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In this study, an attempt has been made to develop a multiobjective fuzzy aggregate production planning (APP) model that best
serves those companies whose aim is to have the best utilization of their resources in an uncertain environment while trying to keep
an acceptable degree of quality and customer service level simultaneously. In addition, the study takes into account the performance
and availability of production lines. To provide the optimal solution to the proposed model, first it was converted to an equivalent
crispmultiobjectivemodel and then goal programmingwas applied to the convertedmodel. At the final step, the IBM ILOGCPLEX
Optimization Studio softwarewas used to obtain the final result based on the data collected froman automotive partsmanufacturing
company.The comparison of results obtained from solving themodelwith andwithout considering the performance and availability
of production lines, revealed the significant importance of these two factors in developing a real and practical aggregate production
plan.

1. Introduction

Since the introduction of aggregate production planning
(APP) problem in 1950s, it has been studied vastly by many
researchers.The interest in APP has a root in the ability that it
provides to companies for effective control of production and
inventory costs as the two substantial portions of the overall
cost of manufacturers [1]. It also helps to identify decisions
concerning layoff and hiring of workers, overtime production
quantities, backorder and inventory levels, subcontracting,
and all the required resources [2, 3].

The overall goal of APP is to set the overall production
rates for each product category to meet the fluctuation of
customers’ demand in a cost-effective manner and for a
certain time horizon [4].WhileAPP is considered as an upper
level planning in the process of production management,
other forms of disaggregation plans (e.g., master production
schedule, capacity plan, and material requirements plan) are
all related and dependent on APP in a hierarchical way
[5]. The costs associated with APP mostly consist of costs
related to payroll, inventory, backordering, hiring and layoff

of workers, overtime, and regular time production [6]. The
time horizon for developing an APP is often from 3 to 18
months forward [7].

Taking into account the beneficial impact of applying
APP in companies, different approaches and methodologies
such as linear programming [8, 9], mixed integer linear
programming [6, 10–13], goal programming [14–17], or, in the
case of providing solutions to the developed mathematical
models, some heuristic algorithms such as genetic algorithm
[7, 18, 19] and tabu search [17, 20–22] have been applied.
In most of the previously performed studies, APP has been
introduced as the method by which decisionmakers trade off
between incurring cost and increasing capacity, having inven-
tory or backlog orders. Although, a successful combination of
such trade-offs can bring beneficial results to the company,
there may be some other influential factors that should be
taken into account when developing an APP. For instance,
the quality of products has not received adequate attention
in previous studies in the area of APP. Ignoring the quality
of products and just focusing onminimizing operational cost
in the process of production planning lead to poor customers’
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perception about the products and consequently sales loss in
the long term.

The other issue in developing an aggregate production
plan is the uncertain environment that the planner has to
deal with. The uncertainty in production planning process is
due to imprecise input data such as the size and amount of
required or on-hand resources, customers’ demand, or uncer-
tainty about the aspiration levels of a decision maker’s goals
and objectives [23]. Therefore, suitable approaches should be
followed to incorporate these uncertainties when developing
an APP. Fuzzy programming is one of the main approaches
used vastly in the literature to incorporate uncertainty into
production plans [24]. This study also applies the fuzzy
programming approach to consider the aforementioned
uncertainties in developing the APP. In addition, because
of the lack of attention given to the quality of products in
previous related research, this study incorporates quality as
an objective function in developing the APP.

The other contribution of this paper is the capability of
the developed APP model in considering the real capacity of
production lines through incorporating their availability and
performance percentage into the capacity constraint of the
mathematical model. Considering performance and avail-
ability levels of production lines, which takes into account
their down time and speed loss, provides the planner with a
realistic view of on-hand capacity and consequently results in
a more practical APP.

This paper contains eight sections. The next section pro-
vides some information about fuzzy programming together
with a brief review on some relevant previous studies.
Section 3 provides information about the construction of the
mathematical model. In Section 4, the approach applied for
providing the solution to the model is discussed. Section 5
confirms the applicability of the proposed model using data
collected from the company under study. In Section 6, a
comparisonwill bemade in order to signify the consequences
of ignoring the performance and availability of production
lines in developing a practical APP. Sensitivity analysis and
conclusionswill be presented in Sections 7 and 8, respectively.

2. Literature Review

Application of fuzzy set theory in the conventional linear
programming model was first introduced by Zimmermann
[25, 26] in 1978. The purpose was to deal with the uncer-
tainties in the input data which are mostly due to the lack
of decision makers’ knowledge and unavailability of required
data. Due to the nonrandomness nature of such uncertainties,
they cannot be expressed by probability distributions and
considering conventional stochastic programming models
leads to inefficient and impractical results. On the other hand,
assuming the uncertain parameters to be deterministic can
also lead to unreal and impractical results [27].

In the fuzzy model proposed by Zimmermann [25] both
the objective function and constraints were formulated in a
fuzzy environmentwhere imprecise parameters are processed
as fuzzy numbers and imprecise constraints as fuzzy sets.
Using themin-operator, he showed that there is an equivalent

linear programming model to the original constructed fuzzy
multiobjective model.

Narasimhan [28] demonstrated how fuzzy subset concept
can be incorporated into a goal programming model in a
fuzzy environment. Hannan [29] illustrated the application
of piecewise membership functions in quantifying fuzzy
aspiration levels. He considered a fuzzy goal-programming
model with preemptive priorities and Archimedean weights
and solved the model by maximization of the membership
function of the minimum goal.

Introduction of fuzzy set theory into linear programming
models by Zimmermann [26] has opened new windows for
researchers who are dealing with a fuzzy environment in
different areas of operations management. Based on a survey
conducted by Wong and Lai [30], between the years 1998
and 2009, the number of applications of fuzzy set theory in
different areas of operations and production management
was about 400. Among them, the area of long term capac-
ity planning had the highest share of application, namely,
16.13%, followed by short term capacity planning (14.4%)
and inventory control (11.17%). However, the least number
of applications was found in the areas of job design and
long term forecasting with almost no application. In the
area of APP, fuzzy set theory has its own significant place
[5, 28, 31–33]. Jamalnia and Soukhakian [23] developed a
fuzzy multiobjective nonlinear APP model to address the
fuzzy aspiration levels of objective functions. In their model,
three quantitative objective functions, namely, minimization
of production, inventory, and changes in workers costs, and
one qualitative objective function of maximizing customer
satisfaction were taken into account. The nonlinearity of the
modelwas due to the effect of the learning curve in decreasing
production time as workers achieve more experience. By
applying the triangular fuzzy membership function, the
model was converted to a crisp one and finally it was solved
using a branch of genetic algorithm.

Wang and Fang [34] developed an aggregate production
plan with some fuzzy parameters including product price,
unit cost of subcontracting, workforce level, production
capacity, andmarket demand along with fuzzy aspiration lev-
els of objective functions. Providing a systematic framework,
the proposed approach supports decision makers through an
interactive way until the satisfactory results are obtained. At
the final step, an aggregation operator was employed in order
to obtain the compromised solution of the proposed system.

Wang and Liang [35] also proposed a fuzzy linear
programming model and developed an APP. Minimization
of total production costs, carrying and backordering costs,
and rates of changes in labor levels are the three objective
functions of that study. In order to convert the problem
into an ordinary linear programming problem, the piecewise
linear membership function of Hannan [29] (to represent the
fuzzy goals of decision makers) along with the fuzzy decision
making approach of Zadeh [36] were taken into account.

The review of several studies in the APP area described
in this section obviously shows that almost all researchers
have considered cost as the first objective to be minimized.
Minimization of inventory, backorder level, and changes in
workforce are the other main objectives that have been taken
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into consideration as the second or third objective function.
However, enhancing the quality of products as an objective
function has been widely ignored in developing APPmodels.
Particularly, there is no study that has taken into account
the quality of products when developing an APP in the
fuzzy environment. Another deficiency in this area was the
overestimation of the real capacity of production lines due to
the ignorance of two important factors, that are, performance
and availability of production lines in the capacity constraints
of the constructed APP models. In this study, an effort
has been made to bridge these gaps through developing a
multiobjective integer linear programming model in a fuzzy
environment in which the quality of products as well as
the real capacity of production lines have been taken into
consideration. Since, in the real world, planners are faced
with qualitative as well as quantitative goals, this study tries
to present the application of both qualitative and quantitative
objective functions in the construction of the proposed APP
model. To test the applicability of the proposed model, it has
been applied to a case study chosen from Iran’s automotive
industry.

3. Construction of the Mathematical Model

In this section a multiperiod, multiobjective integer fuzzy
linear programming model is constructed based on the
operational conditions of an automotive parts manufacturing
company in Iran which is producing three types of products
for local customers.

3.1. Operational Conditions and Assumptions of the Model.
The operational conditions together with the assumptions of
the model are as follows.

(i) Forecasted customers’ demand, production cost,
inventory carrying cost, cost of training, cost of
purchasing rawmaterials, reject rate of rawmaterials,
and performance and availability percentages of all
production lines are assumed to be imprecise and are
modeled by fuzzy numbers.

(ii) Production lines are balanced.
(iii) Constant number of operators and workers has been

dedicated to each production line throughout the
specified time horizon.

(iv) The cost of hiring is not included in the overall
production cost, since all the operators and workers
are hired at the beginning of the time horizon.

(v) Firing the hired workers is not allowable. Workers are
trained to acquire the required level of skills in each
time period.

(vi) Regular and overtime production and warehouse
space cannot exceed their maximum levels.

(vii) Backordered demand must be satisfied in the next
time period.

(viii) All customers’ demand for all types of products
should be fulfilled at the end of the time horizon.

(ix) Outsourcing is not allowable for any type of products.
(x) The number of workers with a certain skill level in a

time period is not reduced in the next time period.
(xi) Work in process (WIP) inventory cost is not consid-

ered.
(xii) The specified time horizon contains six monthly

periods.
(xiii) Two separated warehouses are used for final products

storage; one is assigned to the type one and type
two products and the other warehouse is for storing
products of type three.

(xiv) The level of inventory is assumed to be zero at the
beginning of the first period.

(xv) Each type of products is assigned to just one produc-
tion line.

(xvi) All components can be purchased from all suppliers.
In total, three suppliers are considered.

(xvii) Reject rates and costs of raw materials, purchased
from different suppliers, are different.

(xviii) Rejected raw materials are sent back to the relevant
suppliers and the company does not pay for them.

(xix) Higher skilled workers are paid more.
(xx) The salary of workers is not included in the overall

production cost and is considered separately.

3.2. Objective Functions

3.2.1. Quantitative Objective Function. Quantitative objective
functions are as follows:

(i) minimization of total cost,
(ii) maximization of product quality (through minimiza-

tion of quality degradation).

3.2.2. Qualitative Objective Function. Customer service level
should be “rather high.”

The desired service level, that is, “rather high,” in the
above objective has been identified by the decision maker
(production planner in the company under study).

3.3. Parameters Definition. Consider the following:

𝑇 = planning time horizon including six monthly
periods;
𝑡 = time period;
𝑚 = type of product (𝑚 ∈ 𝑀);
𝑘 = supplier index (𝑘 ∈ 𝐾);
𝑖 = raw material component (𝑖 ∈ 𝐼);
𝑛
𝑖𝑚
= usage coefficient of component 𝑖 in product𝑚;

ℎ = regular (ℎ = 1) or overtime (ℎ = 2) production
hours (ℎ ∈ 𝐻);
sk = skill level of a worker (ordinary (sk = 1), good
(sk = 2), and excellent (sk = 3));
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𝑆sk = salary of a worker with skill level of sk;

𝐶
𝑖𝑘
= cost of component 𝑖 purchased from supplier 𝑘

(cost of placing and receiving orders);

𝜃
𝑖𝑘
= reject rate of component 𝑖 purchased from

supplier 𝑘;

𝐷
𝑚𝑡
= forecasted demand of product type𝑚 in period

𝑡;
𝜏
𝑚
= ideal production cycle time for product type𝑚;

𝐶
𝑝

𝑚ℎ
= cost of producing one unit of product type 𝑚

in production time ℎ;

𝐶
𝐼

𝑚𝑡
= inventory carrying cost per unit of product 𝑚

in period 𝑡;
𝐶
𝐵

𝑚
= backorder cost per unit of product𝑚;

𝐶
ℎ𝑡
= cost to train one worker in period 𝑡;

P̃r
𝑚
= performance percentage of production line𝑚;

Ãv
𝑚
= availability percentage of production line𝑚;

𝐿
𝑊

𝑚𝑡
= number of workers to be assigned for produc-

ing product type𝑚 in period 𝑡;

Max𝑤𝑚1 = maximum warehouse space for storage of
product types 1 and 2;

Max𝑤𝑚2= maximum warehouse space for storage of
product type 3;

Maxℎ𝑡= maximum allowable regular time (ℎ = 1) or
overtime (ℎ = 2) production in period 𝑡;
𝑊
𝑚
= required warehouse space per unit of product

𝑚.

All input data related to the parameters will be made
available upon request.

3.4. Decision Variables. Decision variables (outputs of the
model) are as follows:

𝑃
𝑚ℎ𝑡

= unit of product type 𝑚 to be produced
in production time ℎ (regular time or overtime) in
period 𝑡;

𝐿
ℎ

𝑚𝑡
= number of workers to be trained in period 𝑡 for

product type𝑚;
𝐵
𝑚𝑡

= backorder level at the end of period 𝑡 for
product type𝑚;
𝐼
𝑚𝑡
= available inventory level of product type 𝑚 at

the end of period 𝑡;
𝑄
𝑖𝑘𝑡
= quantity of component 𝑖 to be purchased from

supplier 𝑘 in period 𝑡;
𝐿 sk𝑚𝑡 = number of workers with skill level of sk to
produce product type𝑚 in period 𝑡.

3.5. Formulation of Objective Functions. The objective func-
tions are formulated as follows.

3.5.1. Quantitative Objective Functions

(i) Minimization of cost is as follows:

Min𝑍
1

=

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝐻

∑

ℎ=1

𝐶
𝑝

𝑚ℎ
𝑃
𝑚ℎ𝑡
+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1
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𝐵

𝑚
𝐵
𝑚𝑡
+ 𝐶
𝐼

𝑚𝑡
𝐼
𝑚𝑡
+ 𝐶
ℎ𝑡
𝐿
ℎ

𝑚𝑡
)

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

3

∑

sk=1
𝑆sk𝐿 sk𝑚𝑡 +

𝑇

∑

𝑡=1

𝐾

∑

𝑘=1

𝐼

∑

𝑖=1

𝐶
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𝑄
𝑖𝑘𝑡
.

(1)

This objective function tries to minimize operational
costs including production cost, backorder cost,
inventory cost, training cost, and costs associatedwith
salary and raw materials procurement.

(ii) Maximization of quality of products (minimization of
quality degradation) is as follows:

Min𝑍
2
=
∑
𝐼

𝑖=1
∑
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𝑀
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1
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𝑇
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(2)

The aim of this objective function is to maximize quality
by minimizing quality degradation of products using two
strategies. The first strategy, as has been formulated in the
first element, is to decrease the number of rejected raw
materials purchased from suppliers and the second strategy
represented in the second element of the objective function
is to decrease the number of hired workers with a lower
skill level. These two elements have a significant effect on the
quality of finished products produced during the specified
timehorizon.One can addother elements that are effective on
the quality of finished products, depending on the situation
of the company under study.

3.5.2. Qualitative Objective Functions

(i) “Customer service level should be rather high.”

In order to measure customer service level, backorder
level is used. The term “rather high” has been defined by
the decision maker as the desired service level that the
company aims to provide to its customers. Figure 1 shows
the corresponding membership functions [27] constructed
based on the definition of the decision maker and assigned
to each linguistic term in Set 𝐴, where 𝐴 = {very low,
low, rather low,medium, rather high, high, very high}.

To formulate the required linguistic term, the part that
has been assigned to “rather high (RH)” and highlighted in
Figure 1 has been selected and formulated as shown in

𝜇BLP
𝑡

=

{{{

{{{

{

1 BLP
𝑡
≤ 25

30 − BLP
𝑡

5
25 < BLP

𝑡
≤ 30

0 BLP
𝑡
> 30,

(3)
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Figure 1: Membership functions for different linguistic terms.

where

BLP
𝑡
(Backorder level percentage at the end of period 𝑡)

=
Backorder at the end of period 𝑡

Demand in period 𝑡
× 100.

(4)

Therefore the final formula for the third objective function
can be constructed as presented in

Max𝑍
3
=

𝑇

∑

𝑡=1

𝜇BLP
𝑡

=

𝑇

∑

𝑡=1

30 − BLP
𝑡

5
. (5)

3.6. Constraints. The following constraints have been formu-
lated based on the assumptions and the company’s opera-
tional conditions defined earlier:

2

∑

ℎ=1

𝑃
𝑚ℎ𝑡

= 𝐷
𝑚𝑡
− 𝐼
𝑚(𝑡−1)

− 𝐵
𝑚𝑡
+ 𝐼
𝑚𝑡
+ 𝐵
𝑚(𝑡−1)

;

∀𝑡 > 1, ∀𝑚

(6)

2
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𝑃
𝑚ℎ𝑡

= 𝐷
𝑚𝑡
− 𝐵
𝑚𝑡
+ 𝐼
𝑚𝑡
; ∀𝑚, 𝑡 = 1 (7)

3

∑

sk=1
(𝐿 sk𝑚𝑡 − 𝐿 sk𝑚(𝑡−1)) = 𝐿

ℎ

𝑚𝑡
; ∀𝑡 > 1, ∀𝑚 (8)

𝐿 sk𝑚𝑡 ≥ 𝐿 sk𝑚(𝑡−1); ∀𝑡 > 1, ∀𝑚, ∀sk (9)

3

∑

sk=1
𝐿 sk𝑚𝑡 = 𝐿

𝑊

𝑚𝑡
; ∀𝑚, ∀𝑡 (10)

𝑃
𝑚ℎ𝑡
𝜏
𝑚
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𝑚
× Ãv
𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
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𝑚
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𝐵
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≤ 𝐷
𝑚𝑡
; ∀𝑡, ∀𝑚 (12)

𝐵
𝑚𝑡
= 0; ∀𝑚, ∀𝑡 = 6 (13)

2

∑

𝑚=1

𝑊
𝑚
𝐼
𝑚𝑡
≤ Max𝑤𝑚1; ∀𝑡 (14)

𝑊
𝑚
𝐼
𝑚𝑡
≤ Max𝑤𝑚2; ∀𝑡, ∀𝑚 = 3 (15)

3

∑

𝑘=1

𝑄
𝑖𝑘𝑡
=

3

∑

𝑚=1

2

∑

ℎ=1

(𝑃
𝑚ℎ𝑡
× 𝑛
𝑖𝑚
) ; ∀𝑡, ∀𝑖. (16)

Constraints (6) and (7) determine the production quan-
tities in regular and overtime production hours. Constraint
(8) defines the number of workers to be trained in each time
period. Constraint (9) is generated based on the company’s
layoff strategy that forbids firing the hired workers and
hiring higher skill workers. Due to the company’s training
strategy, workers are trained to achieve the required skills.
Therefore, as formulated in constraint (9), the number of
workers with higher skills in a time period should increase
or remain constant compared to the former time period.
Constraint (10) ensures that the total number of workers
with different skill levels for producing a certain type of
product is equal to the number of dedicated workers to the
corresponding production line. Constraint (11) considers the
limitation associated with the capacity of production lines
taking into account performance and availability percentages
of production lines. To be more illustrative, the formulas
used for obtaining the values of performance and availability
percentages of production lines are presented as follows:

Availability percentage of production line 𝑚(Av
𝑚
)

= (
Operating time

Planned production time
) × 100,

(17)

in which operating time is obtained from subtracting shut
down durations (such as equipment failure, material short-
age, and changeover time) from the planned production time.

Performance percentage of production line 𝑚(Pr
𝑚
)

= (
Net operating time
Operating time

) × 100,

(18)

where net operating time is the result of removing speed loss
durations (such as machine wear, substandard material, and
operator inefficiency) from the operating time.

Constraint (12) states that the backorder level must not
exceed the customer demand in each time period. Constraint
(13) imposes an obstacle on having any backorder level at the
end of the specified time horizon. Constraints (14) and (15)
emphasize the limits on the warehouses’ capacity for storing
finished products and finally constraint (16) identifies the
quantity of raw materials to be purchased from the suppliers.

4. Providing a Solution to the Model

In general, in the process of solving a possibilistic fuzzy
programming problem, the uncertain nature of parameters
imposes two main issues: managing the relationship between
the fuzzy sides of constraints and obtaining the optimal
value for the objective function which involves some fuzzy
parameters. Based on Jiménez et al. [37] the answers for these
two questions are related to the process of ranking fuzzy
numbers. Many approaches have been introduced in the
literature addressing the problem of ranking fuzzy numbers
[38]. This study applies the method introduced by Jiménez
et al. [37] to rank the fuzzy constraints and objectives. The
method uses two main concepts, that are, feasibility and
optimality, for dealing with inequality relations in constraints
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and ranking fuzzy objective functions, respectively. Unlike
some ranking approaches that do not agree with each
other, this approach verifies all properties used in other
ranking approaches applied for ranking fuzzy numbers [37].
In addition, the method preserves the linearity of a linear
programming model that makes it computationally efficient.
It also does not increase the number of objective functions
and inequality constraints [27]. Therefore, it is suitable for
solving large scale fuzzy linear programming models. The
method uses fuzzy relation for comparison of fuzzy numbers,
while many other relevant methods use comparison relation
that does not provide any information about likely violation
of constraints (feasibility concept) and just simply state that
a fuzzy number is bigger or smaller than others [37]. The
feasibility and optimality concepts in this method allow the
decision maker to interactively make a trade-off between
the degree of violation of constraints (feasibility degree) and
the degree of accomplishment of her/his targeted goal. This
method is based on an expected interval and expected value
of fuzzy numbers, which are considered as the two strong
mathematical concepts [39] and were initially introduced by
Yager [40] and Dubois and Prade [41] and continued by
Heilpern [42] and Jiménez et al. [37]. Prior to explaining
the methodology used for solving the constructed fuzzy
mathematical model, some relevant terms are defined in the
following section.

4.1. Definition of Terms

Fuzzy Number.A fuzzy number is a fuzzy set 𝑎 on the real line
𝑅 with the membership function shown in

𝑢 = 𝜇
𝑎 (𝑥) =

{{{{{{{

{{{{{{{

{

0 ∀𝑥 ∈ (−∞, 𝑎
1
]

𝑓
𝑎 (𝑥) increasing ∀𝑥 ∈ [𝑎

1
, 𝑎
2
]

1 ∀𝑥 ∈ [𝑎
2
, 𝑎
3
]

𝑔
𝑎 (𝑥) decreasing ∀𝑥 ∈ [𝑎

3
, 𝑎
4
]

0 ∀𝑥 ∈ [𝑎
4
, +∞)

(19)

in which 𝑎 = (𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
).

An 𝛼-Cut of a Fuzzy Number 𝑎. It is a slice through the fuzzy
number 𝑎 which produces a nonfuzzy set and is defined as
𝑎
𝛼
= {𝑥 ∈ 𝑅; 𝜇

𝑎
(𝑥) ≥ 𝛼; 0 < 𝛼 ≤ 1}. Based on this definition,

it can be written as 𝑎
𝛼
= [𝑓
−1

𝑎
(𝑢), 𝑔
−1

𝑎
(𝑢)]. In such cases when

𝑓
𝑎
and 𝑔

𝑎
are linear functions, the membership function

presented in (19) is the membership function of a trapezoidal
fuzzy number, denoted by (𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
). If 𝑎

2
= 𝑎
3
, the

trapezoidal fuzzy number is converted to the triangular fuzzy
number denoted by (𝑎

1
, 𝑎
2
, 𝑎
3
) [37].

Expected Interval and Expected Value of a Fuzzy Number.
Expected interval of a fuzzy number was first introduced by
Heilpern [42]. Considering (19), an expected interval of a
triangular fuzzy number can be represented as

EI (𝑎) = [𝐸𝑎
1
, 𝐸
𝑎

2
] = [∫

1

0

𝑓
−1

𝑎
(𝑢) 𝑑𝑢, ∫

1

0

𝑔
−1

𝑎
(𝑢) 𝑑𝑢] . (20)

In addition, based on Heilpern’s [42] definition, an expected
value of a fuzzy number is half point of its expected interval.
Then, we have

EV (𝑎) =
𝐸
𝑎

1
+ 𝐸
𝑎

2

2
. (21)

Therefore, for a triangular fuzzy number 𝑎 = (𝑎
1
, 𝑎
2
, 𝑎
3
), the

resulting interval and expected value would be

EI (𝑎) = [
𝑎
1
+ 𝑎
2

2
,
𝑎
2
+ 𝑎
3

2
] ,

EV (𝑎) =
𝑎
1
+ 2𝑎
2
+ 𝑎
3

4
.

(22)

It is notable that in some literature, the degree of a deci-
sion maker’s optimism has been incorporated in calculating
the expected interval of a fuzzy number as well.
In addition, based on Dubois and Prade [41], for two fuzzy
numbers 𝑎 and �̃�, the following equalities are used:

EI (𝜌𝑎 + 𝜎�̃�) = 𝜌EI (𝑎) + 𝜎EI (�̃�) ,

EV (𝜌𝑎 + 𝜎�̃�) = 𝜌EV (𝑎) + 𝜎EV (�̃�) .
(23)

Definition 1 (see [43]). For any pair of fuzzy numbers 𝑎 and
�̃�, the degree in which 𝑎 is bigger than �̃� can be defined as
follows:

𝜇
𝑀
(𝑎, �̃�)

=

{{{{

{{{{

{

0 if 𝐸𝑎
2
− 𝐸
𝑏

1
< 0

𝐸
𝑎

2
− 𝐸
𝑏

1

𝐸
𝑎

2
− 𝐸
𝑏

1
− (𝐸
𝑎

1
− 𝐸
𝑏

2
)

if 0 ∈ [𝐸𝑎
1
− 𝐸
𝑏

2
, 𝐸
𝑎

2
− 𝐸
𝑏

1
]

1 if 𝐸𝑎
1
− 𝐸
𝑏

2
> 0,

(24)

where [𝐸𝑎
1
, 𝐸
𝑎

2
] and [𝐸𝑏

1
, 𝐸
𝑏

2
] are the expected intervals of 𝑎 and

𝑏.

When 𝜇
𝑀
(𝑎, �̃�)= 0.5, it is said that 𝑎 and �̃� are indifferent,

and when 𝜇
𝑀
(𝑎, �̃�) ≥ 𝛼 it is said that 𝑎 is bigger than, or equal

to, �̃� at least in degree 𝛼 and we indicate it by 𝑎≥
𝛼
�̃�.

Definition 2 (see [43]). Given a decision vector 𝑥 ∈ 𝑅𝑛, it is
feasible in degree 𝛼 (or 𝛼-feasible) if

min
𝑖=1,...,𝑚

{𝜇
𝑀
(𝑎
𝑖
𝑥, �̃�
𝑖
)} = 𝛼, (25)

where 𝑎
𝑖
= (𝑎
𝑖1
, 𝑎
𝑖2
, . . . , 𝑎

𝑖𝑛
); it can be said that

𝑎
𝑖
𝑥 ≥
𝛼
�̃�
𝑖
, 𝑖 = 1, . . . , 𝑚. (26)

Referring to (24), it is equivalent to

𝐸
𝑎
𝑖
𝑥

2
− 𝐸
𝑏
𝑖

1

𝐸
𝑎
𝑖
𝑥

2
− 𝐸
𝑎
𝑖
𝑥

1
+ 𝐸
𝑏
𝑖

2
− 𝐸
𝑏
𝑖

1

≥ 𝛼, 𝑖 = 1, . . . , 𝑚, (27)

or

[(1 − 𝛼) 𝐸
𝑎
𝑖

2
+ 𝛼𝐸
𝑎
𝑖

1
] 𝑥 ≥ 𝛼𝐸

𝑏
𝑖

2
+ (1 − 𝛼) 𝐸

𝑏
𝑖

1
. (28)
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Definition 2 answers the feasibility issue. In other words, 1−𝛼
is the risk of unfeasibility of the solution. However, for the
optimality issue, we should refer to Definition 3.

Definition 3 (see [43]). Consider the following classical fuzzy
linear programming problem with all fuzzy parameters:

Min 𝑐𝑡𝑥,

𝑥 ∈ {𝑥 ∈ 𝑅
𝑛
| 𝑎
𝑖
𝑥 ≥ �̃�
𝑖
, 𝑖 = 1, . . . , 𝑚, 𝑥 ≥ 0} ,

(29)

in which 𝑐 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) and 𝑎

𝑖
= (𝑎
𝑖1
, 𝑎
𝑖2
, . . . , 𝑎

𝑖𝑛
). All the

parameters are described based on triangular fuzzy numbers
and decision vector 𝑥 ∈ 𝑅𝑛 is assumed to be crisp. A vector
𝑥
∗

𝛼
∈ 𝑅
𝑛 is an 𝛼-acceptable optimal solution for model

(29), if it is an optimal solution to the following crisp linear
programming model:

Min EV (𝑐𝑡) 𝑥

𝑥 ∈ {𝑥 ∈ 𝑅
𝑛
| 𝑎
𝑖
𝑥 ≥ �̃�
𝑖
, 𝑖 = 1, . . . , 𝑚, 𝑥 ≥ 0} ,

(30)

in which 𝑐 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) and 𝑎

𝑖
= (𝑎
𝑖1
, 𝑎
𝑖2
, . . . , 𝑎

𝑖𝑛
).

On the other hand, the set of inequality fuzzy constraints
𝑎
𝑖
𝑥 ≥
𝛼
�̃�
𝑖
, 𝑖 = 1, . . . , 𝑚, can be converted to their equivalent

crisp ones based on Expression (28). Also based on Jiménez
et al.’s [37] approach, equality constraints of 𝑎

𝑖
𝑥 =
𝛼
�̃�
𝑖
are

converted to the following crisp inequalities:

[(1 −
𝛼

2
)𝐸
𝑎
𝑖

2
+
𝛼

2
𝐸
𝑎
𝑖

1
] 𝑥 ≥

𝛼

2
𝐸
𝑏
𝑖

2
+ (1 −

𝛼

2
)𝐸
𝑏
𝑖

1

[(1 −
𝛼

2
)𝐸
𝑎
𝑖

1
+
𝛼

2
𝐸
𝑎
𝑖

2
] 𝑥 ≤ (1 −

𝛼

2
)𝐸
𝑏
𝑖

2
+
𝛼

2
𝐸
𝑏
𝑖

1
.

(31)

4.2. Application of Jiménez et al.’s [37]Approach to the Proposed
Mathematical Fuzzy Model. As described before, to provide
a solution to the model, two main issues of feasibility and
optimality of solution must be taken into account. The
solution feasibility means to what degree it violates none of
the model constraints while the solution optimality implies
to what extent the solution achieves the fuzzy goals [44].
In order to answer these main issues, the novel approach
of Jiménez et al. [37], with all those details clarified in
Section 4.1, are applied to the proposed fuzzy APP model. In
brief, the solution to the model will be provided after passing
through these phases:

(i) modeling the imprecise data using triangular fuzzy
numbers;

(ii) converting themultiobjective fuzzy linearmodel to an
equivalent crisp one;

(iii) solving the resulting multiobjective crisp linear pro-
gramming model using fuzzy goal programming
approach.

4.2.1. Modeling the Imprecise Data Using Triangular Fuzzy
Numbers. The first step in solving a fuzzy mathematical
model is to represent the uncertain parameters by fuzzy

𝜇ã(x)

a1 a2 a3 x

1

Figure 2: Triangular distribution of fuzzy number 𝑎 = (𝑎
1
, 𝑎
2
, 𝑎
3
).

numbers. The triangular possibilistic distribution is the
most common tool to model the imprecise nature of the
fuzzy parameters because of its computational efficiency and
simplicity in acquisition of data [45]. In this phase, those
imprecise data including forecasted demand, production
cost, inventory carrying cost, cost of training workers, cost
of purchasing raw materials, reject rate of raw materials, and
performance and availability percentages of all production
lines are modeled by fuzzy numbers. Figure 2 presents a
triangular distribution corresponding to a fuzzy number 𝑎 =
(𝑎
1
, 𝑎
2
, 𝑎
3
).

The lower bound value 𝑎
1
of fuzzy number 𝑎 shows the

most pessimistic value that has a small likelihood to belong to
the set of available values (with a membership value of zero if
normalized). The value 𝑎

2
of fuzzy number 𝑎 shows the most

possible value that certainly belongs to the set of available
values (with a membership value of 1 after it is normalized).
The upper bound value 𝑎

3
as the most optimistic value has a

small likelihood to belong to the set of available values (with
a membership value of zero if normalized) [46]. Therefore,
fuzzy parameters of the proposed model are modeled as
follows:

𝐷
𝑚𝑡
= (𝐷
1

𝑚𝑡
, 𝐷
2

𝑚𝑡
, 𝐷
3

𝑚𝑡
) ; P̃r

𝑚
= (Pr1
𝑚
,Pr2
𝑚
,Pr3
𝑚
) ;

Ãv
𝑚
= (Av1

𝑚
,Av2
𝑚
,Av3
𝑚
) ; 𝐶

𝑖𝑘
= (𝐶
1

𝑖𝑘
, 𝐶
2

𝑖𝑘
, 𝐶
3

𝑖𝑘
) ;

�̃�
𝑖𝑘
= (𝜃
1

𝑖𝑘
, 𝜃
2

𝑖𝑘
, 𝜃
3

𝑖𝑘
) ; 𝐶

ℎ𝑡
= (𝐶
1

ℎ𝑡
, 𝐶
2

ℎ𝑡
, 𝐶
3

ℎ𝑡
) ;

𝐶
𝐼

𝑚𝑡
= (𝐶
𝐼1

𝑚𝑡
, 𝐶
𝐼2

𝑚𝑡
, 𝐶
𝐼3

𝑚𝑡
) ; 𝐶

𝑝

𝑚ℎ
= (𝐶
𝑝1

𝑚ℎ
, 𝐶
𝑝2

𝑚ℎ
, 𝐶
𝑝3

𝑚ℎ
) ;

P̃A
𝑚
= P̃r
𝑚
× Ãv
𝑚
= (PA1

𝑚
,PA2
𝑚
,PA3
𝑚
) .

(32)

4.2.2. Converting the Multiobjective Fuzzy Linear Model to
an Equivalent Crisp One. Since some of the parameters in
the objective functions and constraints are fuzzy numbers,
we are faced with both imprecise objectives and imprecise
constraints (possibilistic programming). This phase involves
the following:

(i) treating imprecise objective functions (optimality
issue);

(ii) treating imprecise constraints (feasibility issue).

(a) Treating Imprecise Objective Functions. Since there are
some triangular fuzzy parameters in the objective functions,
we can express them based on a triangular possibilistic
distribution. To obtain𝑍1

𝑖
, 𝑍
2

𝑖
, 𝑍
3

𝑖
, all fuzzy parameters in the
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objective function 𝑍
𝑖
are set at their pessimistic, most likely,

and optimistic values, respectively. Therefore, the triangular
fuzzy numbers for the first objective function (quantitative
objective) can be stated as 𝑍

1
= (𝑍
1

1
, 𝑍
2

1
, 𝑍
3

1
), in which

𝑍
1

1
=

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝐻

∑

ℎ=1

𝐶
𝑝1

𝑚ℎ
𝑃
𝑚ℎ𝑡

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

(𝐶
𝐵

𝑚
𝐵
𝑚𝑡
+ 𝐶
𝐼1

𝑚𝑡
𝐼
𝑚𝑡
+ 𝐶
1

ℎ𝑡
𝐿
ℎ

𝑚𝑡
)

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

3

∑

sk=1
𝑆sk𝐿 sk𝑚𝑡 +

𝑇

∑

𝑡=1

𝐾

∑

𝑘=1

𝐼

∑

𝑖=1

𝐶
1

𝑖𝑘
𝑄
𝑖𝑘𝑡

(33)

𝑍
2

1
=

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝐻

∑

ℎ=1

𝐶
𝑝2

𝑚ℎ
𝑃
𝑚ℎ𝑡

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

(𝐶
𝐵

𝑚
𝐵
𝑚𝑡
+ 𝐶
𝐼2

𝑚𝑡
𝐼
𝑚𝑡
+ 𝐶
2

ℎ𝑡
𝐿
ℎ

𝑚𝑡
)

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

3

∑

sk=1
𝑆sk𝐿 sk𝑚𝑡 +

𝑇

∑

𝑡=1

𝐾

∑

𝑘=1

𝐼

∑

𝑖=1

𝐶
2

𝑖𝑘
𝑄
𝑖𝑘𝑡

(34)

𝑍
3

1
=

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

𝐻

∑

ℎ=1

𝐶
𝑝3

𝑚ℎ
𝑃
𝑚ℎ𝑡

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

(𝐶
𝐵

𝑚
𝐵
𝑚𝑡
+ 𝐶
𝐼3

𝑚𝑡
𝐼
𝑚𝑡
+ 𝐶
3

ℎ𝑡
𝐿
ℎ

𝑚𝑡
)

+

𝑇

∑

𝑡=1

𝑀

∑

𝑚=1

3

∑

sk=1
𝑆sk𝐿 sk𝑚𝑡 +

𝑇

∑

𝑡=1

𝐾

∑

𝑘=1

𝐼

∑

𝑖=1

𝐶
3

𝑖𝑘
𝑄
𝑖𝑘𝑡
.

(35)

The same approach is applied to the second and third
objective functions in order to transform them into their
equivalent crisp ones. Based on the methodology explained
earlier, this phase is continued by introducing expected values
of these objective functions as follows:

EV
𝛾
(𝑍
1
) = (1 − 𝛾)

𝑍
1

1
+ 𝑍
2

1

2
+ (𝛾)

𝑍
2

1
+ 𝑍
3

1

2

EV
𝛾
(𝑍
2
) = (1 − 𝛾)

𝑍
1

2
+ 𝑍
2

2

2
+ (𝛾)

𝑍
2

2
+ 𝑍
3

2

2

EV
𝛾
(𝑍
3
) = (1 − 𝛾)

𝑍
1

3
+ 𝑍
2

3

2
+ (𝛾)

𝑍
2

3
+ 𝑍
3

3

2
.

(36)

Parameter 𝛾 defines the degree of a decision maker’s
optimism and can be varied between zero and one [27]. This
study takes a value of 0.3 for parameter 𝛾.

(b) Treating Imprecise Constraints.This section addresses the
issue of feasibility of solution. Here, based on the ranking
approach of Jiménez et al. [37] as presented in (31), all

imprecise (fuzzy) constraints of the model are converted to
their equivalent crisp ones as follows:

2

∑

ℎ=1

𝑃
𝑚ℎ𝑡

≥ (
𝛼

2
)
𝐷
2

𝑚𝑡
+ 𝐷
3

𝑚𝑡

2
+ (1 −

𝛼

2
)
𝐷
1

𝑚𝑡
+ 𝐷
2

𝑚𝑡

2
− 𝐼
𝑚(𝑡−1)

− 𝐵
𝑚𝑡
+ 𝐼
𝑚𝑡
+ 𝐵
𝑚(𝑡−1)

; ∀𝑚, ∀𝑡 > 1

2

∑

ℎ=1

𝑃
𝑚ℎ𝑡

≤ (1 −
𝛼

2
)
𝐷
2

𝑚𝑡
+ 𝐷
3

𝑚𝑡

2
+ (
𝛼

2
)
𝐷
1

𝑚𝑡
+ 𝐷
2

𝑚𝑡

2
− 𝐼
𝑚(𝑡−1)

− 𝐵
𝑚𝑡
+ 𝐼
𝑚𝑡
+ 𝐵
𝑚(𝑡−1)

; ∀𝑚, ∀𝑡 > 1

2

∑

ℎ=1

𝑃
𝑚ℎ𝑡

≥ (
𝛼

2
)
𝐷
2

𝑚𝑡
+ 𝐷
3

𝑚𝑡

2
+ (1 −

𝛼

2
)
𝐷
1

𝑚𝑡
+ 𝐷
2

𝑚𝑡

2

− 𝐵
𝑚𝑡
+ 𝐼
𝑚𝑡
; ∀𝑚, 𝑡 = 1

2

∑

ℎ=1

𝑃
𝑚ℎ𝑡

≤ (1 −
𝛼

2
)
𝐷
2

𝑚𝑡
+ 𝐷
3

𝑚𝑡

2
+ (
𝛼

2
)
𝐷
1

𝑚𝑡
+ 𝐷
2

𝑚𝑡

2

− 𝐵
𝑚𝑡
+ 𝐼
𝑚𝑡
; ∀𝑚, 𝑡 = 1

𝑃
𝑚ℎ𝑡
𝜏
𝑚
≤ Maxℎ𝑡 × [(1 − 𝛼)

𝑃𝐴
2

𝑚
+ 𝑃𝐴
3

𝑚

2

+𝛼
𝑃𝐴
1

𝑚
+ 𝑃𝐴
2

𝑚

2
] ; ∀𝑚, ∀𝑡, ∀ℎ

𝐵
𝑚𝑡
≤ (1 − 𝛼)

𝐷
2

𝑚𝑡
+ 𝐷
3

𝑚𝑡

2
+ 𝛼

𝐷
1

𝑚𝑡
+ 𝐷
2

𝑚𝑡

2
; ∀𝑚, ∀𝑡.

(37)

𝛼 is the feasibility degree [37] of the constraints that has been
assigned by the decision maker based on the risk that he/she
accepts about the violation of constraints imposed by the
obtained solution [44]. In this study, a value of 0.8 has been
considered for the parameter 𝛼.

4.2.3. Solving the Resulting Multiobjective Crisp Linear Pro-
gramming Model. Passing through stages 1 and 2, as shown
in the previous sections, a multiobjective crisp model is
obtained as follows:

Min(EV
𝛾
(𝑍
1
) = (1 − 𝛾)

𝑍
1

1
+ 𝑍
2

1

2
+ (𝛾)

𝑍
2

1
+ 𝑍
3

1

2
)

Min(EV
𝛾
(𝑍
2
) = (1 − 𝛾)

𝑍
1

2
+ 𝑍
2

2

2
+ (𝛾)

𝑍
2

2
+ 𝑍
3

2

2
)

Max(EV
𝛾
(𝑍
3
) = (1 − 𝛾)

𝑍
1

3
+ 𝑍
2

3

2
+ (𝛾)

𝑍
2

3
+ 𝑍
3

3

2
)

Subject to: Equations (8) – (10) ;

Equations (13) – (16) ;

Equation (37) .

(38)
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Table 1: A typical payoff table for identification of positive and
negative ideal solutions.

V∗
1

V∗
2

V∗
3

𝑍
1

𝑍
1
(V∗
1
) 𝑍

1
(V∗
2
) 𝑍

1
(V∗
3
)

𝑍
2

𝑍
2
(V∗
1
) 𝑍

2
(V∗
2
) 𝑍

2
(V∗
3
)

𝑍
3

𝑍
3
(V∗
1
) 𝑍

3
(V∗
2
) 𝑍

3
(V∗
3
)

Table 2: Payoff table for obtaining positive and negative ideal
solutions for the case study.

V∗
1

V∗
2

V∗
3

EV
0.3
(𝑍
1
(𝑥)) 6171886216 11746702890 6217647286

EV
0.3
(𝑍
2
(𝑥)) 6.349 0.192 4.873

EV
0.3
(𝑍
3
(𝑥)) 5.826 4.402 5.826

Table 3: Obtained positive and negative ideal solutions.

PIS NIS
EV
0.3
(𝑍
1
(𝑥)) 6171886216 11746702890

EV
0.3
(𝑍
2
(𝑥)) 0.192 6.349

EV
0.3
(𝑍
3
(𝑥)) 5.826 4.402

To solve the resulting multiobjective model, the fuzzy
goal programming approach has been applied.This approach
involves three different steps including identifying goal values
for the defined objective functions, constructing a mem-
bership function for each of the objective functions based
on the defined goal values, and lastly transforming multiple
objectives to a single one by applying an aggregation operator.
Consider an objective function 𝑍

𝑖
(minimization objective);

the corresponding membership function is presented in
Figure 3.
𝑍
PIS
𝑖

and 𝑍NIS
𝑖

are positive and negative ideal solutions
of objective function 𝑍

𝑖
, respectively. To determine the

values of these two parameters, the approach used by Abd
El-Wahed and Lee [47] has been followed in this study.
Based on their approach, the maximum aspiration level
𝑍
PIS
𝑖

is obtained by solving the model based on a single
objective of 𝑍

𝑖
and ignoring other objective functions.

However, for obtaining the negative ideal solution of an
objective function, one of the following equations should be
applied:

𝑍
NIS
𝑖
= max {𝑍

𝑖
(V∗
𝑗
) ; 𝑖 ̸= 𝑗}

in case of having a minimization objective

𝑍
NIS
𝑖
= min {𝑍

𝑖
(V∗
𝑗
) ; 𝑖 ̸= 𝑗}

in case of having a maximization objective,

(39)

in which V∗
𝑗
is the positive ideal solution of objective function

𝑍
𝑗
. A typical payoff table is shown in Table 1.
Once all the membership functions are constructed, the

fuzzy goal programming model can be formulated. Here, as

𝜇

0
ZPIS
i ZNIS

i

Zi(x)

1

Figure 3: A typical membership function for a minimization
objective.

the final step, the aim is to formulate an equivalent optimiza-
tionmodel taking into account the goal values of all objective
functions as well as the feasibility degree of constraints. To
do so, the max-min operator of Bellman and Zadeh [48] was
selected in order to convert the multiobjective linear model
to an ordinary single objective linear programming model.
By applying the max-min operator, the final model is derived
as follows:

Max 𝜑

Subject to: 𝜑 ≤ 𝜇EV
𝛾
(𝑍
𝑖
(𝑥))
; 𝑖 = 1, 2, 3

Equations (8) – (10) ;

Equations (13) – (16) ;

Equation (37) ;

0 ≤ 𝜑 ≤ 1; 𝑥 ≥ 0.

(40)

It is notable that the values of 𝛼 and 𝛾 are assigned by the
decision maker. In some cases when an unsatisfactory result
is obtained, she/he can change them until a satisfactory result
is achieved.

5. Applying the Proposed Model to the
Company under Study

Using the IBM ILOG CPLEX Optimization Studio (version
12.4) software and applying the data gathered from the
company under study as well as the approach described
earlier, a payoff table for identifying positive and negative
ideal solutions of each objective function was constructed as
shown in Table 2.

Therefore, the positive and negative ideal solutions are
obtained as shown in Table 3.

Applying the obtained PISs and NISs and referring to
Figure 3, the membership functions can be constructed as
depicted in Figures 4, 5, and 6 and formulated in
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𝜇EV
0.3
(𝑍
1
(𝑥))
=

{{{{

{{{{

{

1 EV
0.3
(𝑍
1 (𝑥)) ≤ 6171886216

11746702890 − EV
0.3
(𝑍
1 (𝑥))

11746702890 − 6171886216
6171886216 < EV

0.3
(𝑍
1 (𝑥)) ≤ 11746702890

0 EV
0.3
(𝑍
1 (𝑥)) > 11746702890

𝜇EV
0.3
(𝑍
2
(𝑥))
=

{{{{

{{{{

{

1 EV
0.3
(𝑍
2 (𝑥)) ≤ 0.192

6.349 − EV
0.3
(𝑍
2 (𝑥))

6.349 − 0.192
0.192 < EV

0.3
(𝑍
2 (𝑥)) ≤ 6.349

0 EV
0.3
(𝑍
2 (𝑥)) > 6.349

𝜇EV
0.3
(𝑍
3
(𝑥))
=

{{{{

{{{{

{

0 EV
0.3
(𝑍
3 (𝑥)) ≤ 4.402

EV
0.3
(𝑍
3 (𝑥)) − 4.402

5.826 − 4.402
4.402 < EV

0.3
(𝑍
3 (𝑥)) ≤ 5.826

1 EV
0.3
(𝑍
3 (𝑥)) > 5.826.

(41)

As the final step for solving the constructed fuzzy goal
programming model, the max-min operator of Bellman
and Zadeh [48] was applied as an aggregation operator to
convert the multiobjective linear model to an equivalent
single objective one. Therefore, the final model is shown as
follows:

Max 𝜑

Subject to: 𝜑 ≤ 𝜇EV
0.3
(𝑍
1
(𝑥))

𝜑 ≤ 𝜇EV
0.3
(𝑍
2
(𝑥))

𝜑 ≤ 𝜇EV
0.3
(𝑍
3
(𝑥))

𝜇EV
0.3
(𝑍
1
(𝑥))
=

11746702890 − EV
0.3
(𝑍
1 (𝑥))

11746702890 − 6171886216

𝜇EV
0.3
(𝑍
2
(𝑥))
=

6.349 − EV
0.3
(𝑍
2 (𝑥))

6.349 − 0.192

𝜇EV
0.3
(𝑍
3
(𝑥))
=

EV
0.3
(𝑍
3 (𝑥)) − 4.402

5.826 − 4.402
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1
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𝑍
1

1
+ 𝑍
2

1

2
+(0.3)

𝑍
2
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+𝑍
3

1

2

EV
0.3
(𝑍
2
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𝑍
1

2
+ 𝑍
2

2

2
+(0.3)

𝑍
2

2
+𝑍
3

2

2
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0.3
(𝑍
3
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𝑍
1

3
+ 𝑍
2

3

2
+(0.3)

𝑍
2

3
+𝑍
3

3

2

Equations (8) – (10) ;

Equations (13) – (16) ;

Equation (37) ;

0 ≤ 𝜑 ≤ 1; 𝑥 ≥ 0,

(42)

where 𝛼 = 0.8 is substituted in (37).

6. Discussion of Results

Using the aforementioned software, the detailed solutions to
the above model were obtained as presented in Tables 4, 5,
and 6. As stated earlier, the values for parameters𝛼 and 𝛾 have
been considered as 0.8 and 0.3, respectively.

Table 4 contains the optimal values obtained for each of
the objective functions. As can be seen, the obtained optimal
values of objective functions are relatively close to the aspi-
ration levels that have been defined in (41) and presented in
Figures 4 to 6. Table 5 presents the results obtained for some
decision variables, including inventory and backorder levels,
production quantities, and number of workers to be trained
in different time periods. Investigating these results shows
that incurring inventory and having overtime production are
more preferred than having backorders inmany time periods.
The reason can be attributed to the higher penalty cost of
backorders compared to the cost of carrying inventory or/and
having overtime production in the company under study. In
addition, considering the third objective function that aims to
increase customer service level by reducing backorder levels
has its own effect on obtaining such results.

Based on the results obtained for the number of workers
to be trained (the last column of Table 5) and the results
shown in Table 6 which suggest the number of workers with
certain level of skill to be hired at the beginning of each time
period, it is concluded that hiring workers with the required
skill levels and avoiding training cost is more beneficial for
the company under study.

Results related to purchasing raw materials 𝑄
𝑖𝑘𝑡

which
are not shown because of space limitation determine the
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1
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Figure 4: Membership function for the first objective.

0.192 6.349

1

𝜇EV0.3 (Z̃2(x))

EV0.3(Z̃2(x))

Figure 5: Membership function for the second objective.

Table 4: Results obtained for objective functions and 𝜑.

1st objective 6277251051
2nd objective 0.31
3rd objective 5.83
𝜑 0.98

quantity of different types of raw materials to be purchased
from different suppliers in various time periods, taking into
account two important elements, that are, cost of purchasing
and lower reject rate of purchased components as a measure
of quality.

As one of the contributions of this research is to signify
the importance of considering the performance and avail-
ability levels of production lines in developing an APP, a
comparisonwas performed between the results obtainedwith
and without considering these two parameters in the model.

Figures 7, 8, and 9 present a comparison between the
results obtained for the three objective functions, that are,
minimization of cost, maximization of quality (minimization
of quality degradation), and maximization of customer ser-
vice level, with and without considering the performance and
availability of production lines. In addition, Figures 10 to 12
provide the same comparison between the results obtained
for some decision variables including production quantity
(in regular time and overtime), inventory level, and backo-
rder level, respectively. The differences between the results
obtained illustrate the role of the two factors (performance
and availability levels) in developing a practical and real
APP. Failure to take into account these two parameters can
lead planners to inaccurate results which are completely
different from the actual results obtained in their presence.
The differences between the outputs in the two considered
situations are due to the overestimation of production capac-
ity stemming from ignoring the level of performance and

1

4.402 5.826

EV0.3(Z̃3(x))

𝜇EV0.3 (Z̃3(x))

Figure 6: Membership function for the third objective.

6277

5358

Level of operational cost (millions) 

With considering production
lines’ performance and

availability

Without considering production
lines’ performance and

availability

Figure 7: Comparison between the results obtained for the first
objective function.

availability of production lines. In other words, unrealistic
assumption about the capacity of production lines results in
ineffective production planning. For example, the quantity
of products that can be generated during regular time has
been overestimated and the required quantity to be produced
during overtime has been underestimated (Figure 10). Fig-
ures 11 and 12 also show the underestimation of inventory
and backorder levels, respectively. The overestimation of
production quantity in regular time is due to the overesti-
mation of production capacity that allows generating more
products in regular time in order to lower the production
quantity in overtime and consequently the associated cost.
The higher levels of total inventory and backorder, when
considering the performance and availability parameters, can
be associated with the lack of capacity for producing the
required number of products in the corresponding time
periods. Therefore, the company should compensate for the
shortage by incurring higher inventory and carrying more
backorder levels. Underestimating backorder and inven-
tory levels can have at least two consequences. The first
one results in underestimation of operational cost due to
underestimation of backorder and inventory levels as the
two main portions of the total operational cost (Figure 7)
and the second consequence manifests itself in producing
behind schedule and having inaccurate backorder levels
which ultimately leads to customer dissatisfaction and sales
loss. Therefore, in order to avoid developing an impractical
APP with unrealistic estimation of resources on hand, it is
necessary to take into account performance and availability
factors when developing a practical APP.
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Table 5: Results corresponding to inventory and backorder levels, production quantity, and number of workers to train.

Product Time period Inventory level Backorder level
Regular time
production
quantity

Overtime
production
quantity

Number of
workers to train

1 1 9031 0 8445 5278 0
1 2 4538 0 8445 5278 0
1 3 3081 0 8445 5278 0
1 4 0 6587 8445 5278 0
1 5 0 9424 8445 5278 0
1 6 0 0 7082 5278 0
2 1 3265 0 0 4579 0
2 2 7312 0 4800 4579 0
2 3 5018 0 0 0 0
2 4 0 0 0 0 0
2 5 2837 0 7326 0 0
2 6 0 0 0 3517 0
3 1 7981 0 7420 10929 0
3 2 19260 0 17487 10929 0
3 3 8679 0 17487 10929 0
3 4 20205 0 17487 10929 0
3 5 18433 0 17487 10929 0
3 6 0 0 17487 10929 0

Table 6: Number of workers with the required skill levels in different time periods.

Product Skill
level

Time
period

Number of
workers Product Skill

level
Time
period

Number of
workers Product Skill

level
Time
period

Number of
workers

1 1 1 0 2 1 1 0 3 1 1 0
1 1 2 0 2 1 2 0 3 1 2 0
1 1 3 0 2 1 3 0 3 1 3 0
1 1 4 0 2 1 4 0 3 1 4 0
1 1 5 0 2 1 5 0 3 1 5 0
1 1 6 0 2 1 6 0 3 1 6 0
1 2 1 10 2 2 1 10 3 2 1 6
1 2 2 10 2 2 2 10 3 2 2 6
1 2 3 10 2 2 3 10 3 2 3 6
1 2 4 10 2 2 4 10 3 2 4 6
1 2 5 10 2 2 5 10 3 2 5 6
1 2 6 10 2 2 6 10 3 2 6 6
1 3 1 0 2 3 1 0 3 3 1 0
1 3 2 0 2 3 2 0 3 3 2 0
1 3 3 0 2 3 3 0 3 3 3 0
1 3 4 0 2 3 4 0 3 3 4 0
1 3 5 0 2 3 5 0 3 3 5 0
1 3 6 0 2 3 6 0 3 3 6 0

7. Sensitivity Analysis

Figures 13 to 15 provide information about sensitivity analysis,
which was performed on parameters 𝛼 and 𝛾. As clarified
earlier, these two parameters were arbitrarily set by the

decision maker. In selecting these parameters, the decision
maker ran into performing a trade-off between obtaining a
better optimal value which is closer to the targeted aspiration
level of the objective function (the set composed of those
values whose membership functions are equal to one) and
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Figure 9: Comparison between the results obtained for the third
objective function.
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Figure 10: Comparison between total production quantities
(assigned to all products) during the time horizon.
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Figure 12: Comparison between total backorder levels (assigned to
all products) during the time horizon.
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Figure 13: Sensitivity analysis on the first objective function.

having a higher degree of satisfaction of constraints, that
is, selecting a higher feasibility degree. A general view of
the results associated with the performed sensitivity analysis
reflects the fact that a better optimal value of an objective
function requires a lesser degree of feasibility (a higher risk
of violating constraints) [37]. As can be generally observed
from Figure 13, better optimal values for the first objective
function, that are, values with higher membership degrees
for the set {𝑥 ∈ 𝑅 | 6171886216 ≤ 𝑥 ≤ 11746702890}

(see Figure 4), are obtained at lesser degrees of feasibility
(lesser values of parameter 𝛼). For example, for a certain
value of 𝛾 in Figure 13, increasing the value of parameter 𝛼
generally results in worsening the value of cost (higher cost)
and obtaining optimal solutions with a lower membership
degree for the set introduced above. Although the second
and third objective functions (Figures 14 and 15, resp.) show
relatively subtle sensitivity, the trends shown in these two
figures do not reveal conflicts with the aforementioned fact.

8. Conclusions

In this paper, an attempt was made to propose an integer
linear programming model for APP of an automotive parts
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Figure 14: Sensitivity analysis on the second objective function.
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Figure 15: Sensitivity analysis on the third objective function.

manufacturing company in a fuzzy environment that takes
into account quality of products as well as other common
objectives used in the literature which are minimization
of cost and maximization of customer service level. Since,
in the real world, many planners have some qualitative
objectives expressed in the form of linguistic terms, an effort
was made to incorporate a qualitative objective function
in the construction of the mathematical model. To make
the plan more practical, it has taken into account the real
capacity of production lines when formulating the model
through the consideration of two important factors which
are performance and availability of production lines. The
model was solved using the IBM ILOG CPLEX software.
To highlight the importance of considering the performance
and availability of production lines, a comparison was made
between the results obtained from solving the model with
and without the consideration of these two factors. The

comparison obviously showed that ignoring these two factors
can result in generating an inaccurate plan which is not
practical in reality.
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