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The interpolation-reconstruction of local underwater terrain using the underwater digital terrain map (UDTM) is an important
step for building an underwater terrain matching unit and directly affects the accuracy of underwater terrain matching navigation.
The Kriging method is often used in terrain interpolation, but, with this method, the local terrain features are often lost. Therefore,
the accuracy cannot meet the requirements of practical application. Analysis of the geographical features is performed on the basis
of the randomness and self-similarity of underwater terrain. We extract the fractal features of local underwater terrain with the
fractal Brownian motion model, compensating for the possible errors of the Kriging method with fractal theory. We then put
forward an improved Kriging interpolation method based on this fractal compensation. Interpolation-reconstruction tests show
that the method can simulate the real underwater terrain features well and that it has good usability.

1. Introduction

The ever increasing capabilities of the autonomous under-
water vehicle (AUV) allow for extended period long-range
precision autonomous underwater navigation [1–4]. Because
of this, the underwater terrain matching navigation (UTMN)
has been studied in depth.

In the study of UTMN, it is important to build the
accurate underwater terrain matching unit by extracting the
local underwater terrain data from the underwater digital
terrain map (UDTM).The underwater terrain interpolation-
reconstruction is the most important step [5] and directly
affects the accuracy of terrain matching [6]. The underwater
terrain real-time interpolation-reconstruction plays a key
role in obtaining high-precision local terrain and in the anal-
ysis of the statistical features of terrain interpolation accuracy.
The traditional terrain interpolationmethods includeKriging
[7], Gaussian-weighted average (GWA) [8], inverse distance
weighting (IDW) [9], and bilinear interpolation [10]. These
methods do too much smoothing of the original data. The
overall underwater terrain trends can be expressed in general,
but too many details are lost and the interpolation accuracy

is low. Therefore, these methods are difficult to apply in
practice. Compared with these other methods, however, the
Kriging basedmethod has two distinct advantages [11, 12]: (1)
it considers the spatial correlation of a described object; (2)
it shows the estimation error. Therefore, the Kriging based
method gets in-depth research. However, the existing studies
are limited to the application of Kriging in related fields, and
the defects of Kriging are not corrected.

Numerous studies show that natural terrains have self-
similarity features [13]. Based on the fractal Brownianmotion
(FBM) model, the fractal compensation Kriging (FCK)
method can be used for the interpolation-reconstruction of
the underwater terrain.

2. Kriging Interpolation Method
TheKriging interpolationmethod is also called space autoco-
variance best interpolationmethod. It was proposed by South
African geological engineer D. G. Krige and improved by
French mathematicians G. Matheron. The core idea behind
Kriging is that different sample points are weighted in their
importance on the basis of their spatial location as well as
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their degree of correlation such that the estimation error
is minimized. The Kriging method is the unbiased optimal
estimation. This method is widely used in calculation of
mineral reserves, remote sensing data processing, geology,
hydrology, environmental science, agriculture, and forestry
science. In these areas, the essence of the interpolation
is the same. Using the structural features of the original
regional variation data and variation function, do the best
linear unbiased estimate for the regional variation values of
interpolated points. The Kriging based underwater terrain
interpolationmethod is similar to the other Krigingmethods.
Select the depth value of local electronic chart area for
regionalized variables, determine the grid-node interpolation
distance, and interpolate.

Suppose 𝑧 = 𝑓(𝑥, 𝑦) is the depth value of regional-
ized variables, which is a second-order stationary random
function. The mathematical expectation is𝑚, the covariance
function is 𝑐(ℎ), and the variation function is 𝛾(ℎ):

𝐸 [𝑓 (𝑥, 𝑦)] = 𝑚,

𝑐 (ℎ) = 𝐸 [𝑓 (𝑥, 𝑦) 𝑓 ((𝑥 + ℎ) , (𝑦 + ℎ))] − 𝑚
2
,

𝛾 (ℎ) =
1

2
𝐸 [𝑓 (𝑥, 𝑦) − 𝑓 ((𝑥 + ℎ) , (𝑦 + ℎ))]

2

.

(1)

Assuming 𝛾(ℎ) = 𝑐(0)−𝑐(ℎ), suppose the estimated value
𝑓
∗(𝑥, 𝑦) of the true value 𝑓(𝑥, 𝑦) is the linear combination of
𝑛 known values 𝑓(𝑥

𝑖
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𝑖
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The Kriging-based underwater terrain interpolation
method involves finding the weight coefficients 𝜆

𝑖
(𝑖 =

1, 2, . . . , 𝑛), which makes 𝑓∗(𝑥, 𝑦) the unbiased estimation of
𝑓∗(𝑥, 𝑦). 𝜆
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In addition, the estimated variance is as follows:
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(4)

In order to minimize 𝜎2
𝐸
, apply the Lagrange multiplier

principle:

𝐹 = 𝜎
2

𝐸
− 2𝜇(

𝑛

∑
𝑖=1

𝜆
𝑖
− 1) . (5)

In Function (5), 𝜇 is the Lagrange multiplier. Calculate
𝜕𝐹/𝜕𝜆

𝑖
and 𝜕𝐹/𝜕𝜇 and set them equal to 0:
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The Kriging functions can be obtained by Function (6):
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Based on the relationship between the covariance and
variation functions, the Kriging functions are also expressed
by variation function, as shown in Function (8):
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The Kriging-based underwater terrain interpolation-
reconstruction method is as follows.

(1) Extract the local water depth data and corresponding
grid numbers (𝑥

𝑖
, 𝑦
𝑖
, 𝑧
𝑖
), (𝑖 = 1, 2, . . . , 𝑛), fromUDTM

and read the grid spacing.
(2) Set the interpolated grid spacing.
(3) Find the mathematical expectation 𝑚 where the

covariance function is 𝑐(ℎ) and the variation function
is 𝛾(ℎ).

(4) Calculate the weight coefficients 𝜆
𝑖
(𝑖 = 1, 2, . . . , 𝑛)

based on Functions (7) and (8).
(5) Calculate the interpolated depth value using Function

(2).

The Kriging-based underwater terrain interpolation-
reconstructionmethod ignores the nonlinear terrain features
so that the interpolated accuracy is relatively low. Therefore,
it needs a nonlinear compensation. Studies have shown that
natural terrain has self-similarity, or scale independence, and
the feature can be expressed by a stationary random process.
Fractal theory is often used for digital terrain modeling [14,
15]. Because of the self-similarity of terrain feature, fractal
theory can approximate the terrain better and therefore
has theoretical advantage. FBM is the important stochastic
process in modern nonlinear time series analysis. FBM can
effectively express the nonlinear phenomena in nature, so it
is one of themost effectivemodels used to describe the terrain
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features. Using analysis of fractal features of underwater
terrain data based on the FBM principle, the terrain self-
similarity features can be extracted and the Kriging based
interpolation results can incorporate the nonlinear compen-
sation.

3. The Underwater Terrain Interpolation
Method Based on Fractal Compensation

3.1. FBM of Underwater Terrain Data. Using research on
Brownian motion, American mathematicians Mandelbrot
and Van Ness proposed the FBM model in 1968 [16–18],
which is mainly used to describe irregular shapes in nature,
such as mountains, clouds, terrain, and planet surfaces. The
FBM based terrain modeling methods include the Midpoint
displacement method, the Poisson step method, the Fourier
filtering method, the successive random additions (SRA),
and the Band-limited noise accumulation method. Among
them, the SRA assumes the underwater terrain is generated
by the FBF 𝑍(𝑥, 𝑦). The original data (𝑥, 𝑦, 𝑧) are the points
on fractal Brown curved surface generated by FBF. The
fluctuation degree of points 𝑧(𝑥, 𝑦) can determine each part
of the area and the𝐻 value of each point, so any point value
can be decomposed into weight values of neighboring points
and normal randomfluctuation determined by terrain fractal
features𝐻:

𝑧 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) + Δ𝜉 (𝑥, 𝑦) , (9)

wherein Δ𝜉(𝑥, 𝑦) ∼ 𝑁(0, (𝑑𝑥2 + 𝑑𝑦2)𝐻), 0 < 𝐻 < 1.
The underwater terrain can be described by the random

fractal model, but the actual results show that the degree of
irregularity of terrain data in different areas has large differ-
ence. In other words, the underwater terrain has multifractal
nature. Therefore, the fractal features calculated by Function
(9) are local fractal features in approaching area. The “local”
size can be defined by the UDTM grid-spacing size. Thus the
size of𝐻 reflects the local FBF features.

3.2. Extraction of Local Fractal Features and Interpolation
Compensation. Fractal features can be represented using two
parameters:𝐻 (Hurst exponent) and𝜎 (terrain variance) [19].
𝐻 is the index of surface complexity or roughness, and 𝜎
is the index of the adulatory features of local terrain. From
the nature of the terrain parameters, we know that a larger
Hurst exponent results in a simpler (smooth) terrain, and a
smaller Hurst exponent results in a more complex (rough)
terrain. We also know that a smaller 𝜎 results in a smaller
terrain undulation, and a larger 𝜎 results in a larger terrain
undulation.

The terrain generated by a fractional Brownian model
has self-similarity in the statistical sense, and the fractal
dimension can be obtained by 𝐷 = 𝑛 + 1 − ℎ, where 𝐻 is
the self-similarity parameter, 𝑛 is the Euclidean dimension in
three-dimensional space, 𝑛 = 2, and𝐷 = 3 − 𝐻.

The function for parameter extraction is

𝐸 (
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) = 𝐸{

𝑓 (𝑥 + 𝛿𝑥) − 𝑓 (𝑥)

‖𝛿𝑥‖
𝐻

} ,

𝐸 (
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) = 2∫

∞

0

𝑦
1

√2𝜋𝜎
⋅ exp(

𝑦2

2𝜎2
)𝑑𝑦 =

2𝜎

√2𝜋
.

(10)

Letting 𝐴 = 2𝜎/√2𝜋, we obtain

𝐸 (𝑓 (𝑥 + 𝛿𝑥) − 𝑓 (𝑥)) = 𝐴 ‖𝛿𝑥‖
𝐻
. (11)

Taking the logarithm of both sides of Function (11) results
in

ln𝐸 (𝑓 (𝑥 + 𝛿𝑥) − 𝑓 (𝑥)) = 𝐻 ln ‖𝛿𝑥‖ + ln𝐴. (12)

It can be seen that there is a linear relationship between
ln𝐸(𝑓(𝑥+𝛿𝑥)−𝑓(𝑥)) and ln ‖Δ𝑥‖, so the regression function
can be established as

𝑒
2
=

‖𝛿𝑥‖max

∑
‖𝛿𝑥‖=‖𝛿𝑥‖min

{
ln𝐸 (𝑓 (𝑥 + 𝛿𝑥) − 𝑓 (𝑥))
−𝐻 ln ‖𝛿𝑥‖ − ln𝐴 }

2

. (13)

𝑒2 can be obtained by minimizing𝐻 and 𝜎.
The function is the interpolation in a one-dimensional

curve, when the three-dimensional spatial interpolation is
performed. Function (13) can be rewritten as

𝑒
2
=

‖𝑟‖
𝑛

∑
‖𝑟‖=‖𝑟‖

1

{
ln𝐸 (𝑓 (𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) − 𝑓 (𝑥, 𝑦))

−𝐻 ln 󵄩󵄩󵄩󵄩󵄩𝛿𝑥
2 + 𝛿𝑦2

󵄩󵄩󵄩󵄩󵄩
− ln𝐴 }

2

. (14)

In this function, 𝑟 is the distance between a calculated
grid node and nearby points, and 𝑛 is the number of nearby
points where the so-called nearby points are the points in a
local fractal region. Using Function (14), the fractal feature
number𝐻 and initial variance at each node of a UDTM can
be obtained.

Using𝐻 and 𝜎, the errors of traditional interpolation can
be corrected using the fractal principle; using 𝜎 for the scale
factor of height and zone radius, the interpolation of any
point can be expressed as

𝑧 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) + Δ𝜉 (𝑥, 𝑦) ,

𝑓 (𝑥, 𝑦) =

𝑛

∑
𝑖=1

𝜆
𝑖
𝑓 (𝑥
𝑖
, 𝑦
𝑖
) .

(15)

In Function (15), 𝑓(𝑥, 𝑦) is the base value obtained
using Kriging based interpolation methods, Δ𝜉(𝑥, 𝑦) is the
normal random increment that defers the distribution of
𝑁(0, 𝜎

2

0
(Δ𝑥2 + Δ𝑦2)𝐻), 0 < 𝐻 < 1, and Δ𝑥2 + Δ𝑦2 is

the distance between the interpolation point and the nearest
point within the local terrain region. 𝐻 is the average value
obtained through the weighted average using the terrain
features of nearby points. Function (15) is the underwater
terrain interpolation function with the fractal correction
term, which considers the effect of terrain self-similarity to
interpolation points and takes into account correction for the
interpolation error.
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Figure 1: The interpolation flow chart.

3.3. The Underwater Terrain Interpolation Method. Based on
the above derivation, the steps of FCK based interpolation-
reconstruction method are as follows.

(1) Extract the local water depth data and corresponding
grid numbers (𝑥

𝑖
, 𝑦
𝑖
, 𝑧
𝑖
), (𝑖 = 1, 2, . . . , 𝑛) fromUDTM

and read the grid spacing.
(2) Set the interpolated grid spacing.
(3) Find the mathematical expectation 𝑚 where the

covariance function is 𝑐(ℎ) and the variation function
is 𝛾(ℎ).

(4) Calculate the weight coefficients 𝜆
𝑖
(𝑖 = 1, 2, . . . , 𝑛)

based on Functions (7) and (8).
(5) Calculate the fractal feature number𝐻 and the initial

terrain standard deviation 𝜎 using Function (14).
(6) Calculate the interpolated depth value using Function

(15).

The interpolation flow chart is as shown in Figure 1.

4. The Underwater Terrain
Interpolation-Reconstruction Test

4.1. The Interpolation-Reconstruction Test Methods. Accord-
ing to the conclusions of Section 3.3, the FCK based inter-
polation software can be built using C++ programming

language, and different underwater terrain is used to exe-
cute underwater terrain interpolation-reconstruction tests.
In these tests, the real terrain values are provided by 1m × 1m
grid-spacing UDTM node values. After extracting UDTM
fractal terrain features and taking into account the undulating
terrain extent, sequentially select 10m× 10m size local terrain
in eight different grid areas. Run the interpolation tests,
respectively, interpolating for each 1m × 1m node in local
terrain blocks. In order to illustrate the superiority of the
proposedmethod, theGWAand IDWmethods are compared
with the FCK method. The GWA and IDW methods are
conducted using Surfer 8 [20] software.

4.1.1. GWA Method. The GWA is an interpolation method
typically used for batch processing multibeam data. It uses
a Gaussian function as the interpolation weight function.
The form is similar to that used in the IDW method. The
weighting function of GWA is

𝜔 (𝑟) = 𝐹 exp(−( 𝑟
𝑑
)
2

) , (16)

wherein 𝑟 is the distance between the insertion point and
search data points, 𝐹 is the normalization factor to guarantee
the sum of all weighs is 1, and 𝑑 is the distance that reduced
weight to 1/𝑒 of the maximum weight, usually taken to be 1/2
of the search radius.
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Table 1: Statistical property of interpolation error with different method.

Terrain standard deviation (m) 0.0936 0.3056 0.615 1.072 1.316 1.535 1.828 2.219
The average error

GWA 0.0334 0.0698 0.1622 0.1623 0.152 0.191 0.1901 0.1889
IDW 0.0478 0.0793 0.2314 0.2758 0.2854 0.3953 0.4557 0.4946
FCK 0.0276 0.0676 0.1332 0.1579 0.1489 0.1849 0.1746 0.1658

The error covariance
GWA 0.0024 0.0038 0.048 0.0407 0.042 0.0854 0.0916 0.0698
IDW 0.0043 0.0106 0.0965 0.1068 0.1135 0.2064 0.3059 0.3629
FCK 0.0016 0.0039 0.0393 0.034 0.0325 0.0796 0.1042 0.0742

4.1.2. IDW Method. The distance weighted interpolation
method (DW) uses the known points of nearby estimated
points to determine the weights arithmetically. In order
to obtain the unknown point values, we interpolate using
Formula (17). Note that the weighting is a function of
distance:

𝑍
𝑗
=
∑
𝑛

𝑖=1
(𝑧
𝑖
/ℎ𝛼
𝑖𝑗
)

∑
𝑛

𝑖=1
(1/ℎ𝛼
𝑖𝑗
)
, ℎ
𝑖𝑗
= √𝑑2
𝑖𝑗
+ 𝛿2, (17)

wherein ℎ
𝑖𝑗
is the effective distance of grid node 𝑗 around

point 𝑖. 𝑍
𝑗
is the depth of interpolated node 𝑗, 𝑍

𝑖
is the water

depth near the known point, 𝛽 is power of the distance, called
weight parameters, and 𝛿 is smoothing factor.

DW is a precision interpolation method. When calculat-
ing the value of node, weights are assigned to each of the
adjacent points. The weights sum up to 1. When there is a
value on just one node, the weight is 1 and other weights are
zero. This situation causes a “convex change” phenomenon.
In calculating the node distance, we therefore introduce the
smoothing factor to reduce “convex change” phenomena.

Typically, the value of the grid node is related to the
distance, and sometimes it is related to the direction. When
discrete points around grid point are evenly distributed, the
direction is not considered. Parameters 𝛽 are generally taken
to be 2, and the weighting is calculated by inverse square of
the distance. (Themethod is also called IDW.)The greater the
weight parameters 𝛽, the greater impact of the interpolated
point by adjacent points.

4.2. The Results of Interpolation-Reconstruction Test.
Figures 2(a), (A), (B), (C), and (D) are the local terrain, FCK
interpolation terrain, GMA interpolation terrain, and IDW
interpolation terrain, respectively. As can be seen from the
partial surface morphology, the FCK based method not only
reflects the terrain overall trend but also shows the terrain
local details. In comparison, the terrain obtained by GMA
based method and IDW based method is relatively smooth.
However, there are large differences in terrain local details.
This is because GMA based method and IDW based method
are approaching-point distance weighting. Both methods
fail to consider terrain self-similarity in the local area and
irregular features brought by nonlinear terrain; interpolation
data are smooth mainly. FCK based method takes into
account the terrain self-similarity and irregularities. The

interpolated terrain by FCK method can show the terrain
overall trend as the traditional methods. More importantly,
the local details are similar with real terrain, and reflect the
irregular features brought by non-linear terrain. So the FCK
method has good usability.

In order to further test interpolation effects of FCK-based
method under different terrain undulations as well as the
differences with GMA and IDW, we use terrain standard
deviation, selecting several different local terrains in UDTM
and interpolating. In Figure 3, each figure only gives the
contrast effect between FCK terrain and the real terrain. As
can be seen from the visual effects, in a variety of terrain
conditions, the FCK based method reflects terrain change
trends better and has good ability to adapt to terrain features.
Table 1 shows under four kinds of interpolation methods the
statistical results of interpolation errormean and variance. As
can be seen, with the terrain standard deviation increasing,
the error mean and error covariance of three methods have
certainly increased, and FCK based method is minimum.

We use the real terrain nodes to interpolate in a test so
that the accuracy is consistentwith the original node accuracy
and the error testing standards ensure the consistency. The
interpolation results showed that the FCK based interpola-
tion method can reconstruct terrain features well and has
good adaptability for different undulating extent terrain, and
the average error is smaller than the GMA and IDW based
methods. As can be seen from Figure 2, the FCK based
method differs from the GMA based method and the IDW
based method at a few points, but the average error is better.

5. Conclusion

For the defects of Kriging based methods when interpolating
underwater terrain, the FCK based interpolation method
has been proposed. Through extracting local terrain fractal
features, this method can compensate for the deficiencies of
the Kriging interpolation results. The following conclusions
were reached.

(1) The proposed method can effectively improve the
accuracy of the terrain interpolation, and this is
evidenced in the underwater terrain interpolation-
reconstruction test.

(2) The target of the fractal compensation method is not
limited to Kriging. Theoretically, it can be used for
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Figure 2: Comparison of four interpolation methods in one local terrain area: (a) graph of terrain surface and (b) histogram of mean error
statistics.
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Figure 3: Comparison between real terrain and interpolation terrain with different local terrain standard deviation.
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the error of other traditional interpolation methods
as well.

(3) How to further improve the terrain interpolation
accuracy and interpolation efficiency is still an area
worthy of study.
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