where ‖k‖
0
is the 𝐿

0
norm of the vector k, which denotes the

number of non-zero elements in k.
One should be very familiarwith the formulation given by

(11), since it is a well-known sparse representation problem.
This formulation searches the sparse representation of the
signal q using the known dictionary B. This sparse approx-
imation problem, which is known to be NP-hard, can be
efficiently solved using several available techniques, including
Orthogonal Matching Pursuit (OMP) [27, 29, 30], Basis
Pursuit (BP) [31, 32], and FOCUSS [33].

In this paper, we employ the efficient OMP algorithm
by Rubinstein et al. in [27], namely, Batch-OMP, to solve
(11). After we find out the radiuses and coefficients of the
boxes corresponding to the given spatial kernel and the given
number of boxes, the further computation of the bilateral
filter can be given as follows:

𝑢
BF
(x) ≈ 𝑢𝑜bBF (x)

=

∑y (∑𝑙|𝑘𝑙 ̸= 0 𝑘𝑙𝐵𝑙 (x − y))𝐾
𝑟
(V (x) − V (y)) V (y)

∑y (∑𝑙|𝑘𝑙 ̸= 0 𝑘𝑙𝐵𝑙 (x − y))𝐾
𝑟
(V (x) − V (y))

.

(12)

With this respect, we can benefit from the integral map
technique to efficiently calculate the spatial convolution in
constant time. It is worth mentioning that𝑁 in (10) and (11)
is an input parameter defined by the users. For a given 𝜎

𝑠
, the

more the number of boxes used is, the better the approxima-
tion accuracy can be achieved. But more computational time
is needed for more boxes. Thus there is a tradeoff between
the approximation accuracy and the computational efficiency
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with our method. Generally, we can find a minimum 𝑁

that guarantees the acceptable quality of the approximation,
which will be discussed in detail in the next section.

3.2. Application to the Histogram-Based Bilateral Filters. Now
having that an arbitrary spatial kernel is approximated with
a preset number of boxes, we first exploit its use in the
histogram-based bilateral filters, which is originally devel-
oped byWeiss in [20], later accelerated by Porikli in [21], and
recently extended by Gunturk in [26].

Firstly, let us denote the solution of (11) using the notation
{𝑘
𝑛
}, which contains𝑁non-zero coefficients for𝑁 boxeswith

different radiuses selected by the Batch-OMP algorithm.The
subscripts 𝑛’s now are not the radiuses but the indices of the
selected boxes; that is, 𝑛 = 1, 2, . . . , 𝑁. Then the proposed
bilateral filter with multiple-box spatial kernel given in (12)
can be reformulated as follows:

𝑢
𝑜bBF

(x)

=

∑y (∑
𝑁

𝑛=1
𝑘
𝑛
𝐵
𝑛
(x − y))𝐾

𝑟
(V (x) − V (y)) V (y)

∑y (∑
𝑁

𝑛=1
𝑘
𝑛
𝐵
𝑛
(x − y))𝐾

𝑟
(V (x) − V (y))

=

∑
𝑁

𝑛=1
𝑘
𝑛
∑y 𝐵𝑛 (x − y)𝐾

𝑟
(V (x) − V (y)) V (y)

∑
𝑁

𝑛=1
𝑘
𝑛
∑y 𝐵𝑛 (x − y)𝐾

𝑟
(V (x) − V (y))

.

(13)

Following the single-box histogram-based bilateral filter
by Weiss [20] and Porikli [21], (13) can be further formulated
in terms of local histogram as follows:

𝑢
𝑜bBF

(x) =
∑
𝑁

𝑛=1
𝑘
𝑛
∑
𝑃

𝑝=1
𝐼
𝑝
𝐻x,𝑛 (𝐼𝑝)𝐾𝑟 (V (x) − 𝐼𝑝)

∑
𝑁

𝑛=1
𝑘
𝑛
∑
𝑃

𝑝=1
𝐻x,𝑛 (𝐼𝑝)𝐾𝑟 (V (x) − 𝐼𝑝)

.

(14)

Prior to the filtering process, the intensity is quantized
into 𝑃 bins, resulting in an intensity series {𝐼

𝑝
}
𝑃

1
. Then the

corresponding 𝑃 frames of range weight {𝐾
𝑟
(V(x) − 𝐼

𝑝
)} are

calculated. Based on the work in [22], an integral histogram
is established.Then𝑁 local histogrammaps are calculated in
constant time using the same integral histogram. Compared
with the single-box bilateral filter, the proposed method
requires𝑁−1 additional local histogram calculations, which
can be efficiently obtained using the integral histogram
technique. The calculations of 𝑁 times of box filtering for
both the numerator and dominator in (14) can be parallelized
for more efficient implementation.

3.3. Application to the Interpolation-Based Bilateral Filters.
Since Durand’s piecewise linear bilateral filter [9], Yang’s
extension [23], and also Paris’ method [19] employ an inter-
polation in pooling the filtering results, we call them together
the interpolation-based bilateral filters for convenience. As
the origin of this type of bilateral filters, Durand’s method is
discussed in this paper for demonstrating the application of
the proposed approximation to this type of bilateral filters.
Similar adaptation can be easily made for the application to
Yang’s method.

Let us replace the spatial kernel 𝐾
𝑠
in (2) by Durand and

Dorsey using the weighted sum of multiple boxes, and the
calculation of 𝑢

𝑘
is formulated as follows:

𝑢
𝑘
(x) ≈

∑y (∑
𝑁

𝑛=1
𝑘
𝑛
𝐵
𝑛
(x − y)) 𝐽

𝑘
(y)

∑y (∑
𝑁

𝑛=1
𝑘
𝑛
𝐵
𝑛
(x − y))𝑊

𝑘
(y)

=

∑
𝑁

𝑛=1
𝑘
𝑛
∑y 𝐵𝑛 (x − y) 𝐽

𝑘
(y)

∑
𝑁

𝑛=1
𝑘
𝑛
∑y 𝐵𝑛 (x − y)𝑊

𝑘
(y)

.

(15)

Given an image, it is first divided into a preset number of
intensity segments, forming an image series {𝑖

𝑘
}. Correspond-

ingly, a range-weighted image series {𝐽
𝑘
(y)} and a weight

series {𝑊
𝑘
(y)} are computed. Afterwards, the corresponding

integral maps of these two image series are established. The
filtered result 𝑢

𝑘
for each image segment 𝑖

𝑘
is computed

according to (15) with 𝑂(1) complexity. The final result
is obtained using an interpolation, as given in (3) for an
example. The running time of this bilateral filter is constant
with respect to the size of the spatial kernel.

3.4. Applications to the Series-Based Bilateral Filters. Since a
convolution with spatial kernels is also involved in the series-
based bilateral filters, the proposed sparse approximation
is also possible to be applied in this type of accelerations.
The detailed adaptation for the series-based bilateral filters
is omitted in this paper, which can be easily derived by the
readers.

4. Experiments and Comparisons

The proposed algorithm is implemented in MATLAB 2010b
under Windows XP SP3 (32 bits), in a PC computer with
Pentium Dual-Core T4200 @ 2.00GHz each and 3GB RAM.
The proposed histogram-based bilateral filter with multiple-
box spatial kernel is tested and discussed in this section.
The experiments on approximating the bilateral filter with
Gaussian spatial and range kernels provide the readers with
a glance at the validity and the effectiveness of the proposed
method. The application to other types of the acceleration of
the bilateral filter can be easily implemented and evaluated
under the guidance provided in the previous section. But it
is not given here for saving the length of this paper. In the
following text of this section, we evaluate the performance
of the proposed histogram-based bilateral filter in both
qualitative and quantitative aspects.

Before the evaluation, we briefly introduce the basic
settings of the experiments discussed in the following text.
Four standard test images are employed, which are 8 bit
grayscale images of size 512 × 512, as shown in Figure 1. The
numerical results given in the following texts are all produced
using the standard test images, unless otherwise noticed.

4.1. Qualitative Demonstration. For the qualitative demon-
stration, the proposed histogram-based method, together
with Porikli’s single-box bilateral filter andGunturk’s bilateral
filter, is employed to approximate the standard bilateral filter
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(a) Barbara (b) Boat (c) Lena (d) Pirate

Figure 1: Four standard test images used in the experiments in this paper. They are 8-bit grayscale images of size 512 × 512.
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Figure 2: Barbara: a demonstration of the visual quality of the approximation results. First column: results obtained using the proposed
method, where𝑁 = 5. Second column: the color-coded absolute error maps corresponding to the images in the first column. Third column:
results obtained using Porikli’s single-box bilateral filter with optimal spatial parameter. Fourth column: the color-coded absolute error maps
corresponding to the images in the third column. Fifth column: results obtained using Gunturk’s bilateral filter, where𝑀 = 5. Last column:
the color-coded absolute error maps corresponding to the images in the fifth column. First row: images are obtained with 𝜎

𝑠
= 1.2. Second

row: images are obtained with 𝜎
𝑠
= 1.8. Third row: images are obtained with 𝜎

𝑠
= 3.0. Fourth row: images are obtained with 𝜎

𝑠
= 6.0. For all

these results, 𝜎
𝑟
= 50 and 𝑃 = 16. The ranges of the color-coded maps are uniformly limited to [0, 50] to facilitate visual comparison.

with Gaussian spatial and range kernels. The results are
illustrated in Figure 2. As shown in Figure 2, the images in
the first, third, and fifth columns are, respectively, the results
of the proposed histogram-based bilateral filter, the results
of Porikli’s single-box bilateral filter [21], and the results of
Gunturk’s bilateral filter [26]. The color-coded maps in the
second, fourth, and sixth columns are the corresponding
absolute error between the images, respectively, in the first,
third, and fifth columns and the results of the standard

Gaussian bilateral filter, respectively, with the same input
parameters. The variances of the spatial kernels are 𝜎

𝑠
=

1.2, 1.8, 3.0, and 6.0, respectively, for the four rows. The
variances of the range kernels are the same; that is, 𝜎

𝑟
= 50.

The number of boxes for the proposed method is 𝑁 = 5 in
producing the images in the first column. Correspondingly,
the number of box bilateral filters used in Gunturk’s method
is 𝑀 = 5 in producing the results in the fifth column. For
Porikli’s method, the results are obtained with optimal spatial
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Table 1: Comparison of the PSNR values.

𝜎
𝑠

Barbara Boat Lena Pirate
Ours [21] [26] Ours [21] [26] Ours [21] [26] Ours [21] [26]

0.90 41.90 40.34 41.62 43.15 41.89 42.92 41.45 40.89 41.43 42.68 41.70 42.60
1.20 43.28 39.21 43.10 44.70 40.10 44.37 42.58 41.06 42.53 44.15 40.83 44.04
1.50 44.27 41.68 43.50 45.70 43.26 43.92 43.35 42.61 42.85 45.17 43.52 44.36
1.80 45.05 41.98 37.89 46.44 40.95 37.08 43.90 42.01 37.61 45.90 41.98 38.48
2.40 46.14 43.89 24.81 47.35 44.05 24.11 44.75 43.37 24.55 46.91 44.27 25.35
3.00 46.84 44.79 18.25 47.85 44.29 17.60 45.51 44.10 17.97 47.69 44.94 18.78
3.60 47.51 45.28 14.56 48.41 44.39 13.93 46.09 44.57 14.27 48.36 45.25 15.09
4.50 48.07 45.00 11.52 48.85 44.43 10.90 46.75 44.53 11.23 48.93 44.93 12.05
6.00 48.88 44.74 9.16 49.33 44.40 8.53 47.58 44.52 8.86 49.66 44.56 9.69
7.50 49.34 44.25 8.06 49.62 44.11 7.42 48.19 44.47 7.75 50.21 44.25 8.59
9.00 49.67 44.89 7.46 49.92 44.27 6.83 48.61 45.22 7.16 50.51 45.23 7.99

Table 2: Comparison of the FSIM values.

𝜎
𝑠

Barbara Boat Lena Pirate
Ours [21] [26] Ours [21] [26] Ours [21] [26] Ours [21] [26]

0.90 0.9874 0.9859 0.9873 0.9928 0.9921 0.9927 0.9830 0.9810 0.9829 0.9911 0.9902 0.9911
1.20 0.9902 0.9893 0.9902 0.9943 0.9911 0.9941 0.9862 0.9864 0.9862 0.9931 0.9908 0.9930
1.50 0.9924 0.9914 0.9924 0.9954 0.9949 0.9952 0.9888 0.9879 0.9889 0.9946 0.9940 0.9946
1.80 0.9939 0.9922 0.9939 0.9962 0.9901 0.9959 0.9907 0.9896 0.9909 0.9956 0.9913 0.9956
2.40 0.9960 0.9942 0.9929 0.9972 0.9949 0.9941 0.9934 0.9911 0.9910 0.9969 0.9948 0.9944
3.00 0.9973 0.9953 0.9817 0.9978 0.9941 0.9834 0.9955 0.9931 0.9820 0.9977 0.9950 0.9849
3.60 0.9979 0.9956 0.9589 0.9981 0.9931 0.9629 0.9964 0.9939 0.9629 0.9982 0.9947 0.9658
4.50 0.9984 0.9954 0.9137 0.9984 0.9927 0.9235 0.9973 0.9939 0.9248 0.9985 0.9944 0.9280
6.00 0.9988 0.9956 0.8427 0.9985 0.9931 0.8631 0.9979 0.9940 0.8660 0.9988 0.9942 0.8697
7.50 0.9991 0.9956 0.7928 0.9987 0.9932 0.8198 0.9984 0.9943 0.8246 0.9990 0.9944 0.8287
9.00 0.9992 0.9962 0.7602 0.9989 0.9935 0.7916 0.9987 0.9958 0.7979 0.9990 0.9952 0.8021

parameter derived by Gunturk in [26]; that is, 𝑟 = [1.4𝜎
𝑠
].

For producing all the results shown in Figure 2, 𝑃 = 16. The
ranges of the absolute error maps shown here are uniformly
limited to [0, 50] for better illustrating the difference of the
performance of the three methods.

It is shown in Figure 2 that the proposed histogram-based
bilateral filter produces less error than the other twomethods
when varying 𝜎

𝑠
. Hence, better accuracy is achieved in

approximating the standard bilateral filter. Note that the error
maps in the fourth column show that Porikli’s method with
optimal box performs better than Gunturk’s method when
𝜎
𝑠
is sufficiently large. Especially noted in the fifth column,

Gunturk’s method performs well with small 𝜎
𝑠
, but the result

images gradually become darker as 𝜎
𝑠
increases with fixed

𝑀. The performance of Gunturk’s bilateral filter can be
improved by increasing𝑀. However, the computational cost
will increase as well.The numerical results on this experiment
are also included in Tables 1 and 2.

4.2. Quantitative Evaluation. We quantitatively evaluate the
proposed method in three aspects, including the running
time on our system with nonoptimized MATLAB codes,
the quality in approximating the standard bilateral filter
according to some previously established criteria, and the

minimum number of boxes to guarantee sufficient accuracy
compared with the minimum number of box bilateral filters
in Gunturk’s method.

4.2.1. Computational Efficiency. We test our method by
varying values of 𝑁 and 𝑃 and record the running time.
Experiments show that the proposed method costs about
2.36 s for a 512×512 grayscale image when𝑁 = 5 and𝑃 = 16.
And every additional histogram bin costs about 0.04 s when
𝑁 = 5, and every additional box costs about 0.36 s when
𝑃 = 16. The local histogram calculation costs 0.34 s each
time on our system, which is the most time-consuming part
of the nonoptimized codes for every additional box. Further
acceleration of the local histogram calculation should be done
for more efficient implementation of the proposed method.

Experiments show that the running time of the proposed
method is about 0.1 s more than that of Gunturk’s method
with 𝑁 = 𝑀 and 𝑃 = 16. It is because the sparse
approximation algorithm in the proposedmethod costs about
0.1 s more than the linear problem solver in Gunturk’s
algorithm. However, the computation of any additional box
costs as much time as an additional single-box bilateral filter.
As a result, the running time of the rest codes of the two
algorithms is almost the same.
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Figure 3: The PSNR values of the results with respect to 𝜎
𝑠
. These results are calculated on “Lena” in approximating the Gaussian bilateral

filter, where 𝑃 = 16.

4.2.2. Approximation Accuracy. The two previously estab-
lished criteria are employed in quantitatively evaluating the
approximation quality in this paper. Following the previous
work, the PSNR is employed. Recently, Zhang et al. propose
a feature similarity index (FSIM) in [34] for image quality
assessment with reference. It is one of the state-of-the-art
methods for predicting the similarity between the test and
reference images. In order to provide a more comprehensive
evaluation, the FSIM is also applied for evaluating the quality
of the results.

Given the result images of the standard bilateral filter with
different parameter settings, the PSNR and FSIM values of
the results by the methods to be evaluated are calculated.

The PSNR and FSIM values on four standard test images of
the proposed histogram-based method together with that of
Porikli’s and Gunturk’s methods are, respectively, listed in
Tables 1 and 2, where 𝜎

𝑟
= 50, 𝑃 = 16, and 𝑁 = 𝑀 = 5.

The best scores among the three methods for each individual
𝜎
𝑠
and each test image are shown in boldface. We can see

from these two tables that our method outperforms the other
two according to both criteria. And it is more robust with
respect to the change of 𝜎

𝑠
with a fixed𝑁. Besides, Gunturk’s

bilateral filter performs well when 𝜎
𝑠
is small. However, both

PSNR and FSIM values of Gunturk’smethod decrease quickly
as 𝜎
𝑠
increases when 𝑀 is fixed. It is because the result

images become darker as 𝜎
𝑠
increases for a fixed𝑀, as can be
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Figure 4: The FSIM values of the results with respect to 𝜎
𝑠
. These results are calculated on “Lena” in approximating the Gaussian bilateral

filter, where 𝑃 = 16.

illustrated in Figure 2. Larger𝑀 is required for better quality
in approximating Gaussian bilateral filter with larger 𝜎

𝑠
using

Gunturk’s method.
In order to provide a more intuitive illustration, we

plot the PSNR and FSIM values on “Lena,” respectively,
in Figures 3 and 4 with respect to 𝜎

𝑠
. As can be seen in

these two figures, the proposed histogram-based bilateral
filter has higher PSNR and FSIM values compared with
the other two methods over a large range of 𝜎

𝑠
. Besides,

the value of 𝑁 does not affect the performance too much.
As a result, only a small number of boxes are sufficient
for a vast range of 𝜎

𝑠
using the proposed method. On the

contrary, for a fixed 𝑀, the scores given by both principles

of Gunturk’s method decay quickly as 𝜎
𝑠
increases. Using

larger𝑀 is helpful in producing satisfactory results; however,
as discussed before, the computational efficiency will be
degraded as a consequence. Although small 𝜎

𝑠
is sufficient

formost denoising applications, large 𝜎
𝑠
is usually required in

many other applications including high-dynamic-range tone
mapping [9], image enhancement [14], stereo vision [17], and
dehazing [35]. Consequently, the computational cost will be
unbearable for efficient implementation combining a large
number of single-box bilateral filters.

Furthermore, as can be seen in Figures 3 and 4, our
histogram-based bilateral filter is apparently more robust
than the other two methods with respect to 𝜎

𝑟
. On the
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> 40 dB, where 𝑃 = 16 and 𝜎
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= 50.

contrary, as the value of 𝜎
𝑟
increases, the performance of

Porikli’s single-box bilateral filter becomes less stable with
respect to the change of 𝜎

𝑠
.

4.2.3. Minimum Number of Box. For Gunturk’s method,
larger 𝑀 leads to better approximation accuracy. Thus
sufficient single-box bilateral filters should be combined
to guarantee an acceptable accuracy. Correspondingly, as
mentioned in the previous section, sufficient boxes should
also be used in the proposed histogram-based bilateral filter.
For the acceptable quality threshold, it is often considered
as visually undistinguishable when PSNR ≥ 40 dB [21].
We experiment on a standard test image, namely, “Lena,”
shown as Figure 1(c). In order to find out the minimum
𝑁 for the proposed histogram-based bilateral filter and
the corresponding minimum 𝑀 for Gunturk’s method with
respect to the scale of the spatial kernel, we vary the value of
𝜎
𝑠
and keep other parameters unchanged. For each given 𝜎

𝑠
,

we gradually increase both numbers and calculate the PSNR
values of the results, with respect to the results of the standard
Gaussian bilateral filter. Then the minimum numbers which
enable the quality to exceed the acceptable threshold for
both algorithms can be obtained. The minimum 𝑁 and the
minimum 𝑀 with respect to 𝜎

𝑠
are shown in Figure 5. It

is clearly seen that the minimum 𝑀 for Gunturk’s method
increases as𝜎

𝑠
increases.On the contrary, theminimum𝑁 for

the proposed method is much smaller than the minimum𝑀

for Gunturk’s method. And it is nearly constant with respect
to 𝜎
𝑠
. 𝑃 = 16 and 𝜎

𝑟
= 50 for both methods in this

experiment. It is shown that the proposed histogram-based
bilateral filter is more efficient to obtain sufficient accuracy,
and the performance is more robust to the change of the
spatial scale of the filter.

Finally, it is worth noting that, when𝑁 = 1, the proposed
histogram-based bilateral filter is exactly the same as Porikli’s
single-box bilateral filter with optimal spatial parameter.

5. Conclusions and Discussions

We have presented a method for approximating arbitrary
spatial kernel using a fixed number of boxes based on
sparse approximation techniques. With applications to the
acceleration of the bilateral filter, the proposed method can
be leveraged for a broad class of constant-time bilateral
filters with arbitrary spatial and range kernels. Once the
parameter of the spatial kernel and the number of boxes
are given, the radiuses and the coefficients of the boxes are
determined by the Batch-OMP algorithm. Hence they can be
computed ahead of the filtering process. The application to
the histogram-based 𝑂(1) bilateral filter is demonstrated in
this paper, followed by a number of convictive experiments.
Results tell that the proposed histogram-based bilateral filter
has better accuracy compared with other histogram-based
bilateral filters in approximating the standard bilateral filter.
Meanwhile, the performance of the proposed histogram-
based bilateral filter is robustwith respect to the parameters of
the filter kernels. And a small number of boxes are sufficient
to achieve satisfactory accuracy for a large range of the spatial
parameters. With a very little more computational cost, the
accuracy of the proposed histogram-based bilateral filter is
better than the previous histogram-based ones.

The proposed 𝑂(1) bilateral filter with arbitrary spatial
and range kernels can be parallelized for real-time imple-
mentation in GPUs. Moreover, it is possible for the proposed
method to be extended to the bilateral grid. 3-D cubic boxes
can be used to approximate 3-D arbitrary spherical filter
kernels in the augmented data space. With the proposed
method, higher-dimensional manipulations are also possible
in this direction.
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