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The vulnerability of complex systems induced by cascade failures revealed the comprehensive interaction of dynamics with network
structure. The effect on cascade failures induced by cluster structure was investigated on three networks, small-world, scale-free,
and module networks, of which the clustering coefficient is controllable by the random walk method. After analyzing the shifting
process of load, we found that the betweenness centrality and the cluster structure play an important role in cascading model.
Focusing on this point, properties of cascading failures were studied on model networks with adjustable clustering coefficient and
fixed degree distribution. In the proposed weighting strategy, the path length of an edge is designed as the product of the clustering
coefficient of its end nodes, and then the modified betweenness centrality of the edge is calculated and applied in cascade model as
its weights. The optimal region of the weighting scheme and the size of the survival components were investigated by simulating
the edge removing attack, under the rule of local redistribution based on edge weights. We found that the weighting scheme based
on the modified betweenness centrality makes all three networks have better robustness against edge attack than the one based on
the original betweenness centrality.

1. Introduction

Cascading failure, whether caused by components broken
or congestion failure, is a pervasive and prevalent topic in
research fields known as power grid, wireless sensor networks
(WSN), and Internet ofThings (IOT). Accordingly, networks
should be elaborately designed to alleviate the losses induced
by random failure or intentional attack. If it were otherwise,
the depth of the breakdown would catch us off guard, just
like the large blackouts in the history of the United States
[1]. All the above, together with the increasing complexity of
the future interconnected networks, make cascading failure a
classical topic in network community.

Eliminating the cascading failures of network is a hard
work because of the gap between theoretical research and
the practice. Previous researches have achieved methods
to deal with some problems in corresponding fields. The
CASCADE models based on load redistribution [2–4], the
deterministic models [5, 6], and probabilistic analytical
models [7–9] are three major methodologies in the study

of cascade failures. CASCADE models are widely used in
many fields. Using the local weighted flow redistribution
rule, a novel edge weighting scheme based on betweenness
centrality has been proposed to enhance the robustness of the
northern American power grid, the Internet in the level of
autonomous system, the railway network of Europe, and the
United States airports network [4]. Starting from percolation
model, the authors in [10] investigated first-order and second-
order transitions dynamics of the shifting load once cascading
failure takes place. Also cascade in vehicle ad hoc networks
caused by congestion received wide concern. A failure-aware
framework is proposed for handling cascade failures breaking
out among vertices which depend on cascade suppression to
reduce communication cost [11].

The vulnerability of the power grid is inherent to its prop-
erties of the underlying network structure. Based on the anal-
ysis of network structure, the ultravoltage power transmission
network of Iran displays a small-world characteristic with
exponential degree distribution, which is vulnerable against
random and target attacks [12]. The relationship between
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critical load and topology structure is studied on scale-free
wireless sensor networks with the one-node random attack
model. A conclusion they drew is that robust stability of
wireless sensor networks is closely bound up with the degree
distribution, clustering coefficient, and the level of scale-free
property of the network [13, 14].

Related studies have shown that cluster structure is a
common phenomenon that exists in many real-world net-
works. Previous works concerning cluster structure in cas-
cade model mainly focus on the clustering coefficient of
vertices, while the role of intercluster links and the connec-
tivity between clusters have not been explored widely in this
topic. We are thus led to find a way to solve this problem.
In our work, these two ingredients mentioned above were
considered as follows: first, the nodal clustering coefficient
is used to capture the cluster structure, to distinguish the
intracluster links from the intercluster links; second, the
measurement of betweenness centrality is used to achieve the
importance sequencing of the edges, which is designed for
capturing the nature of the load shifting between the failed
edge and its neighbors. In our cascade model, two steps are
used to achieve these two goals: first, edges are weighted
according to the product of clustering coefficient of their end
nodes, and the betweenness centrality of each edge is cal-
culated and applied as the final weight; second, the local
redistribution rule according to that final weight is carried on
for the cascade dynamics. In this way, the load and the
capacity of the intercluster edges are scaled up, and the load
and the capacity of the intracluster edges are scaled down
for keeping the weights sum to one. What is more, by using
clustering coefficient instead of nodal degree, our weighting
scheme not only detects the trap region built by the nodes
that possess larger degree but also finds the trap created by
the dense array of triangle forms. The details of the cascade
failures triggered by the latter kind of the trap are presented
in the next section.

There are mainly two kinds of attack mode in cascade
dynamics: node removing attack and edge removing attack.
Researches focused on node attack have explored the node
weighting schemebased on the degree, cluster coefficient, and
betweenness centrality of node [15, 16]. And the edge weight-
ing strategies based on betweenness centrality of edge, the
production of degree, or betweenness centrality of end nodes
in edge attackmodel have alsomade important contributions
to the advancement of network robustness study [2–4]. In
our scheme, edge is weighted by its modified betweenness
centrality which results from solving the number of shortest
paths in weighted matrix whose element is the production of
clustering coefficients of its end nodes. To the limit of our
reading, we have not found the same weighting strategy in
previous researches.

2. Method

In this section, first, we discuss the importance sequence of
edgeswhich are neighbors of one broken edge, in load shifting
process. We start from the analysis of electric resistance

networks and draw a conclusion that the betweenness cen-
trality of edge is a reasonable and practicable measurement
to capture the priority ranking of shifting flows in complex
networks. Then, we focus on the trap area built by triangle
structure and show that cluster structure is an important
ingredient to be considered in cascademodel. At last, we pro-
pose a weighting scheme which combined the betweenness
centrality with cluster structure tactfully.

Data and research reports from power grid blackout and
congestion cascading suggested that the weighted scheme
and flow redistributed rules based on edges are reason-
able and practical model in cascading failures [3, 8]. We
assume that a weighted network with 𝑛 nodes is denoted by
𝐺(𝑉, 𝐸, 𝐴), where𝑉 is the set of 𝑛 nodes, 𝐸 is the set of edges,
and 𝐴 is the adjacency matrix. Based on the capacity model,
we denote the weights on edge (𝑖, 𝑗) by 𝜔

𝑖𝑗
; then we have the

load factor on each node and the distribution matrix 𝑄 as
follows:

𝑃
𝑖
= ∑

𝑗

𝜔
𝑖𝑗

(𝑖, 𝑗) ∈ 𝐸,

𝑄
𝑖𝑗
=

𝜔
𝑖𝑗

𝑃
𝑖

.

(1)

Let us consider the Laplace matrix 𝐿 of 𝑄; then we have

𝐿
𝑇
𝑥 = 0. (2)

Since (2) has the same formasKirchhoff circuit law, we can
conclude that edge weights in our weighting scheme have the
samemeaning as conductance in electric resistance networks.
While 𝑥

𝑖
equals the charge in node 𝑖, 𝑥/𝑃

𝑖
is its voltage.

From the above analyses, we can extend the rich results
from electric resistance networks to our edge-weighted cas-
cade model. Let us consider the situation where one edge
failed in the graph; then the load shifted to other edges can
be denoted by Δ𝐼, due to the substitution theorem in circuits;
then the Kirchhoff equation in node 𝑖 is as follows:

(𝑢
𝑖
+ Δ𝑢
𝑖
) 𝑌
𝑖
− ∑

𝑗

(𝑢
𝑗
+ Δ𝑢
𝑗
) 𝑌
𝑖𝑗
= Δ𝐼 + ∑

𝑖

𝐼
𝑖
, (3)

where 𝑌
𝑖
is the self-conductance, 𝑌

𝑖𝑗
is the mutual conduc-

tance, and 𝐼
𝑖
are current source to be injected and extracted

in node 𝑖. Combined with (2), we have

𝑥
𝑖
+ Δ𝑥
𝑖
− ∑

𝑗

(𝑥
𝑗
+ Δ𝑥
𝑗
)

𝜔
𝑖𝑗

𝑃
󸀠

𝑗

= Δ𝐼 + ∑

𝑖

𝐼
𝑖
. (4)

From (4), we can conclude that when the link (𝑖, 𝑘) fails
and if edge (𝑖, 𝑗) is in the path from 𝑖 to 𝑘, then the voltage
difference changing between node 𝑖 and node 𝑗 and the load
shifted to edge (𝑖, 𝑗) are only determined by the network
topology and edge weights; that means that the distribution
law of the load depends on the effective resistance of each
path. The effective resistance is an important parameter in
the study of power grid cascade failures, which is denoted
as the potential difference between the nodes 𝑖 and 𝑗 at a
unit current. Though the effective resistance calculated by
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Figure 1: A simple example of trap area built by triangle form structure.

using theMoore-Penrose pseudoinverse of Laplacian𝐿 is suc-
cessfully applied in voltage stability in electronic networks,
its approximate form combined with other physical factors is
more applicable to capture the nature of load shifting process
in other complex networks, such as WSN, vehicle ad hoc
networks, and IOT networks. For example, in transportation
network, a shift in passenger traffic mainly occurs in the first
and second shortest alternative routes and rarely in all other
alternative routes. Also in power grid, safety device and the
disconnecting protective behavior made by safety supervisor
limit the shifting flows to limited lines, not upon global area.
So, it is necessary for designers to find themost suitable edges
for bearing the shifting loads.

Following Jorgensen and Pearse [17] and Xiao and Gut-
man [18], we used some results from electric resistance
networks to guide our work on cascade models. Jorgensen
and Pearse found that the effective resistance 𝑅

𝑖𝑗
is bounded

above by the shortest path distance between 𝑖 and 𝑗, and Xiao
and Gutman found that the 𝑅

𝑖𝑗
is equal to the commute times

of random walk between two nodes. While the definition of
random walk has the same meaning as one assumption in
our cascademodels, that is, there are directed and distributed
currents in each pair of nodes in the graph, unit injection
current in source node 𝑖 and unit extraction current in sink
node 𝑗, then all the above conclusions remind us of the
betweenness centrality in graph theory.

Betweenness centrality of an edge indicates the centrality
of an edge in systemwhich ismore accurate than connectivity
to some degree in the sense that the former captures much
more dynamic characteristics of the load shifting process
than the latter. Betweenness centrality of an edge applied in
many research fields, including transport, biology, and social
networks, is defined as the amount of shortest paths from all
nodes to all others which pass through the given edge. From
the viewpoint of cascade model, the betweenness centrality
reveals the priority of the edge for bearing the shifting load.
So, the problem is, which kind of network structure should

be considered to modify the original betweenness centrality
in a general cascade model.

Clustering coefficient is used to quantify the degree of
clustering of vertices in a network in graph theory. A vertex’s
clustering coefficient is equal to the ratio of the number
of edges that exist in its neighborhoods and the maximum
number of edges that could possibly exist among them.

Figure 1 shows a simple example of trap region built by
triangle form structure. Figures 1(a) and 1(b) have almost the
same structure except for the connected relation made by
edge 4. In Figure 1(a) there is a triangle form built by edges 2,
3, and 4.We start the sandbox analogy by setting edges 1 and 5
which are failed under attack at the beginning. Then the load
shift to their neighbor edges and the flows are represented by
dash lines with arrow. At this moment, edge 2 is in a high risk
level to be overloaded, and another three edges are in low risk
level. Let us assume that edge 2 fails under the overloaded
stress; then its load shifts to the neighbor edges of its two end
nodes. The shifting flows in this moment are represented by
dash and dot lines with arrow. Edges 3 and 4 are in the same
high risk level in here. Until now, Figures 1(a) and 1(b) still
have no difference in risk of global cascade failures. However,
if edge 3 or 4 is failed under the stress of overload in this
moment, there are great differences in dynamics between two
graphs. In Figure 1(a), edges in the top left area are in high risk
level of overload, and the possibility of global cascade failure
is high, while in Figure 1(b) edges in the top left area such as
6, 7, 8, and even 4 (if the broken edge is 3) are still in low risk
level.

From the above analysis, we can draw a conclusion that
edges with higher product of clustering coefficient of its end
nodes tend to form a trap area. Once an edge in this area
fails, its load is hardly redistributed to the neighbor area but is
accumulated in some edges within the area, just like the heat
trapped in the limit space rather than diffusing outwards.The
accumulation increases the risk of cascade failures upon the
whole area.
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Table 1: Correlation between 𝐵
𝑖𝑗
and 𝐶

𝑖
𝐶
𝑗
in some real-world

network.

Network 𝑁 𝑘
Clustering
coefficient

Correlation
between 𝐵

𝑖𝑗
and

𝐶
𝑖
𝐶
𝑗

Power grid 4941 2.67 0.0801 0.292
Neural network 297 15.8 0.2523 0.438
Facebook 4039 43.7 0.606 0.465

For improving the robust performance of the network
and capturing the importance sequence of edges in load
shifting process which depends on the betweenness centrality
measurement, our weighting scheme is designed by combin-
ing the clustering coefficient and betweenness centrality as
follows: we calculate the betweenness centrality by using the
product of the clustering coefficient as the edge weights. This
calculating results in decrease of the betweenness centrality of
the edges located in trap area, because of the bigger weights
they own, and increase of the betweenness centrality of the
edges outside the trap area. It should be noted that the original
betweenness centrality in graph theory is the number of
shortest paths passing through the edge, with all edge weights
being set to unit one. So, our weighting scheme enables the
edges which connect the trap area with its neighbor areas
to bear more redistributed load, thus reducing the risk of
cascade failures occurring in a closed structure.

Cluster structure is pervasive in both real-world networks
and model networks, and many of them, such as small-
world network, BA network, and modular network, possess
considerable clustering coefficient. Table 1 shows the corre-
lation between edge betweenness (𝐵

𝑖𝑗
) and the product of

the clustering coefficients of the end nodes (𝐶
𝑖
𝐶
𝑗
) with the

networks ofWestern States Power Grid of northern America,
the neural network of 𝐶. Elegans and Facebook, whose
data can be found in [19, 20]. As shown in Table 1, we can
see that, with the increasing of degree 𝑘, there is positive
correlation between 𝐵

𝑖𝑗
and 𝐶

𝑖
𝐶
𝑗
. However, the correlation

is nonlinear dependence, suggesting the different meaning of
two parameters in real world.

Our strategy discerns edges with different roles through
the product of clustering coefficient of end nodes instead
of the product of degree of end nodes. There are several
points to explain this. The larger value of the product of
clustering coefficient of end nodes indicates that the edge
belongs to highly clustered areas. Compared with themethod
that distinguishes edges via the product of the degree of end
nodes, the proposed strategy can point out the links that play
critical roles in the network without large degree.

The load redistribution in our model obeys the rule
introduced by Wang and Chen [3]. They stipulated that the
flow passing through the failure edge is redistributed to the
links that connected to its end nodes according to their
weight. That means

Δ𝐹
𝑖𝑚

= 𝐹
𝑖𝑗

𝑤
𝑖𝑚

∑
𝑎∈Γ𝑖

𝑤
𝑖𝑎

+ ∑
𝑏∈Γ𝑗

𝑤
𝑖𝑏

, (5)

where 𝑒
𝑖𝑗
denotes the failure link, 𝐹

𝑖𝑗
denotes the load of

𝑒
𝑖𝑗
, 𝑤
𝑖𝑚

denotes the weight of 𝑒
𝑖𝑚
, and Γ

𝑖
and Γ
𝑗
denote the

neighbors of nodes 𝑖 and 𝑗, respectively.
On the other hand, each edge has a maximum capacity

𝐶
𝑖𝑗
which is proportional to its weight (i.e., 𝐶

𝑖𝑗
= 𝑇𝑤

𝑖𝑗
). If

the load of an edge exceeds its capacity, the edge would fail.
Thus, the network has to shift the flow to the survival edges
again and again until no more edges fail. We focus on finding
a minimum 𝑇 which ensures that slight perturbation does
not trigger cascading failure. This minimum 𝑇 is denoted
as critical threshold (𝑇

𝑐
). And the lower the value of 𝑇

𝑐

is, the stronger robustness the network would own against
cascading failures. In order to understand the degree of
cascade, we compute the average number of broken links as
successive failure occurs based on the following formula [4]:

𝑆
𝑁

=

∑
𝑖
∑
𝑗
𝑆
𝑖𝑗

𝐸

, (6)

where 𝑆
𝑖𝑗
denotes the failure size, 𝐸 denotes the total number

of edges in the network, and 𝑆
𝑁

denotes global cascade
degree.

3. Results and Discussion

In this section, we investigate two different weighting strate-
gies in SW and BA networks with population 𝑁 = 1000 and
module networks with population𝑁 = 3000 and community
number 𝑐 = 5.

(1) 𝑤
𝑖𝑗
= (𝐵
∗

𝑖𝑗
)
𝜃, where 𝐵∗

𝑖𝑗
denotes the modified between-

ness centrality of edge 𝑒
𝑖𝑗
which is gotten through

two steps. Firstly, each edge is assigned to an orig-
inal weight according to the product of clustering
coefficient of their end nodes. And then calculate the
betweenness centrality of each edge as its final weight.

(2) 𝑤
𝑖𝑗
= 𝐵
𝑖𝑗

𝜃, where𝐵
𝑖𝑗
denotes the original betweenness

centrality of edge 𝑒
𝑖𝑗
.

A graph with small-world properties is produced by
using the method proposed by Newman and Watts. Initially,
generate a regular ring graph with 𝑁 nodes; each is attached
to𝑚 neighbors,𝑚/2 on each side.Then, remote shortcuts are
added by connecting any pair of remote nodes randomlywith
a probability 𝑝

0
. But the number of edges added in any pair

of nodes is only one at most.
To generate the scale-free and modular networks with

adjustable clustering coefficient, we use the random walk
method which is inspired by the previous research [21, 22].
Construct a completely connected core with 𝑁

0
nodes at

first. Each node is assigned a jump factor according to a
distribution 𝑓(𝑝). Then a node𝑉

0
is randomly selected as the

beginning of random walks. The arrival node after 𝐿 steps is
marked. Beginning from the latest marked node, walk one
step (𝐿 = 1) randomly to reach a new node if 𝑓(𝑝) is 1. And
then connect the new added node with the marked node and
the neighbor chosen. If𝑓(𝑝) is equal to 0, walk 𝐿 steps (𝐿 > 1)

to arrive to a new node 𝑉new. Then connect the new added
node with the marked node and 𝑉new. In the whole process,
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Figure 2: The linear correlation between clustering coefficient and
𝑝.

if 𝐿 = 1, connect the marked node with 𝑉new to generate
a triangle which will change the clustering coefficient of the
network as it is closely related to the number of triangles. If
𝐿 > 1, we will not link two of them. The growing process
and preferential attachment will ensure that we get a scale-
free network finally.

For modular network, our model begins with 𝑐 isolated
cores, and nodes in each core are completely connected.
For each core, one new node is added at each time step.
Meanwhile, each new node will connect to 𝑛 nodes within
the same core and 𝑚 nodes in other cores as well. The value
of𝑚 and 𝑛 depends on the community strength parameter𝑄.
The end node for each new adding edge is chosen according
to the random walk method described above to control the
clustering coefficient.

In this way, we obtain networks with adjustable clustering
coefficient without changing its other properties, as shown
in Figure 2 with population 𝑁 = 3000, mean degree ⟨𝑘⟩ =

6, and 𝑐 = 5. We can see that clustering coefficient has
linear correlation with control factor 𝑝 on BA and module
networks and the community strength 𝑄 in module network
as well, while clustering coefficient in small-world network
has a negative linear correlation with control factor 𝑝.

Firstly, we discuss the optimal value of 𝜃 by analyzing
the change law of the critical threshold 𝑇

𝑐
, and the value

is used for the following simulation to find the optimal
value of 𝑇. Figures 3, 4, and 5 display the simulation of the
correlation between 𝑇

𝑐
and 𝜃 with our proposed weights

scheme, in three networks, respectively. We found that 𝜃 ∈

(0.6, 1) results in optimal 𝑇
𝑐
in different 𝑝 and 𝑘 on three

networks. With the same 𝑝, lines with larger 𝑘 move down
overall in contrast to lines with smaller 𝑘. With the same 𝑘,
the value of 𝑇

𝑐
with larger 𝑝 is larger than 𝑇

𝑐
with smaller

𝑝, especially in regions where 𝜃 ∈ [−1, 0] ∪ [1.5, 2], in
BA and module networks, but not in SW network. Since
capacity minus load is the redundancy of an edge and load
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Figure 3: The critical threshold 𝑇
𝑐
varies with 𝜃 on small-world

network.
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Figure 4: The critical threshold 𝑇
𝑐
varies with 𝜃 on BA network.

time 𝑇 is capacity, we can conclude that the redundancy
of an edge depends on the edge weights. In regions where
𝜃 ∈ [−1, 0] ∪ [1.5, 2], the shifting load is more likely to
be trapped in cluster structure in the former region and
the lower redundancy increases the risk of overload on
intracluster links in the latter region. However, there are only
slight changes with different𝑝 in optimal region, especially in
small-world network. From the above, we can conclude that,
by taking advantage of clustering coefficient and betweenness
centrality, our weighting scheme does well in networks with
clustering structure and heterogeneous distribution of edge
betweenness centrality in regions where 𝜃 ∈ [0.6, 1].

Since the small network we used in our test is constructed
by NW model, the increasing of the value of 𝑝 means that
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there are more shortcuts in graph without rewiring the local
edges. So, the increasing of 𝑝 in SW network elevates the
connectivity of the whole network and decreases the cluster-
ing coefficient. So it is logical to deduce that boosting network
connectivity will get a lower 𝑇

𝑐
, which means a stronger

robustness against cascade failure.
We investigate the size of cascading failure on three net-

works with adjustable clustering coefficient, including small-
world network, scale-free network, and modular network.
Figures 6, 7, and 8 show us the comparison of our weights
scheme based on modified betweenness centrality with the
original one, with varied 𝑇 and fixed 𝜃 = 1. From those
figures we can clearly see that, no matter on what kind of
network, the networks weighted by modified betweenness
centrality possess better robustness against cascading failure.
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threshold 𝑇 on scale-free network with 𝑝 = 0.2 (dashed line) and
𝑝 = 0.4 (solid line), 𝜃 = 1.
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Figure 8: Average size of the removed edges 𝑆
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as a function of the

threshold 𝑇 on module network with 𝑝 = 0.2 (dashed line) and 𝑝 =

0.4 (solid line), 𝜃 = 1.

Meanwhile, all those figures show that the networks weighted
by our weighting strategy have a common property: the
larger the clustering coefficient is, the more rapidly the 𝑆

𝑁

decreases at a given 𝑇. By giving specific focus to the fragile
area of clustering structure, robustness of system is improved
under our weighting strategy. In other words, for a given 𝑇,
a network with higher cluster structure weighted through
our strategy has greater performance improvements to resist
random edge attack.

However, there is another interesting phenomenon: com-
pared with scale-free network and modular network, small-
world network weighted by modified betweenness centrality
does not have distinct advantage. The following point could
demonstrate it. Firstly, for small-world network, the increas-
ing of the value of 𝑝 only increases remote shortcuts but does
little to change the clustering coefficient. This decreases the
effectiveness of our scheme. More importantly, the growing
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of network’s connectivity bears main responsibility for the
discrepancy of lines with different 𝑝. Secondly, unlike small-
world network, scale-free network displays great hetero-
geneity both in nodal degree distribution and in clustering
coefficient which contribute to a steeper decline trend of 𝑆

𝑁
.

The performance gap in suppressing cascades between the
modified and the original weighting schemes is widening
fast with the increasing of 𝑝 when 𝑇 ∈ [1.04, 1.06], and is
gonging to disappearwhen𝑇 ≥ 1.08.The curve of the cascade
size presented a right shift when 𝑝 increased, under both the
original and the modified weighting patterns.The robustness
of themodular network weighted withmodified betweenness
centrality shows rapid changes, as reflected in the increases of
the curves’ steepness in Figure 7. Compared with the scheme
based on original betweenness centrality, the curve of the
weighting scheme based on modified betweenness centrality
declines suddenly when 𝑇 ∈ [1.04, 1.05].

4. Conclusions

In this paper, we investigated the vulnerability induced by
cascaded failures on networks with cluster structure. A num-
ber of artificial networks with adjustable clustering coeffi-
cientswere considered and comparisons between twoweight-
ing schemes on these networks were analyzed. Under the
assumption of the local weighted flow redistribution rule, we
investigated the optimal region and the scale of the removal
component under the edge removal attack. We demonstrate
that the clustering coefficient of the network is an important
property in risk analysis. We found that weighting scheme
based on the modified betweenness centrality had better
robustness than the one based on original betweenness
centrality.We also found that, with the heterogeneity of graph
increasing, our weighting scheme becomes more effective.
The curves of SN imply that the modified weighting scheme
can suppress the cascade dynamics with smaller T, by taking
advantage of the information of clustering coefficient. This
mechanism combined with special conditions, such as large
𝑝 (e.g., 𝑝 = 0.4) on scale-free networks, induced a smoother
slope in the curve of the modified weighting scheme than
that of the original weighting scheme. Results presented
here focused on three widely studied model networks with
small-world or scale-free prosperities, whilemore topological
structure and the role of inter- and intracluster links in
module network could be expected to be explored in the
future study.
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