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Dynamic stress concentration in tunnels and underground structures during earthquakes often leads to serious structural damage.
A series solution of wave equation for dynamic response of underground circular lining tunnels subjected to incident plane P waves
is presented by Fourier-Bessel series expansion method in this paper. The deformation and stress fields of the whole medium of
surrounding rock and tunnel were obtained by solving the equations of seismic wave propagation in an elastic half space. Based
on the assumption of a large circular arc, a series of solutions for dynamic stress were deduced by using a wave function expansion
approach for a circular lining tunnel in an elastic half space rock medium subjected to incident plane P waves. Then, the dynamic
response of the circular lining tunnel was obtained by solving a series of algebraic equations after imposing its boundary conditions
for displacement and stress of the circular lining tunnel. The effects of different factors on circular lining rock tunnels, including
incident frequency, incident angle, buried depth, rock conditions, and lining stiffness, were derived and several application examples
are presented. The results may provide a good reference for studies on the dynamic response and aseismic design of tunnels and
underground structures.

1. Introduction

Large earthquakes (i.e., the Kobe earthquake in Japan, 1995,
the Chi-Chi earthquake in Taiwan, 1999, the Wenchuan
earthquake of magnitude Ms = 8.0 in China, 2008) had
caused a large number of seismic damages of tunnels and
underground structures [1]. This is inconsistent with the
traditional concept [2] that underground structures were less
susceptible to seismic damage during earthquakes because
the seismic acceleration of underground structures was
less than that of structures on the ground surface. The
dynamic response of tunnels and underground structures
during earthquakes is a process of stress wave propagation,
reflection, and interaction. For rock lining tunnels, due to the
similar stiffness between the tunnel lining and the surround-
ing rock medium, it is generally thought that the motion of
tunnel lining will follow that of the surrounding rock, which

means that the interaction between the surrounding rock and
tunnel lining can be ignored. Built on this assumption, the
fluctuation field and stress field of the surrounding rock and
tunnel lining are solved by the wave equation of seismic wave
propagation in an elastic half space rock medium [3].

Theoretical studies on dynamic response and aseismic
design of tunnels and underground structures may be cat-
egorized into numerical methods and analytical methods
[4]. The numerical methods include finite difference, finite
element, and boundary element methods and the analytical
methods are mainly referred to as wave function expansion
method, which are based on the theoretical analysis of elastic
wave scattering and dynamic stress concentration. Although
numerical methods can be used for arbitrary-shaped tunnels,
analytical solutions are still valuable for providing insight into
the formation mechanism of the problems and for checking
accuracies of numerical methods.
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In the 1970s, using the wave function expansion method,
Pao and Mow [5] initiatively studied dynamic stress con-
centration of single cavity in the whole space for incident
elastic plane P waves. Later, Lee et al. [6–9] extended the
solution to half space based on the assumption of large
circular arc and provided the analytical solutions considering
single cavity in half space for incident plane P and SV
waves, which is much more complicated due to the wave
mode conversion.Manoogian and Lee [10] used the weighted
residual method to study the problem of scattering and
diffraction of plane SH-waves by including a different elastic
medium of arbitrary shape in a half plane. Davis et al. [11]
studied the transversal response of underground cylindrical
cavities to incident SV waves and derived analytical solutions
to evaluate the dynamic response of a flexible buried pipe
during the Northridge earthquake. Just recently, Liang et al.
[12–14], Ji et al. [15], and You and Liang [16] investigated
the dynamic stress concentration of a cylindrical lined cavity
in an elastic half space for incident plane P and SV waves
and derived the series solution to study the amplification of
ground surface motion due to underground group cavities
for incident plane P waves. Kouretzis et al. [17] employed
the 3-D shell theory in order to derive analytical expressions
for the distribution along the cross section of axial, hoop,
and shear strains for long cylindrical underground structures
(buried pipelines and tunnels) subjected to seismic shear
wave excitation. Esmaeili et al. [18] used hybrid boundary
and finite element method (FEM) to study the dynamic
response of lined circular tunnel subjected to plane P and
SV harmonic seismic waves. Xu et al. [19] used Fourier-
Bessel series expansion method to deduce a series solution of
wave equation for dynamic response of underground circular
lining tunnels and approximately studied dynamic stress
concentration of lining with some influence factors.

Based on the assumption of a large circular arc, a series
solution of dynamic stress is deduced by using a wave
function expansion approach for a circular lining tunnel
in an elastic half space rock medium subjected to incident
plane P waves. Compared to previous studies, the boundary
conditions of displacement and stress of circular lining tunnel
are updated to adapt different surrounding rock conditions,
computational parameters are reconfigured, and some cases
are analyzed again by using MATLAB program to obtain
more precise results. This paper focuses on the effect of the
dynamic stress response on circular lining rock tunnels with
different factors, including incident frequency, incident angle,
buried depth, rock conditions, and lining stiffness. The aim
and novelty in this paper mainly include that (1) the effect of
low-frequency and high-frequency contents of seismic waves
on the lining is estimated; (2) the most unfavorable seismic
wave incident angle to tunnels is obtained by comparing the
dynamic stress response of the lining subjected to seismic
waves with different incident angle; (3) the effect of buried
depth on the dynamic stress response of the lining in different
surrounding rock conditions is investigated and the depth
boundary where the dynamic stress response of the lining
is significantly reduced is put forward; (4) the effect of the
elastic modulus ratio between the lining and the surrounding
rock is estimated to obtain the optimal elastic modulus ratio.

The rock medium
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Figure 1: The model of half space rock medium and tunnel lining.

These results may provide a good reference for studies on
the dynamic response and aseismic design of tunnels and
underground structures.

2. Model for Series Solution of Wave Equation

The schematic model is shown in Figure 1, consisting of
half space rock medium and a tunnel lining, with buried
depth, internal diameter, and external diameter of the tunnel
lining being denoted by𝐻, 𝑅

1
, and 𝑅

2
, respectively. The half

plane rock medium and tunnel lining are assumed to be
elastic, isotropic, and homogeneous. The material properties
are characterized by the Lame constants 𝜆
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, 𝜆
𝑙
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, and 𝜇
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and the longitudinal and transverse wave velocities for elastic
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,
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, where subscript 𝑠 indicates half plane medium,

𝑙 indicates tunnel lining, 𝛼 indicates longitudinal wave (i.e.,
compressive wave), and 𝛽 indicates transverse wave (i.e.,
shear wave).The large circular model is used here to simulate
the surface of the half space (Figure 1). It was shown thatwhen
the circular becomes larger and larger, the solution converges
to the exact solution [8, 9].

2.1. Analyzing Wave Function of Free-Field in Half Space.
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In O
2
coordinate system, the wave potential functions of

the incident plane Pwaves and reflected plane P and SVwaves
are similar to O

1
coordinate system but are not presented

here.

2.2. Analyzing Scattering Field at the Interface between Tunnel
Lining and the Half Space. The presence of the interface
between the circular tunnel lining and the half space leads to
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where 𝐽
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and the half space. Built on the assumption of large circular
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The wave potential function in the lining medium can be
expressed as
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Thewave potential function in the half spacemedium can
be written as
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2.3. Solving Series Solution after Imposing Boundary Condi-
tions. Under a plane strain assumption, there are two families
of boundary condition: (1) the stress at the surface of the half
space and the tunnel lining inner surface is zero; (2) the stress
and displacement are continuous at the interface of the tunnel
lining and the half space. So the boundary conditions of the



4 Mathematical Problems in Engineering

stress and displacement of the tunnel lining are summarized
as
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Based on the boundary conditions in (8), the coefficients
in (4) and (5) can be obtained. The wave potential functions
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(𝑛, 𝑎
1
) 𝐸
1(2)

22
(𝑛, 𝑎
1
)

]

]

{

{

{

𝐵
(1)

12,𝑛

𝐷
(1)

12,𝑛

}

}

}

(
sin 𝑛𝜃

1

cos 𝑛𝜃
1

)

= {
0

0
} ,

(10)

∞

∑

𝑚=0

[

[

𝐸
𝑠(2)

11
(𝑚, 𝑏) 𝐸

𝑠(2)

12
(𝑚, 𝑏)

𝐸
𝑠(2)−

21
(𝑚, 𝑏) 𝐸

𝑠(2)

22
(𝑚, 𝑏)

]

]

{

{

{

𝐴
(2)

𝑠1,𝑚

𝐶
(2)

𝑠1,𝑚

}

}

}

(
cos𝑚𝜃

2

sin𝑚𝜃
2

)

+

∞

∑

𝑚=0

[

[

𝐸
𝑠(1)

11
(𝑚, 𝑏) 𝐸

𝑠(1)

12
(𝑚, 𝑏)

𝐸
𝑠(1)−

21
(𝑚, 𝑏) 𝐸

𝑠(1)

22
(𝑚, 𝑏)

]

]

{

{

{

𝐴
(2)

𝑠2,𝑚

𝐶
(2)

𝑠2,𝑚

}

}

}

(
cos𝑚𝜃

2

sin𝑚𝜃
2

)

+

∞

∑

𝑚=0

[
𝐸
𝑠(2)

11
(𝑚, 𝑏) 𝐸

𝑠(2)−

12
(𝑚, 𝑏)

𝐸
𝑠(2)

21
(𝑚, 𝑏) 𝐸

𝑠(2)

22
(𝑚, 𝑏)

]

{

{

{

𝐵
(2)

𝑠1,𝑚

𝐷
(2)

𝑠1,𝑚

}

}

}

(
sin𝑚𝜃

2

cos𝑚𝜃
2

)

+

∞

∑

𝑚=0

[

[

𝐸
𝑠(1)

11
(𝑚, 𝑏) 𝐸

𝑠(1)−

12
(𝑚, 𝑏)

𝐸
𝑠(1)

21
(𝑚, 𝑏) 𝐸

𝑠(1)

22
(𝑚, 𝑏)

]

]

{

{

{

𝐵
(2)

𝑠1,𝑚

𝐷
(2)

𝑠1,𝑚

}

}

}

(
sin𝑚𝜃

2

cos𝑚𝜃
2

)

= {
0

0
} ,

(11)

where

𝐸
(𝑖)

11
(𝑛, 𝑟) = (𝑛

2
+ 𝑛 −

1

2
𝑘
2

𝛽
𝑟
2
)𝐶
𝑛
(𝑘
𝛼
𝑟) − 𝑘

𝛼
𝑟𝐶
𝑛−1

(𝑘
𝛼
𝑟) ,

𝐸
(𝑖)∓

12
(𝑛, 𝑟) = ∓𝑛 [− (𝑛 + 1) 𝐶

𝑛
(𝑘
𝛼
𝑟) + 𝑘

𝛽
𝑟𝐶
𝑛−1

(𝑘
𝛽
𝑟)] ,

𝐸
(𝑖)∓

21
(𝑛, 𝑟) = ∓𝑛 [− (𝑛 + 1) 𝐶

𝑛
(𝑘
𝛼
𝑟) + 𝑘

𝛼
𝑟𝐶
𝑛−1

(𝑘
𝛼
𝑟)] ,

𝐸
(𝑖)

22
(𝑛, 𝑟) = − (𝑛

2
+ 𝑛 −

1

2
𝑘
2

𝛽
𝑟
2
)𝐶
𝑛
(𝑘
𝛽
𝑟) − 𝑘

𝛽
𝑟𝐶
𝑛−1

(𝑘
𝛽
𝑟) .

(12)

When 𝑖 = 1, 𝐶
𝑛
(𝑥) is a function of 𝐽

𝑛
(𝑥); when 𝑖 = 2, 𝐶

𝑛
(𝑥) is

the function of𝐻(1)
𝑛
(𝑥). For the half plane, referred to as “𝑠,”

𝑘
𝛼
and 𝑘
𝛽
can be replaced by 𝑘

𝑠𝛼
and 𝑘
𝑠𝛽
, respectively. For the

tunnel lining, referred to as “1,” 𝑘
𝛼
and 𝑘
𝛽
can be replaced by

𝑘
1𝛼

and 𝑘
1𝛽
, respectively. Potential functions 𝜙(𝑖+𝑟), 𝜓(𝑟), 𝜙(𝑟),

and 𝜓(𝑖+𝑟)satisfy the stress boundary in the half space.
Applying the boundary conditions of 𝑢1

𝑟
= 𝑢
𝑠

𝑟
and 𝑢1

𝜃
=

𝑢
𝑠

𝜃
, the following equation can be obtained by combining (1),

(2), and (9):

∞

∑

𝑛=0

[

[

𝐼
1(1)

11
(𝑛, 𝑎
2
) 𝐼
1(1)

12
(𝑛, 𝑎
2
)

𝐼
1(1)−

21
(𝑛, 𝑎
2
) 𝐼
1(1)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐴
(1)

11,𝑛

𝐶
(1)

11,𝑛

}

}

}

(
cos 𝑛𝜃

1

sin 𝑛𝜃
1

)

+

∞

∑

𝑛=0

[

[

𝐼
1(2)

11
(𝑛, 𝑎
2
) 𝐼
1(2)

12
(𝑛, 𝑎
2
)

𝐼
1(2)−

21
(𝑛, 𝑎
2
) 𝐼
1(2)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐴
(1)

12,𝑛

𝐶
(1)

12,𝑛

}

}

}

(
cos 𝑛𝜃

1

sin 𝑛𝜃
1

)

+

∞

∑

𝑛=0

[

[

𝐼
1(1)

11
(𝑛, 𝑎
2
) 𝐼
1(1)−

12
(𝑛, 𝑎
2
)

𝐼
1(1)

21
(𝑛, 𝑎
2
) 𝐼
1(1)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐵
(1)

11,𝑛

𝐷
(1)

11,𝑛

}

}

}

(
sin 𝑛𝜃

1

cos 𝑛𝜃
1

)

+

∞

∑

𝑛=0

[

[

𝐼
1(2)

11
(𝑛, 𝑎
2
) 𝐼
1(2)−

12
(𝑛, 𝑎
2
)

𝐼
1(2)

21
(𝑛, 𝑎
2
) 𝐼
1(2)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐵
(1)

12,𝑛

𝐷
(1)

12,𝑛

}

}

}

(
sin 𝑛𝜃

1

cos 𝑛𝜃
1

)
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=

∞

∑

𝑛=0

[

[

𝐼
𝑠(1)

11
(𝑛, 𝑎
2
) 𝐼
𝑠(1)

12
(𝑛, 𝑎
2
)

𝐼
𝑠(1)−

21
(𝑛, 𝑎
2
) 𝐼
𝑠(1)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐴
0,𝑛
+ 𝐴
(1)

𝑠2,𝑛

𝐶
0,𝑛
+ 𝐶
(1)

𝑠2,𝑛

}

}

}

× (
cos 𝑛𝜃

1

sin 𝑛𝜃
1

)

+

∞

∑

𝑛=0

[

[

𝐼
𝑠(2)

11
(𝑛, 𝑎
2
) 𝐼
𝑠(2)

12
(𝑛, 𝑎
2
)

𝐼
𝑠(2)−

21
(𝑛, 𝑎
2
) 𝐼
𝑠(2)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐴
(1)

𝑠1,𝑛

𝐶
(1)

𝑠1,𝑛

}

}

}

(
cos 𝑛𝜃

1

sin 𝑛𝜃
1

)

+

∞

∑

𝑛=0

[

[

𝐼
𝑠(1)

11
(𝑛, 𝑎
2
) 𝐼
𝑠(1)−

12
(𝑛, 𝑎
2
)

𝐼
𝑠(1)−

21
(𝑛, 𝑎
2
) 𝐼
𝑠(1)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐵
0,𝑛
+ 𝐵
(1)

𝑠2,𝑛

𝐷
0,𝑛
+ 𝐷
(1)

𝑠2,𝑛

}

}

}

× (
sin 𝑛𝜃

1

cos 𝑛𝜃
1

)

+

∞

∑

𝑛=0

[

[

𝐼
𝑠(2)

11
(𝑛, 𝑎
2
) 𝐼
𝑠(2)−

12
(𝑛, 𝑎
2
)

𝐼
𝑠(2)−

21
(𝑛, 𝑎
2
) 𝐼
𝑠(2)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐵
(1)

𝑠1,𝑛

𝐷
(1)

𝑠1,𝑛

}

}

}

(
sin 𝑛𝜃

1

cos 𝑛𝜃
1

) ,

(13)

where

𝐼
(𝑖)

11
(𝑛, 𝑟) = −𝑛𝐶

𝑛
(𝑘
𝛼
𝑟) + 𝑘

𝛼
𝑟𝐶
𝑛−1

(𝑘
𝛼
𝑟) ,

𝐼
(𝑖)∓

12
(𝑛, 𝑟) = ∓𝑛𝐶

𝑛
(𝑘
𝛽
𝑟) ,

𝐼
(𝑖)∓

21
(𝑛, 𝑟) = ∓𝑛𝐶

𝑛
(𝑘
𝛼
𝑟) ,

𝐼
(𝑖)

22
(𝑛, 𝑟) = 𝑛𝐶

𝑛
(𝑘
𝛽
𝑟) − 𝑘

𝛽
𝑟𝐶
𝑛−1

(𝑘
𝛽
𝑟) .

(14)

Applying the boundary conditions of 𝜏1
𝑟𝑟
= 𝜏
𝑠

𝑟𝑟
and 𝜏1
𝑟𝜃
= 𝜏
𝑠

𝑟𝜃
,

the following equation can be obtained by combining (1), (2),
and (9):

∞

∑

𝑛=0

𝜇
1
[

[

𝐸
1(1)

11
(𝑛, 𝑎
2
) 𝐸
1(1)

12
(𝑛, 𝑎
2
)

𝐸
1(1)−

21
(𝑛, 𝑎
2
) 𝐸
1(1)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐴
(1)

11,𝑛

𝐶
(1)

11,𝑛

}

}

}

(
cos 𝑛𝜃

1

sin 𝑛𝜃
1

)

+

∞

∑

𝑛=0

𝜇
1
[

[

𝐸
1(2)

11
(𝑛, 𝑎
2
) 𝐸
1(2)

12
(𝑛, 𝑎
2
)

𝐸
1(2)−

21
(𝑛, 𝑎
2
) 𝐸
1(2)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐴
(1)

12,𝑛

𝐶
(1)

12,𝑛

}

}

}

(
cos 𝑛𝜃

1

sin 𝑛𝜃
1

)

+

∞

∑

𝑛=0

𝜇
1
[

[

𝐸
1(1)

11
(𝑛, 𝑎
2
) 𝐸
1(1)−

12
(𝑛, 𝑎
2
)

𝐸
1(1)

21
(𝑛, 𝑎
2
) 𝐸
1(1)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐵
(1)

11,𝑛

𝐷
(1)

11,𝑛

}

}

}

(
sin 𝑛𝜃

1

cos 𝑛𝜃
1

)

+ 𝜇
1

∞

∑

𝑛=0

[

[

𝐸
1(2)

11
(𝑛, 𝑎
1
) 𝐸
1(2)−

12
(𝑛, 𝑎
1
)

𝐸
1(2)

21
(𝑛, 𝑎
1
) 𝐸
1(2)

22
(𝑛, 𝑎
1
)

]

]

{

{

{

𝐵
(1)

12,𝑛

𝐷
(1)

12,𝑛

}

}

}

(
sin 𝑛𝜃

1

cos 𝑛𝜃
1

)

=

∞

∑

𝑛=0

𝜇
𝑠
[

[

𝐸
𝑠(1)

11
(𝑛, 𝑎
2
) 𝐸
𝑠(1)

12
(𝑛, 𝑎
2
)

𝐸
𝑠(1)−

21
(𝑛, 𝑎
2
) 𝐸
𝑠(1)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐴
0,𝑛
+ 𝐴
(1)

𝑠2,𝑛

𝐶
0,𝑛
+ 𝐶
(1)

𝑠2,𝑛

}

}

}

× (
cos 𝑛𝜃

1

sin 𝑛𝜃
1

)

+

∞

∑

𝑛=0

𝜇
𝑠
[

[

𝐸
𝑠(2)

11
(𝑛, 𝑎
2
) 𝐸
𝑠(2)

12
(𝑛, 𝑎
2
)

𝐸
𝑠(2)−

21
(𝑛, 𝑎
2
) 𝐸
𝑠(2)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐴
(1)

𝑠1,𝑛

𝐶
(1)

𝑠1,𝑛

}

}

}

(
cos 𝑛𝜃

1

sin 𝑛𝜃
1

)

+

∞

∑

𝑛=0

𝜇
𝑠
[

[

𝐸
𝑠(1)

11
(𝑛, 𝑎
2
) 𝐸
𝑠(1)

12
(𝑛, 𝑎
2
)

𝐸
𝑠(1)−

21
(𝑛, 𝑎
2
) 𝐸
𝑠(1)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐵
0,𝑛
+ 𝐵
(1)

𝑠2,𝑛

𝐷
0,𝑛
+ 𝐷
(1)

𝑠2,𝑛

}

}

}

× (
sin 𝑛𝜃

1

cos 𝑛𝜃
1

)

+

∞

∑

𝑛=0

𝜇
𝑠
[

[

𝐸
𝑠(2)

11
(𝑛, 𝑎
2
) 𝐸
𝑠(2)−

12
(𝑛, 𝑎
2
)

𝐸
𝑠(2)−

21
(𝑛, 𝑎
2
) 𝐸
𝑠(2)

22
(𝑛, 𝑎
2
)

]

]

{

{

{

𝐵
(1)

𝑠1,𝑛

𝐷
(1)

𝑠1,𝑛

}

}

}

(
sin 𝑛𝜃

1

cos 𝑛𝜃
1

) .

(15)

Solving linear systemof (10), (11), (13), and (15), all coefficients
in the wave functions can be obtained in the coordinate
system of 𝑟 − 𝜃

1
. The wave potential functions 𝜑

1
and 𝜓

1
in

the tunnel lining and𝜑
𝑠
and𝜓

𝑠
in the half space can be solved.

The stress and displacement functions of the tunnel lining for
incident plane P waves can be solved from (9).

Generally, under the action of steady state P waves,
the dynamic stress distribution of tunnel lining can be
studied through solving the coefficient of dynamic stress
concentration of the inner surface of tunnel lining on the
toroidal direction [13, 14].

𝜏
∗

𝜃𝜃
can be obtained from

𝜏
∗

𝜃𝜃
=



𝜏
𝜃𝜃

𝜏
0



, (16)

where 𝜏
0
is the maximum value of dynamic stress of tunnel

lining.
Through solving the dimensionless coefficient of 𝜏∗

𝜃𝜃
,

which is the coefficient of dynamic stress concentration of lin-
ing on the toroidal direction, the dynamic stress distribution
and variation in the tunnel lining for incidence P waves can
be obtained.

3. Calculating Examples and Analysis Results

Based on the analytical solutions of the seismic wave prop-
agation in an elastic medium and the study of propagation
behavior of seismic waves in the rock and soil medium,
seismic motion parameters, geotechnical properties, and lin-
ing materials significantly affect the dynamic stress response
of tunnels and underground structures. It is necessary to
investigate the effect of various parameters, including inci-
dent frequency content, incident angle, buried depth, rock
material properties, and the lining stiffness, by using the
proposed series solutions.

Basic assumptions of the application examples employed
in this paper are as follows [13]: (1) the outside diameter of
circular tunnel is 𝑅

2
= 1.2𝑅

1
with a lining thickness of 0.2𝑅

1
;

(2) the buried depth is represented by the ratio (𝐻/𝑅
1
) of the

distance from the tunnel center to the ground surface and the
internal radius of tunnel; (3) the elastic modulus of tunnel
lining and surrounding rock is 𝑒

1
and 𝑒
𝑠
, respectively; (4) the
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Figure 2: Dynamic stress concentration coefficient of tunnel lining for different incident frequency and buried depth.

lining stiffness 𝛿 is represented by the shear wave velocity
ratio of the lining and the rock half space; (5) the Poisson’s
ratio of rockmedium and lining is assumed to be 0.25; (6) the
longitudinal wave velocity of these twomedium is 1.732 times
of the shear wave velocity; (7) the radius of the large circular
arc is 𝑅 = 𝐷

12
+ 𝐻, and the distance from the centers O

2
to

O
1
is taken as 𝐷

12
= 10
4
𝑅
1
in the example, which is large

enough to simulate the half space to ensure that the solution
converges to the exact solution.

3.1. Effect of Incident Frequency on the Dynamic Stress Concen-
tration Coefficient for the Tunnel Lining. The dimensionless
frequency 𝜂 is defined as the ratio of inner diameter of the
tunnel and the incident wave length [15]:

𝜂 =
2𝑅
1

𝜆
𝑠𝛽

=

𝑘
𝑠𝛽
𝑅
1

𝜋
, (17)

where 𝜆
𝑠𝛽
is the shear wave length of the half space rock.

Considering the effect of different incident frequency
contents of P waves on dynamic response of tunnel lining,
three typical cases (𝜂 = 0.5, 1.0, and 2.0) are carried out for
incidence P waves from vertical upward direction.

Figure 2 shows how the toroidal dynamic stress concen-
tration coefficient for the tunnel lining (𝜏∗

𝜃𝜃
) changes with

different incident frequency of P waves for two buried depths
ℎ
1
= 20m and ℎ

1
= 100m. It is shown that, with increasing

incident frequency, 𝜏∗
𝜃𝜃

decreases gradually and 𝜏∗
𝜃𝜃

at low-
frequency P waves is about 10 times larger than that at
high-frequency. Therefore, low-frequency seismic waves are
more detrimental to the tunnel lining than high-frequency.
Also the increase of incident frequency leads to increasingly
complex distribution of the toroidal dynamic stress in the
lining, and the less principal stress concentration direction at

low-frequency conditions is gradually transformed intomore
stress concentration directions at high-frequency conditions.

3.2. Effect of Incident Angle on the Dynamic Stress Con-
centration Coefficient of Lining. The stress concentration
coefficients of tunnels and underground structures are very
sensitive to incident angle of seismic waves. Small changes
of the incident angle may lead to a significant change of
the stress and deformation at various locations of the tunnel
structures. Herein, studies of three representative cases (i.e.,
vertical incidencewith incident angle 𝜃𝛼=0∘, a small incident
angle 𝜃𝛼= 30∘, and large incident angle 𝜃𝛼= 60∘) were carried
out for frequency coefficients of 𝜂 = 1 and 𝜂 = 2. Figure 3
displays the distribution of toroidal dynamic stress of in the
lining for three different incident angles.

It is observed that the coefficient of toroidal dynamic
stress concentration decreases gradually with increasing inci-
dent angle, but the change in the amplitude is small in
both dimensionless frequency values, 𝜂 = 1 and 𝜂 = 2. It is
worth noting that, for vertically incident P waves or a small
incident angle (𝜃𝛼 = 0∘ ∼30∘), the coefficients of dynamic
stress concentration of lining are very complex and uneven.
The conclusion here agrees well with the results of shaking
table tests [20].

3.3. Effect of Buried Depth on the Dynamic Stress Concentra-
tion Coefficient of Lining. To demonstrate the effect of the
buried depth and the material properties, two different types
of rockmass (soft and hard rockmass) are chosen to study the
seismic response of the tunnel lining within a buried depth
range from 10m to 150m.

Case 1 (soft rock as surrounding rock medium of tunnel with
elastic modulus 𝑒

𝑠
= 2GPa). Figure 4 shows the distribution
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Figure 3: Dynamic stress concentration coefficient of tunnel lining with different incident angles.

of toroidal dynamic stress in the lining with different buried
depth in a range of 10m–150m. With the increase of the
buried depths, the dynamic stress concentration coefficient
of the lining does not converge to the situation of single
round hole inwhole space.Thedistributions of lining toroidal
dynamic stress with different values of buried depth are very
complex and uneven and no directionality can be obviously
observed.

As Figure 5 shows, when the buried depth in the soft
surrounding rock is within 100m, the maximum dynamic
stress response of the lining varies with buried depth, and
two peak values can be observed at the buried depth of
ℎ
1
= 30m and 100m. When the buried depth is greater

than 100m (ℎ
1
> 100m), the coefficient of dynamic stress

concentration of lining does not vary significantly with a high
level of about 6.5. It appears that, with an increasing buried
depth, the decreasing trend of dynamic stress response is not
pronounced in the soft surrounding rock and the dynamic
stress of tunnel lining may still be high in the case of a
large buried depth. There are three main reasons: (1) the
difference in stiffness is large between tunnel lining and soft
surrounding rock; (2) the degree of stress concentration of
tunnel lining is high and dynamic stress of the lining does
not decrease obviously with increase of the buried depth; and
(3) the pressure of surrounding rock increases gradually with
increase of the buried depth. In this case, the soft surrounding
rock has a low strength, large porosity, many joints and
fractures, and low capability of self-arching and these rock
properties lead to large tunnel dynamic response.

Case 2 (hard surrounding rock medium with elastic modulus
𝑒
𝑠
= 20GPa). Regarding the case with hard surrounding

rock medium, no obvious directionality can be observed in

terms of the distributions of toroidal dynamic stress caused
by P waves, but the dynamic stress response of lining is
more pronounced than the case of soft rock as illustrated in
Figure 6.

Figure 7 shows that when the tunnel buried depth is
less than 100m, the coefficient of maximum dynamic stress
concentration in the tunnel lining is generally high, ranging
from 6.0 to 8.5 which indicates that the response of dynamic
stress of the lining is large at the portal segment of hard rock
tunnel and the tunnel lining may be damaged easily during
a large earthquake. When the tunnel buried depth is greater
than 75m, the coefficient of dynamic stress concentration
is reduced significantly. The coefficient of dynamic stress
concentration starts to reach a constant level after the buried
depth is greater than 100m. It appears that the lining dynamic
stress is small and tends to stabilize at the large buried depth
segment of hard rock tunnel and the tunnel liningmay be less
susceptible to damage during a large earthquake.Therefore, it
is concluded that, under the hard rock conditions, the tunnel
buried depth (i.e., thickness of the overlying rock) is not
a major factor that affects the dynamic stress and seismic
damages of tunnel lining when the tunnel buried depth is
greater than 100m. This conclusion is consistent with the
findings of Gao et al. [21], which states that the dynamic
stress concentration coefficient tends to be constant when the
buried depth is greater than 25𝑅

1
and the buried depth of

25𝑅
1
approaches 100m.

3.4. Effect of Elastic Modulus on the Dynamic Stress Con-
centration Coefficient of Lining. The elastic modulus (𝑒

1
)

of the lining can be considered an index for the elastic
deformation of tunnel lining, and the stresses caused by
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Figure 4: Dynamic stress concentration coefficient of tunnel lining with different values of buried depth in the soft surrounding rock.
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Figure 5: The maximum dynamic stress concentration coefficient
of tunnel lining with different buried depths in the soft surrounding
rock.

elastic deformation increase with increasing elastic modu-
lus. This also means that, at a given level of stresses, the
lining deformation decreases with increasing lining stiffness.
We focus on the effect of lining elastic modulus on the
dynamic stress concentration coefficient of the lining in
a soft surrounding rock. Figure 8 shows the coefficients
of dynamic stress concentration (𝜏∗

𝜃𝜃
) with different lining

elastic modulus in a soft surrounding rock (𝑒
𝑠
= 2GPa).

As shown in Figure 8, the coefficient of dynamic
stress concentration of the lining increases gradually with
increasing lining elastic modulus, and the greater the elastic
modulus is, the more uneven the distribution of the dynamic
stress coefficient is. The different adaptabilities of lining
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Figure 6: Dynamic stress concentration coefficient of tunnel lining with different buried depths in hard surrounding rock.
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Figure 7:Themaximumdynamic stress concentration coefficient of
tunnel lining with different buried depths in hard surrounding rock.

with different stiffness to dynamic stresses may lead to the
variation of the dynamic stress of lining. Herein the following
example is adopted to illustrate this aspect. When the elastic
modulus of the lining is 𝑒

1
= 10Gpa and soft surrounding

rock is 𝑒
𝑠
= 2Gpa (i.e., 𝑒

1
= 5𝑒
𝑠
), the maximum value of

dynamic stress concentration coefficient of the lining is more
than 100, and the variation of dynamic stress of lining across
all directions is very complex.Therefore, under the premise of
meeting the bearing capacity and deformation of the lining,
appropriately soft lining is recommended to be adopted in
the tunnel structure to mitigate the seismic damage of tunnel
lining and the ratio between the elastic modulus of the lining
and soft surrounding rock should be less than 5.
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Figure 8: Dynamic stress concentration coefficient of tunnel lining with different lining elastic modulus in the soft surrounding rock.

4. Conclusions

A series solution of wave equation for dynamic response of
underground circular lining tunnels subjected to incident
plane P waves is presented by Fourier-Bessel series expansion
method in this paper. The effects on circular lining rock
tunnels of different factors, including incident frequency,
incident angle, buried depth, rock conditions, and lining
stiffness, are studied through the proposed series solution. In
this study, the following conclusions are drawn.

(1) In circular lining rock tunnels, the coefficient of
toroidal dynamic stress concentration and dynamic
stress decrease gradually with the increase of incident
frequency of P waves. 𝜏∗

𝜃𝜃
for low-frequency P waves

is about 10 times larger than that for high-frequency,
indicating that low-frequency contents of seismic
waves are more detrimental to the tunnel linings than
high-frequency contents.

(2) The incident angle of P waves has a significant
influence on dynamic response of the tunnel lining.
When seismic waves propagate vertically or with a
small incident angle (𝜃𝛼 = 0∘ ∼30∘), the distribution
of the coefficients of dynamic stress concentration in
the tunnel lining is very complex and uneven, which
is detrimental to the safety of the tunnel lining.

(3) When the buried depth of a tunnel in the soft sur-
rounding rock is in a range of 0∼100m, the decreasing
tendency of dynamic stress response of the lining
with increasing tunnel buried depth is not obvious;
even if the buried depth is greater than 100m, the
coefficient of dynamic stress concentration of the
lining still remains at a high level of about 6.5. In this
situation, tunnels crossing the fault zone or the high

stress segment may get damaged seriously during
large earthquake.

(4) When the tunnel buried depth in hard surrounding
rock is less than 100m, the coefficient of dynamic
stress concentration in the tunnel lining is high,
ranging from 6.0 to 8.5. While the buried depth is
greater than 100m, the dynamic stress of the lining is
small and tends to stabilize. When the tunnel buried
depth is more than 100m, the tunnel buried depth is
not a major factor that affects the dynamic stress.

(5) The coefficient of dynamic stress concentration in
the lining increases gradually with increasing elastic
modulus of the lining, and the greater the elastic
modulus is, the more uneven the dynamic stress
coefficient is. Therefore, under the premise of meet-
ing the bearing capacity and deformation of lining,
appropriate soft lining is recommended to be adopted
in the tunnel structures to mitigate seismic damage
of tunnel lining, and the ratio between the elastic
modulus of the lining and soft surrounding rock
should be less than 5.
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