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The indefinite LQ problem for irregular singular systems is investigated. Under some general conditions, the optimal control-state
pair is obtained by solving an algebraic Riccati equation. The optimal control is synthesized as state feedback. All the finite poles
of the closed-loop system are located on the left-half complex plane. An example is given to show the validity of the proposed
conclusion.

1. Introduction

Singular systems have comprehensive practical background
[1–3]. Great progress has been made in the theory and its
applications since 1970s [4–8]. The treatment of the LQ
problem for linear systems has been well studied since the
early 1960s. A detailed discussion of this topic can be found
in [9, 10]. For linear singular systems, there have also been
a lot of excellent results about the LQ problem [11–13]. A
linear quadratic control problem is indefinite when the cost
weighting matrices for the state and the control are allowed
to be indefinite. Although the indefinite LQ problem is
meaningless for standard state space systems, it is solvable
for singular systems under some conditions. To the best
of our knowledge, [14] is the first article which studied a
nonstandard quadratic regulator on a finite time horizonwith
indefinite weightingmatrix for the control. Up to now, indefi-
nite LQ theory has been extensively developed and has found
interesting applications in finance, especially in dynamic
macroeconomics theory [15, 16]. Many applications for this
problem can be seen in [17, 18] and the references therein.

A lot of literature about indefinite LQ control prob-
lem can be found. Trentelman [19] deals with the free-
endpoint regular linear quadratic problem with indefinite
cost functional in the context of linear quadratic optimal
control and establishes necessary and sufficient conditions for
the existence of optimal controls. Ran and Trentelman [20]

consider the discrete time infinite-horizon linear quadratic
problem with indefinite cost criterion and obtain necessary
and sufficient conditions for the existences of optimal con-
trols based on a geometric characterization of the set of all
Hermitian solutions of the discrete time algebraic Riccati
equation. Bucci and Pandolfi [21] study the finite horizon
nonstandard LQ problem for an abstract dynamic system
and provide necessary and sufficient conditions for finiteness
of the value function corresponding to the control problem.
Cui and Zhang [22] discuss the finite time horizon indefinite
LQ problem for singular linear discrete time-varying systems
and show that the indefinite LQ problem is dual to that of
projection for backward stochastic systems. Cui et al. [23]
study the indefinite LQ problem for singular discrete time-
varying linear systems with multiple input delays and obtain
an explicit controller by computing the gain of the smoothing
estimation of dual systems. The above discussions were
inducted in the premise that the singular system is regular.
The indefinite LQ problem for irregular singular systems was
rarely mentioned.

In this paper, the indefinite LQ problem for irregular sin-
gular systems is discussed. It is shown that the indefinite LQ
problem for irregular singular systems can be transformed
to the regular LQ problem for standard state space systems
by restricted system equivalence transformation under some
conditions.The system state is decomposed into free state and
restricted state and the input is decomposed into free input
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and forced input. The optimal control is synthesized as state
feedback.The optimal control-state pair is derived by solving
an algebraic Riccati equation.All the finite poles of the closed-
loop system are located on the left-half complex plane.

The remainder of the paper is organized as follows. In
Section 2, the indefinite LQ problem for irregular singular
systems is transformed to the optimal problem for standard
state space systems by restricted system equivalence transfor-
mation. In Section 3, we obtain the sufficient conditions for
the unique existence of optimal control-state pair and solve
the state feedback gain. A simulation example is exploited
to demonstrate the effectiveness of the proposed results in
Section 4. This paper is briefly concluded in Section 5.

Notation. Throughout the paper, the superscript “𝑇” stands
for matrix transposition; 𝑅

𝑛 denotes the 𝑛-dimensional
Euclidean space; 𝑅𝑛×𝑚 is the set of 𝑛 × 𝑚 real matrices; 𝐼

𝑛
is

the 𝑛 × 𝑛 identity matrix;R𝜆 stands for the real part of 𝜆; for
real symmetric matrix 𝐴, 𝐴 > 0 means that 𝐴 is definite-
positive and 𝐴 ≥ 0 means that 𝐴 is semidefinite-positive.
The matrices, if not explicitly stated, are assumed to have
compatible dimensions.

2. Statement and Transformation of
Indefinite LQ Problem

Consider the optimal control problem of linear irregular
singular systems

𝐸�̇� = 𝐴𝑥 + 𝐵𝑢, 𝐸𝑥 (0) = 𝑥
0

(1)

with quadratic cost

𝐽 (𝑢, 𝑥) = ∫

∞

0

[𝑥
𝑇

, 𝑢
𝑇

]𝑄[𝑥
𝑇

, 𝑢
𝑇

]
𝑇

𝑑𝑡, (2)

where 𝐸,𝐴 ∈ 𝑅
𝑚×𝑛, 𝐵 ∈ 𝑅

𝑚×𝑟, 𝑄 ∈ 𝑅
(𝑛+𝑟)×(𝑛+𝑟), 0 < rank𝐸 =

𝑝 < 𝑛, 𝑄𝑇 = 𝑄, and 𝑥, 𝑢, and 𝑥
0
are state, input, and initial

state, respectively.
System (1) is said to be regular if𝑚 = 𝑛 and det(𝑠𝐸−𝐴) ̸≡

0; otherwise, it is irregular. For the irregular singular system,
Zhu et al. [13] discussed the state feedback LQ problem.

We denote the above LQ problem about (1) and (2) as
problemP and define the set of admissible control-state pairs
of problem P as

Ω = { (𝑢, 𝑥) | (𝑢, 𝑥) is piecewise continuous,

satisfies (1) and |𝐽 (𝑢, 𝑥)| < ∞} .

(3)

ProblemP is called indefinite LQ problem if there are not
only positive numbers but also negative numbers in the set of
eigenvalues of matrix 𝑄.

The control objective of this paper is to find an optimal
control-state pair (𝑢∗, 𝑥∗) ∈ Ω such that

𝐽 (𝑢
∗

, 𝑥
∗

) = min
(𝑢,𝑥)∈Ω

𝐽 (𝑢, 𝑥) (4)

when problem P is indefinite LQ problem.

Since rank𝐸 = 𝑝, there exist matrices 𝑀
11

∈ 𝑅
𝑝×𝑚 and

𝑁
11

∈ 𝑅
𝑛×𝑝 such that 𝑀

11
𝐸𝑁
11

= 𝐼
𝑝
, where 𝑀

11
has full row

rank and𝑁
11
full column rank. Suppose𝑀

12
is one of the left

zero divisors of 𝐸 and 𝑁
12
one of the right zero divisors of 𝐸;

then thematrices𝑀
1
= [𝑀
𝑇

11
,𝑀
𝑇

12
]
𝑇 and𝑁

1
= [𝑁
11
, 𝑁
12
] are

nonsingular.
Let

𝑀
1
𝐴𝑁
1
= [

𝐴
11

𝐴
12

𝐴
21

𝐴
22

] , 𝑀
1
𝐵 = [

𝐵
1

𝐵
2

] , (5)

where 𝐴
11

∈ 𝑅
𝑝×𝑝, 𝐵

1
∈ 𝑅
𝑝×𝑟.

Definition 1 (see [24]). System (1) is impulse controllable
if there exists a smooth (impulse-free) control-state pair of
system (1) for every initial condition.

Obviously, it is necessary for the solvability of the problem
P that system (1) is impulse controllable. The following
lemma establishes two necessary and sufficient conditions for
the impulse controllability of system (1).

Lemma 2. System (1) is impulse controllable if and only if

rank [𝐴
21

𝐴
22

𝐵
2
] = rank [𝐴

22
𝐵
2
] (6)

or

rank [
0 𝐸 0

𝐸 𝐴 𝐵
] = rank [𝐸 𝐴 𝐵] + rank𝐸. (7)

The proof is similar to that of Theorem 3 in [24], so it is
omitted.

In the following discussions, we always assume that (7)
holds.

Denote

𝑑 = rank𝐴
22

= rank [
0 𝐸

𝐸 𝐴
] − 2 rank𝐸, (8)

and then there exist matrices 𝑀
21

∈ 𝑅
𝑑×(𝑚−𝑝) and 𝑁

21
∈

𝑅
(𝑛−𝑝)×𝑑 such that 𝑀

21
𝐴
22
𝑁
21

= 𝐼
𝑑
, where 𝑀

21
has full row

rank and𝑁
21
full column rank. Suppose𝑀

22
is one of the left

zero divisors of 𝐴
22

and 𝑁
22

one of the right zero divisors
of 𝐴
22
; then the matrices 𝑀

2
= [𝑀

𝑇

21
,𝑀
𝑇

22
]
𝑇 and 𝑁

2
=

[𝑁
21
, 𝑁
22
] are nonsingular.

Let

𝐴
12
𝑁
2
= [𝐴
121

, 𝐴
122

] , 𝑀
2
𝐴
21

= [
𝐴
211

𝐴
212

] ,

𝑀
2
𝐵
2
= [

𝐵
21

𝐵
22

] ,

(9)

where 𝐴
121

∈ 𝑅
𝑝×𝑑, 𝐴

211
∈ 𝑅
𝑑×𝑝, and 𝐵

21
∈ 𝑅
𝑑×𝑟.

Denote

𝑠 = rank [𝐴
22
, 𝐵
2
] = rank [

0 𝐸 0

𝐸 𝐴 𝐵
] − 2 rank𝐸, (10)

and then rank[𝐴
212

, 𝐵
22
] = rank 𝐵

22
= 𝑠 − 𝑑 and there exist

matrices 𝑀
31

∈ 𝑅
(𝑠−𝑑)×(𝑚−𝑝−𝑑) and 𝑁

31
∈ 𝑅
𝑟×(𝑠−𝑑) such that
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𝑀
31
𝐵
22
𝑁
31

= 𝐼
𝑠−𝑑

, where 𝑀
31
has full row rank and 𝑁

31
full

column rank. Suppose 𝑀
32
is one of the left zero divisors of

𝐵
22

and 𝑁
32

one of the right zero divisors of 𝐵
22
; then the

matrices 𝑀
3

= [𝑀
𝑇

31
,𝑀
𝑇

32
]
𝑇 and 𝑁

3
= [𝑁
31
, 𝑁
32
] are non-

singular and 𝑀
32
𝐴
212

= 0.
Denote 𝑁 = diag([𝑁

1
, 𝐼
𝑟
]) diag([𝐼

𝑝
, 𝑁
2
, 𝑁
3
]), 𝑀
31
𝐴
212

=

𝐴
2121

, 𝐵
1
𝑁
3
= [𝐵
11
, 𝐵
12
], 𝐵
21
𝑁
3
= [𝐵
211

, 𝐵
212

], and

[𝑥
𝑇

1
, 𝑥
𝑇

2
, 𝑥
𝑇

3
, 𝑢
𝑇

1
, 𝑢
𝑇

2
]
𝑇

= 𝑁
−1

[𝑥
𝑇

, 𝑢
𝑇

]
𝑇

, (11)

where 𝐵
11

∈ 𝑅
𝑝×(𝑠−𝑑), 𝐵

211
∈ 𝑅
𝑑×(𝑠−𝑑), 𝑥

1
∈ 𝑅
𝑝, 𝑥
2

∈ 𝑅
𝑑,

𝑥
3
∈ 𝑅
𝑛−𝑝−𝑑, 𝑢

1
∈ 𝑅
𝑠−𝑑, and 𝑢

2
∈ 𝑅
𝑟+𝑑−𝑠; then the system (1)

is restricted system equivalent (r.s.e.) to the following system:

�̇�
1
= 𝐴
11
𝑥
1
+ 𝐴
122

𝑥
3
+ 𝐵
12
𝑢
2
, 𝑥

1
(0) = 𝑀

11
𝑥
0
,

𝑥
2
= 𝐴
21
𝑥
1
− 𝐵
212

𝑢
2
,

𝑢
1
= 𝐴
31
𝑥
1
,

(12)

where𝐴
11

= 𝐴
11
−𝐴
121

𝐴
211

+𝐴
121

𝐵
211

𝐴
2121

−𝐵
11
𝐴
2121

,𝐵
12

=

𝐵
12

− 𝐴
121

𝐵
212

, 𝐴
21

= 𝐵
211

𝐴
2121

− 𝐴
211

, and 𝐴
31

= −𝐴
2121

.
In the system (12), the state variables 𝑥

1
, 𝑥
2
and input

variable 𝑢
1
are determined uniquely by 𝑥

3
and 𝑢

2
. Thus the

state variable 𝑥
3
is free and the input variable 𝑢

1
is not free.

We call 𝑥
3
the free state and 𝑢

1
the forced input. Accordingly,

𝑥
1
and 𝑥

2
are called restricted state and 𝑢

2
is called free input.

When𝐵
12

= 0 and𝐵
212

= 0, system (12) has a unique solution
if and only if 𝐴

122
= 0 or the dimension of 𝑥

3
is zero.

A system is usually required to have a unique solution
when it is handled. The following lemma establishes a neces-
sary and sufficient condition for the uniqueness of solutions
of system (1).

Lemma 3. System (1) with 𝐵 = 0 has a unique solution if and
only if

rank [
0 𝐸

𝐸 𝐴
] = rank [

𝐸

𝐴
] + rank𝐸 (13)

or

rank [
0 𝐸

𝐸 𝐴
] = 𝑛 + rank𝐸. (14)

In the following discussions, we always assume that (13)
or (14) holds; that is, we consider the control problem of the
following system:

�̇�
1
= 𝐴
11
𝑥
1
+ 𝐵
12
𝑢
2
, 𝑥

1
(0) = 𝑀

11
𝑥
0
,

𝑥
2
= 𝐴
21
𝑥
1
− 𝐵
212

𝑢
2
,

𝑢
1
= 𝐴
31
𝑥
1
.

(15)

We have the following two conclusions about the input of
system (1).

Lemma 4. System (1) has no forced input if and only if

rank [
0 𝐸

𝐸 𝐴
] = rank [

0 𝐸 0

𝐸 𝐴 𝐵
] . (16)

Lemma 5. If the equality

rank [
0 𝐸 0

𝐸 𝐴 𝐵
] = 𝑟 + rank [

0 𝐸

𝐸 𝐴
] (17)

holds, then system (1) has no free input.

It is meaningless to design the controller for a system
without free input. In the following discussions, we always
assume that (17) does not hold; that is, the system (1) satisfies
that

rank [
0 𝐸 0

𝐸 𝐴 𝐵
] < 𝑟 + rank [

0 𝐸

𝐸 𝐴
] . (18)

Denote

𝑃
1
= 𝑁
12
𝑁
21
𝑀
21
𝑀
12
,

𝑃
2
= 𝑁
31
𝑀
31
𝑀
22
𝑀
12
,

𝑃
3
= [𝑃
31
, 𝑃
32
, 𝑃
33
]

= [
𝑁
11

− 𝑃
1
𝐴𝑁
11

+ 𝑃
1
𝐵𝑃
2
𝐴𝑁
11

𝑁
12
𝑁
22

−𝑃
1
𝐵𝑁
32

−𝑃
2
𝐴𝑁
11

0 𝑁
32

] ,

𝑁
4
=

[
[
[
[
[
[

[

𝐼
𝑝

0 0

𝐴
21

0 −𝐵
212

0 𝐼
𝑛−𝑝−𝑑

0

𝐴
31

0 0

0 0 𝐼
𝑟+𝑑−𝑠

]
]
]
]
]
]

]

,

(19)

and 𝑄 = (𝑄
𝑖𝑗
)
3×3

= 𝑃
𝑇

3
𝑄𝑃
3
, where 𝑄

11
∈ 𝑅
𝑝×𝑝, 𝑄

22
∈

𝑅
(𝑛−𝑝−𝑑)×(𝑛−𝑝−𝑑), and 𝑄

33
∈ 𝑅
(𝑟+𝑑−𝑠)×(𝑟+𝑑−𝑠); then 𝑃

3
= 𝑁𝑁

4

and the quadratic cost corresponding to system (15) is

𝐽
1
(𝑢
2
, 𝑥
1
, 𝑥
3
)

= ∫

∞

0

[𝑥
𝑇

1
, 𝑥
𝑇

3
, 𝑢
𝑇

2
]𝑁
𝑇

4
𝑁
𝑇

𝑄𝑁𝑁
4
[𝑥
𝑇

1
, 𝑥
𝑇

3
, 𝑢
𝑇

2
]
𝑇

𝑑𝑡,

= ∫

∞

0

(𝑥
𝑇

1
𝑄
11
𝑥
1
+ 𝑥
𝑇

3
𝑄
22
𝑥
3
+ 𝑢
𝑇

2
𝑄
33
𝑢
2

+2𝑥
𝑇

1
𝑄
12
𝑥
3
+ 2𝑥
𝑇

1
𝑄
13
𝑢
2
+ 2𝑥
𝑇

3
𝑄
23
𝑢
2
) 𝑑𝑡.

(20)

Theorem 6. If there exist matrices 𝑀
11

∈ 𝑅
𝑝×𝑚, 𝑀

12
∈

𝑅
(𝑚−𝑝)×𝑚, 𝑀

21
∈ 𝑅
𝑑×(𝑚−𝑝), 𝑀

22
∈ 𝑅
(𝑚−𝑝−𝑑)×(𝑚−𝑝), 𝑀

31
∈

𝑅
(𝑠−𝑑)×(𝑚−𝑛), 𝑁

11
∈ 𝑅
𝑛×𝑝, 𝑁

12
∈ 𝑅
𝑛×(𝑛−𝑝), 𝑁

21
∈ 𝑅
(𝑛−𝑝)×𝑑,

𝑁
22

∈ 𝑅
(𝑛−𝑝)×(𝑛−𝑝−𝑑), 𝑁

31
∈ 𝑅
𝑟×(𝑝+𝑠−𝑛), and 𝑁

32
∈ 𝑅
𝑟×(𝑛+𝑟−𝑝−𝑠)

satisfying the following

(1) 𝑀
11
, 𝑀
12
, 𝑀
21
, 𝑀
22
, and 𝑀

31
have full row rank and

𝑁
11
, 𝑁
12
, 𝑁
21
, 𝑁
22
, 𝑁
31
, and 𝑁

32
have full column

rank,
(2) 𝑀

11
𝐸𝑁
11

= 𝐼
𝑝
,𝑀
12
𝐸 = 0, 𝐸𝑁

12
= 0,𝑀

22
𝑀
12
𝐴𝑁
12

=

0,𝑀
31
𝑀
22
𝑀
12
𝐵𝑁
31

= 𝐼
𝑝+𝑠−𝑛

,𝑀
21
𝑀
12
𝐴𝑁
12
𝑁
21

= 𝐼
𝑑
,

𝑀
12
𝐴𝑁
12
𝑁
22

= 0, 𝑀
22
𝑀
12
𝐵𝑁
32

= 0,
(3) 𝑀

11
(𝐵 − 𝐴𝑃

1
𝐵)𝑁
32

̸= 0,
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(4) 𝑃
𝑇

32
𝑄𝑃
3
= 0,

(5) 𝑃
𝑇

33
𝑄𝑃
33

> 0,

(6) [𝑃
31
, 𝑃
33
]
𝑇

𝑄[𝑃
31
, 𝑃
33
] ≥ 0,

then problem P can be transformed to a regular LQ problem of
the standard state space system.

Proof. When 𝑃
𝑇

32
𝑄𝑃
3
= 0 holds, 𝑄

12
= 0, 𝑄

22
= 0, and 𝑄

23
=

0, and the quadratic cost is

𝐽
2
(𝑢
2
, 𝑥
1
) = ∫

∞

0

(𝑥
𝑇

1
𝑄
11
𝑥
1
+ 2𝑥
𝑇

1
𝑄
13
𝑢
2
+ 𝑢
𝑇

2
𝑄
33
𝑢
2
) 𝑑𝑡,

= ∫

∞

0

[𝑥
𝑇

1
, 𝑢
𝑇

2
] [𝑃
31
, 𝑃
33
]
𝑇

𝑄 [𝑃
31
, 𝑃
33
] [𝑥
𝑇

1
, 𝑢
𝑇

2
]
𝑇

𝑑𝑡.

(21)

Therefore, when [𝑃
31
, 𝑃
33
]
𝑇

𝑄[𝑃
31
, 𝑃
33
] ≥ 0, the weighted

matrix of 𝑥
1
and 𝑢

2
in the objective function is semidefinite-

positive. 𝑃
𝑇

33
𝑄𝑃
33

> 0 ensures that the optimal control
problem of system (15) with cost (21) is a regular LQ problem.
In addition, 𝑀

11
(𝐵 − 𝐴𝑃

1
𝐵)𝑁
32

̸= 0, which is equivalent to
𝐵
12

̸= 0, constitutes the necessary and sufficient condition of
existing free input in system (15) with (18).

When the conditions inTheorem 6 are satisfied, let

𝑢
2
= 𝑢
2
+ 𝑄
−1

33
𝑄
𝑇

13
𝑥
1
, (22)

and then system (15) can be written as

�̇�
1
= 𝐴
11
𝑥
1
+ 𝐵
12
𝑢
2
, 𝑥

1
(0) = 𝑀

11
𝑥
0

𝑥
2
= 𝐴
21
𝑥
1
− 𝐵
212

𝑢
2

𝑢
1
= 𝐴
31
𝑥
1

(23)

and the corresponding quadratic cost is

𝐽
3
(𝑢
2
, 𝑥
1
) = ∫

∞

0

(𝑥
𝑇

1
𝑄
11
𝑥
1
+ 𝑢
𝑇

2
𝑄
33
𝑢
2
) 𝑑𝑡, (24)

where 𝐴
11

= 𝐴
11

− 𝐵
12
𝑄
−1

33
𝑄
𝑇

13
, 𝐴
21

= 𝐴
21

+ 𝐵
212

𝑄
−1

33
𝑄
𝑇

13
, and

𝑄
11

= 𝑄
11

− 𝑄
13
𝑄
−1

33
𝑄
𝑇

13
.

We denote P
1
as the optimal control problem of system

(23) with cost (24) and define the set of admissible control-
state pairs of problem P

1
as

Ω
1

={(𝑢
1
, 𝑢
2
, 𝑥
1
, 𝑥
2
) | (𝑢
1
, 𝑢
2
, 𝑥
1
, 𝑥
2
) is piecewise continuous ,

satisfies (23) and 𝐽3 (𝑢2, 𝑥1)
 < ∞} .

(25)

According to the definition of an equivalent relation of the
two optimal control problems [12], problem P is equivalent
to problem P

1
. Obviously, P

1
is an optimal problem of the

standard state space system.

3. Design of the State Feedback Controller

In this section, we solve the problem P via solving P
1
.

Before further discussion, we first give two lemmas.

Lemma 7. The pair (𝐴
11
, 𝐵
12
) is stabilizable if and only if

rank [𝜆𝐸 − 𝐴, 𝐵] = rank [
0 𝐸 0

𝐸 𝐴 𝐵
] − rank𝐸, ∀𝜆,R𝜆 ≥ 0.

(26)

Proof. Denote

𝑀 =
[
[
[

[

𝐼
𝑝

−𝐴
121

−𝐵
11

0

0 𝐼
𝑑

−𝐵
211

0

0 0 𝐼
𝑠−𝑑

0

0 0 0 𝐼
𝑚−𝑝−𝑠

]
]
]

]

[
𝐼
𝑝+𝑑

0

0 𝑀
3

] [
𝐼
𝑝

0

0 𝑀
2

]𝑀
1
;

(27)

then

𝑀[𝐴, 𝐵]𝑁 =
[
[
[

[

𝐴
11

0 0 0 𝐵
12

−𝐴
21

𝐼
𝑑

0 0 𝐵
212

𝐴
2121

0 0 𝐼
𝑠−𝑑

0

0 0 0 0 0

]
]
]

]

. (28)

The pair (𝐴
11
, 𝐵
12
) is stabilizable if and only if

rank [𝜆𝐼 − 𝐴
11
, 𝐵
12
] = 𝑝, ∀𝜆,R𝜆 ≥ 0; (29)

that is

rank [𝜆𝐼 − 𝐴
11
, 𝐵
12
] = 𝑝, ∀𝜆,R𝜆 ≥ 0, (30)

which is equivalent to (26) from (28).

Denote 𝑄 = [𝑄
1
, 𝑄
2
], where 𝑄

1
∈ 𝑅
(𝑛+𝑟)×𝑛, 𝑄

2
∈ 𝑅
(𝑛+𝑟)×𝑟.

Lemma8. When the conditions inTheorem 6 are satisfied, the
pair (𝐴

11
, 𝑄
11
) is detectable if and only if

rank [
𝐴 − 𝜆𝐸 𝐵

𝑃
𝑇

3
𝑄
1

𝑃
𝑇

3
𝑄
2

] = 𝑛 + 𝑟, ∀𝜆,R𝜆 ≥ 0. (31)

Proof. Denote 𝑄 = [𝑄
1
, 𝑄
2
, 𝑄
3
, 𝑄
4
, 𝑄
5
] = 𝑁

𝑇

𝑄𝑁, where
𝑄
1

∈ 𝑅
(𝑛+𝑟)×𝑝, 𝑄

2
∈ 𝑅
(𝑛+𝑟)×𝑑, 𝑄

3
∈ 𝑅
(𝑛+𝑟)×(𝑛−𝑝−𝑑), 𝑄

4
∈

𝑅
(𝑛+𝑟)×(𝑠−𝑑), and 𝑄

5
∈ 𝑅
(𝑛+𝑟)×(𝑟+𝑑−𝑠); then 𝑄 = 𝑁

𝑇

4
𝑄𝑁
4
and

𝑁
𝑇

4
𝑄
3
= 𝑃
𝑇

3
𝑄
1
𝑁
12
𝑁
22

= 0.
The pair (𝐴

11
, 𝑄
11
) is detectable if and only if

rank [
𝐴
11

− 𝜆𝐼
𝑝

𝑄
11

] = 𝑝, ∀𝜆,R𝜆 ≥ 0 (32)

which is equivalent to

rank[
[

[

𝐴
11

− 𝜆𝐼
𝑝

𝐵
12

𝑄
11

𝑄
13

𝑄
𝑇

13
𝑄
33

]
]

]

= 𝑛 + 𝑟 − 𝑠, ∀𝜆,R𝜆 ≥ 0; (33)
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that is,

rank
[
[
[
[

[

𝐴
11

− 𝜆𝐼
𝑝

𝐴
121

𝐵
11

𝐵
12

𝐴
211

𝐼
𝑑

𝐵
211

𝐵
212

𝐴
2121

0 𝐼
𝑠−𝑑

0

𝑁
𝑇

4
𝑄
1

𝑁
𝑇

4
𝑄
2

𝑁
𝑇

4
𝑄
4

𝑁
𝑇

4
𝑄
5

]
]
]
]

]

= 𝑛 + 𝑟,

∀𝜆,R𝜆 ≥ 0.

(34)

An easy computation shows that the above equality is
equivalent to (31).

Definition 9 (see [6]). The finite 𝜆𝑠 satisfying det(𝜆𝐸−𝐴) = 0

are called finite poles for the singular system 𝐸�̇� = 𝐴𝑥.

In the following, we give the conclusion concerning
problem P.

Theorem 10. Assume the conditions inTheorem 6 are satisfied
and the rank equalities (26) and (31) hold; then problem P has
a unique optimal control-state pair and the optimal control can
be synthesized as state feedback. The finite poles of closed-loop
system all are located on the left-half complex plane and the
optimal value is 𝐽

∗

= 𝑥
𝑇

0
𝑀
𝑇

11
𝑃𝑀
11
𝑥
0
, where 𝑃 is the unique

semidefinite-positive solution of the Riccati equation

𝑃𝐴
11

+ 𝐴
𝑇

11
𝑃 − 𝑃𝐵

12
𝑄
−1

33
𝐵
𝑇

12
𝑃 + 𝑄

11
= 0. (35)

Proof. Since the pair (𝐴
11
, 𝐵
12
) is stabilizable and the pair

(𝐴
11
, 𝑄
11
) is detectable, Riccati equation (35) has a unique

semidefinite-positive 𝑃 and the eigenvalues of matrix 𝐴
11

−

𝐵
12
𝑄
−1

33
𝐵
𝑇

12
𝑃 are located on the left-half complex plane.

According to Maximum Principle, the unique optimal
control-state pair (𝑢

∗

1
, 𝑢
∗

2
, 𝑥
∗

1
, 𝑥
∗

2
) of the optimal control

problem of system (23) with cost (24) is

[
[
[

[

𝑥
∗

1

𝑥
∗

2

𝑢
∗

1

𝑢
∗

2

]
]
]

]

=

[
[
[
[
[

[

𝐼
𝑝

𝐴
21

+ 𝐵
212

𝑄
−1

33
𝐵
𝑇

12
𝑃

𝐴
31

−𝑄
−1

33
𝐵
𝑇

12
𝑃

]
]
]
]
]

]

𝑥
∗

1
, (36)

and the optimal value is 𝐽∗ = 𝑥
𝑇

0
𝑀
𝑇

11
𝑃𝑀
11
𝑥
0
, where 𝑥

∗

1
is the

solution of equation

�̇�
1
= (𝐴
11

− 𝐵
12
𝑄
−1

33
𝐵
𝑇

12
𝑃)𝑥
1
, 𝑥

1
(0) = 𝑀

11
𝑥
0
. (37)

It follows from (11) and (22) that the unique optimal
control-state pair (𝑢∗, 𝑥∗) of problem P is

[
𝑥
∗

𝑢
∗] = 𝑁

[
[
[
[
[
[

[

𝐼
𝑝

𝐴
21

+ 𝐵
212

𝑄
−1

33
𝐵
𝑇

12
𝑃

𝐴
31

−𝑄
−1

33
(𝑄
𝑇

13
+ 𝐵
𝑇

12
𝑃)

]
]
]
]
]
]

]

𝑥
∗

1
(38)

and the optimal closed-loop system is

𝐸�̇�
∗

= (𝐴 + 𝐵𝑁
3
[

𝐴
31

−𝑄
−1

33
(𝑄
𝑇

13
+ 𝐵
𝑇

12
𝑃)

] [𝐼
𝑝
, 0]𝑁

−1

1
)𝑥
∗

.

(39)

An easy computation shows that the finite poles of
optimal closed-loop system (39) and the eigenvalues of
matrix 𝐴

11
− 𝐵
12
𝑄
−1

33
𝐵
𝑇

12
𝑃 are the same. Therefore, the finite

eigenvalues of closed-loop system all are located on the left-
half complex plane.

4. A Simulation Example

In this section, we give a simple example to illuminate the
design method of state feedback controller and demonstrate
its feasibility.

Consider the irregular singular system (1) with quadratic
cost (2), where

𝐸 =

[
[
[
[
[

[

3 1 2 2

0 2 1 1

0 2 1 1

1 3 2 2

1 1 1 1

]
]
]
]
]

]

, 𝐴 =

[
[
[
[
[

[

1 0 2 5

5 4 3 1

2 3 6 4

4 6 6 2

1 5 4 5

]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[

[

3 1 6

6 2 6

3 5 4

3 1 5

5 2 4

]
]
]
]
]

]

, 𝑥
0
=

[
[
[
[
[

[

−1

1

1

1

0

]
]
]
]
]

]

,

𝑄 =

[
[
[
[
[
[
[
[
[

[

3 2 1 2 1 3 2

2 4 0 0 −2 2 −1

1 0 2 −2 2 0 −1

2 0 −2 4 −1 −1 −1

1 −2 2 −1 5 −2 −1

3 2 0 −1 −2 4 −2

2 −1 −1 −1 −1 −2 1

]
]
]
]
]
]
]
]
]

]

.

(40)

Obviously, 𝑝 = 2, 𝑑 = 2, and 𝑠 = 3 and the eigenvalues of
𝑄 are −4.0310, 0.3589, 2.0810, 3.1335, 5.2966, 6.6965, 9.4645.
Let

𝑀
1
=

[
[
[
[
[

[

0 −0.5 0 0 1

0 0.5 0 0 0

0 −1 1 0 0

0 −1 0 1 −1

1 1 0 0 − 3

]
]
]
]
]

]

;

𝑁
1
=

[
[
[

[

1 0 −0.5 −0.5

0 1 −0.5 −0.5

0 0 1 0

0 0 0 1

]
]
]

]

,

𝑀
2
=

[
[
[
[

[

0.2 0 0

0.1 −
1

3
0

0.8 −
2

3
1

]
]
]
]

]

, 𝑁
21

= [
1 −1

0 1
] ,

𝑀
3
= −

15

46
, 𝑁

3
=

[
[
[

[

1
21

46

13

23

0 1 0

0 0 1

]
]
]

]

,

(41)
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Figure 1: Curves of optimal control-state pair.

then the system (1) is r.s.e. to the following system:

�̇�
1
= [

−0.3154 1.9837

0.2826 5.2320
] 𝑥
1
+ [

−3.4185 −2.1848

4.9946 6.9457
] 𝑢
2
,

𝑥
1
(0) = [

−0.5

0.5
]

𝑥
2
= [

0.5526 0.5796

0.3102 −0.5298
] 𝑥
1
− [

0.3261 −0.7391

2.3804 2.8043
] 𝑢
2

𝑢
1
= [0.6304, −3.1957] 𝑥

1

(42)

and the corresponding quadratic cost is

𝐽
1
(𝑢
2
, 𝑥
1
) = ∫

∞

0

(𝑥
𝑇

1
[

1.8721 −4.4330

−4.4330 28.3724
] 𝑥
1

+𝑢
𝑇

2
[
65.4607 77.0631

77.0631 110.1961
] 𝑢
2
)𝑑𝑡

(43)

under the transformations (11) and (22).
The unique positive semidefinite solution of Riccati equa-

tion (35) is

𝑃 = [
1.8835 2.0224

2.0224 28.1168
] , (44)

the optimal performance index is 𝐽
∗

= 6.4889, and the
simulation results are displayed in Figure 1.

5. Conclusion

In this paper the indefinite LQ problem for irregular singular
systems has been investigated. By restricted system equiv-
alence transformation, we transformed the indefinite LQ

problem for irregular singular systems to the regular LQ
problem for standard state space systems. System state was
decomposed into free state and restricted state and input
was decomposed into free input and forced input. Based on
optimization theory for standard state space systems, we have
derived optimal control-state pair by solving an algebraic
Riccati equation and the optimal control was synthesized as
state feedback under some general conditions.Thefinite poles
of closed-loop system are all located on the left-half complex
plane.

However, there are many problems unsolved about the
indefinite LQ problem of the irregular singular systems. For
example, in this paper the effect of external disturbances
on the system has not been involved. More importantly, in
the controller design, we need to solve an algebraic Riccati
equation, which is still a challenge. Therefore, we think that
the significance of the paper exists in theory more than in
practice.
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