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A numerical boundary integral scheme is proposed for the solution to the system of eld equations of plane. The stresses are
prescribed on one-half of the circle, while the displacements are given.The considered problemwithmixed boundary conditions in
the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The
equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this
stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are
the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses
or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a
singularity at each of the two separation points, thought to be of logarithmic type.The results are discussed and boundary plots are
given.We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary
collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the
singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the
singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical
schemes is discussed.

1. Introduction

The plane problem of the linear theory of elasticity has
received considerable attention long ago as being a simplified
alternative to the more realistic three-dimensional problems
of practical interest. A large class of two-dimensional prob-
lems has been tackled using various analytical techniques.
Due to the increasing mathematical difficulties encountered
in the theoretical studies of problems involving arbitrary
boundary shapes or complicated boundary conditions, many
purely numerical techniques have been developed in the past
few decades, which rely on finite difference or finite element
techniques. In both methods, the natural boundary of the
body is usually replaced by an outer polygonal shape which
involves a multitude of corner points and necessarily adds
or deletes parts to the region occupied by the body. This,
in turn, necessitates the application of boundary conditions
on artificial boundaries, a fact that introduces additional

inaccuracies into the solution. Minimizing the error requires
large computing times.

Many of the disadvantages of the numerical techniques
are overcome by the use of alternative, semianalytical treat-
ments based on boundary integral formulations of the prob-
lem. Such approaches are usually classified under the general
title of boundary integral methods. They have the advantage
of reducing the volume of calculations by considering, at one
stage, only the boundary values of the unknown functions
and then using them to find the complete solution in
the bulk. In addition, the procedure deals exclusively with
the real boundary of the medium (restricted, though, to
certain regularity conditions) and need not introduce arti-
ficial boundaries. An extensive account of integral equation
methods in potential theory and in elastostaticsmay be found
in [1, 2]. Natroshvili et al. [3] give a brief review of boundary
integral methods as applied to the theory of micropolar
elasticity. Constanda [4] investigates the use of integral
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equations of the first kind in plane elasticity. Atluri and
Zhu [5] present a meshless local Petrov-Galerkin approach
for solving problems of elastostatics. Sladek et al. [6] and
Rui et al. [7] present meshless boundary integral methods
for 2D elastodynamic problems. Elliotis et al. [8] present a
boundary integral method for solving problems involving the
biharmonic equation with crack singularities. Li et al. [9]
present a numerical solution for models of linear elastostatics
involving crack singularities.

The solution to plane problems of elasticity for isotropic
media with mixed boundary conditions is a difficult task.
Boundary methods may be useful in providing such solu-
tions, especially when the geometry of the domain boundary
is not simple. Several papers deal with such problems,
either for Laplace’s equation or for the biharmonic equation.
Shmegera [10] finds exact solutions of nonstationary contact
problems of elastodynamics for a half-plane with friction
condition in the contact zone in a closed form. A newmethod
of solution based on the use of Radon transform is used.
Schiavone [11] presents integral solutions to mixed prob-
lems in plane strain elasticity with microstructure. Haller-
Dintelmann et al. [12] consider three-dimensional elliptic
model problems for heterogeneous media, including mixed
boundary conditions. Helsing [13] studies Laplace’s equation
under mixed boundary conditions and their solution by an
integral equation method. Problems of elasticity are also
considered. Lee et al. [14, 15] study singular solutions at
corners and cracks in linear elastostatics undermixed bound-
ary conditions. Explicit solutions are obtained. Khuri [16]
outlines a general method for finding well-posed boundary-
value problems for linear equations of mixed elliptic and
hyperbolic type, which extends previous techniques. This
method is then used to study a particular class of fully
nonlinear mixed type equations.

Abou-Dina and Ghaleb [17, 18] proposed a method to
deal with the static, plane problems of elasticity in stresses
for homogeneous isotropic media occupying simply con-
nected regions. The method relies on the representation of
the biharmonic stress function in terms of two harmonic
functions and on the well-known integral representation of
harmonic functions expressed in real variables.These authors
applied theirmethod to a number of examples with boundary
conditions of the first or of the second type only but did
not consider mixed conditions. Constanda [19] discusses
Kupradze’s method of approximate solution in linear elas-
ticity. The same author [20] explains the advantages and
convenience of the use of real variables due to its generality
in dealing with the different forms of the boundary, unlike
the approach based on the use of complex variables “where
the essential ingredients of the solution must be constructed
in full for every individual situation.” Abd-Alla et al. [21]
investigated the effect of the nonhomogeneity on the com-
posite infinite cylinder of isotropic material. Abd-Alla and
Farhan [22] investigated the effect of the nonhomogeneity on
the composite infinite cylinder of orthotropicmaterials. Abd-
Alla et al. [23] investigated the effect of magnetic field and
nonhomogeneity on the radial vibrations in hollow rotating
elastic cylinder. Abd-Alla et al. [24] studied the propagation
of Rayleigh waves in a rotating orthotropic material elastic

half-space under initial stress and gravity. The extensive
literature on the topic is now available and we can only
mention a few recent interesting investigations in [25–28].

In the present paper, we propose a numerical scheme
for the solution to a mixed boundary-value problem of
plane, linear elasticity for homogeneous, isotropic elastic
bodies occupying a circular domain. Part of the boundary
is subjected to a given pressure, and the remaining part
of the boundary is fixed. The initial problem with mixed
boundary conditions is replaced by two subproblems with
homogeneous boundary conditions, one of each type, having
a common solution. Following the scheme presented in [17],
the equations for each of these two subproblems are reduced
to a system of boundary integral equations which are then
discretized in the usual way, and the problem at this stage
is reduced to the solution to a linear system of algebraic
equations. The obtained results are thoroughly discussed
and graphs are given. In particular, we put in evidence
the singular behavior of the tangential stress component
at the two separation boundary points. Three-dimensional
plots for the stress function, the stress components, and the
displacement components in the whole domain, obtained
by the boundary collocation method, are also provided. A
singular solution is proposed; the corresponding singular
stresses and displacements are plotted. The ensuing form of
the singular tangential stress is seen to be compatible with the
boundary values obtained earlier. The efficiency of the used
numerical schemes is discussed. All figures were produced
using Mathematica 7.0 software.

2. Problem Formulation and Basic Equations

Let us consider 𝐷 as the circular region occupied by the
isotropic elastic medium. Its contour 𝐶 has parametric
representation

𝑥 = 𝑎 cos (𝜃) , 𝑦 = 𝑎 sin (𝜃) , 0 ≤ 𝜃 < 2𝜋, (1)

where (𝑥, 𝑦) denote a pair of orthogonal Cartesian coordi-
nates in the plane of 𝐷 with origin 𝑂 at the center of the
circle and 𝜃 is the polar angle measured from the 𝑥-axis. For
application, we will take 𝑎 = 1. Let n be the unit outwards
normal to𝐶 and 𝜏 the unit vector tangent to𝐶 at any arbitrary
point, in the positive sense associated with 𝐶. One has

𝜏 =
𝑥̇

𝜔
i +

̇𝑦

𝜔
j, n =

̇𝑦

𝜔
i − 𝑥̇
𝜔
j, (2)

where the dot over a symbol denotes differentiation with
respect to 𝜃, and

𝜔 = √𝑥̇2 + ̇𝑦2 = 𝑎 = 1. (3)

The general equations of the linear theory of elasticity for
a homogeneous and isotropic material are well established
and may found in standard references. In what follows,
we will quote these equations as presented in [17] without
proof, to be used throughout the paper. In the absence of
body forces, the equations of equilibrium are automatically
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satisfied if the identically nonvanishing stress components are
defined through the stress function 𝑈 by the relations

𝜎
𝑥𝑥
=
𝜕
2
𝑈

𝜕𝑦2
, 𝜎

𝑦𝑦
=
𝜕
2
𝑈

𝜕𝑥2
, 𝜎

𝑥𝑦
=
𝜕
2
𝑈

𝜕𝑥𝜕𝑦
. (4)

With respect to polar coordinates, the stress components
are

𝜎
𝑟𝑟
=
1

𝑟

𝜕𝑈

𝜕𝑟
+
1

𝑟2

𝜕
2
𝑈

𝜕𝜃2
, 𝜎

𝜃𝜃
=
𝜕
2
𝑈

𝜕𝑟2
,

𝜎
𝑟𝜃
=
1

𝑟2

𝜕𝑈

𝜕𝜃
−
1

𝑟

𝜕
2
𝑈

𝜕𝑟𝜕𝜃
.

(5)

It is assumed that the stress function 𝑈 ∈ 𝐶4(𝐷) and that
its second order partial derivatives are univalued functions in
the whole region𝐷. Hooke’s law reads

𝜎
𝑥𝑥
=

V𝐸
(1 + V) (1 − 2V)

[
𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦
] +

𝐸

(1 + V)
𝜕𝑢

𝜕𝑥
,

𝜎
𝑦𝑦
=

V𝐸
(1 + V) (1 − 2V)

[
𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦
] +

𝐸

(1 + V)
𝜕𝑢

𝜕𝑦
,

𝜎
𝑥𝑦
=

𝐸

2 (1 + V)
[
𝜕𝑢

𝜕𝑦
+
𝜕V
𝜕𝑥
] ,

(6)

where 𝐸 and V are Young’s modulus and Poisson’s ratio,
respectively, for the considered elastic medium.

The compatibility condition for the solution to (6) for
the displacement components leads to the following homo-
geneous biharmonic equation for the stress function 𝑈:

Δ
2
𝑈 = 0. (7)

The stress function 𝑈 solving (7) is

𝑈 = 𝑥Φ + 𝑦Φ
𝑐
+ Ψ, (8)

where Φ and Ψ are two harmonic functions, the superscript
𝑐
󸀠 denotes the harmonic conjugate, and 𝐷 is the closure
of 𝐷. Since the boundary integral representation is to be
used, it seems adequate to suppose from the outset that
the functions Φ and Ψ and their conjugates belong to the
class of functions 𝐶2(𝐷). The following representation for
the mechanical displacement components may be easily
deduced:

𝐸

1 + V
𝑢 = −

𝜕𝑈

𝜕𝑥
+ 4 (1 − V) Φ,

𝐸

1 + V
𝜐 = −

𝜕𝑈

𝜕𝑦
+ 4 (1 − V) Φ𝑐.

(9)

In terms of the harmonic functions Φ, Φc, and Ψ, the
stress and the displacement components are expressed as
follows:

𝜎
𝑥𝑥
= 𝑥
𝜕
2
Φ

𝜕𝑦2
+ 2
𝜕Φ
𝑐

𝜕𝑦
+ 𝑦
𝜕
2
Φ
𝑐

𝜕𝑦2
+
𝜕
2
Ψ

𝜕𝑦2
, (10)

𝜎
𝑦𝑦
= 𝑥
𝜕
2
Φ

𝜕𝑥2
+ 2
𝜕Φ

𝜕𝑥
+ 𝑦
𝜕
2
Φ
𝑐

𝜕𝑥2
+
𝜕
2
Ψ

𝜕𝑥2
, (11)

𝜎
𝑥𝑦
= − 𝑥

𝜕
2
Φ

𝜕𝑥𝜕𝑦
− 𝑦
𝜕
2
Φ
𝑐

𝜕𝑥𝜕𝑦
−
𝜕
2
Ψ

𝜕𝑥𝜕𝑦
, (12)

𝐸

1 + V
𝑢 = (3 − 4V) Φ − 𝑥

𝜕Φ

𝜕𝑥
− 𝑦
𝜕Φ
𝑐

𝜕𝑥
−
𝜕Ψ

𝜕𝑥
, (13)

𝐸

1 + V
𝜐 = (3 − 4V) Φ𝑐 − 𝑥

𝜕Φ

𝜕𝑦
− 𝑦
𝜕Φ
𝑐

𝜕𝑦
−
𝜕Ψ

𝜕𝑦
. (14)

3. Boundary Integral Representation of
the Basic Equations

In what follows, we present the boundary integral represen-
tation of the basic equations and boundary conditions to be
used in the sequel. We closely follow the guidelines of [17].

3.1. Boundary Integral Representation of Harmonic Functions.
Let us consider that 𝑓 ∈ 𝐶2(𝐷) is harmonic in 𝐷. We use
the well-known integral representation for 𝑓 at an arbitrary
field point (𝑥, 𝑦) in 𝐷 in terms of the boundary values of the
function 𝑓 and its complex conjugate 𝑓𝑐 in the form

𝑓 (𝑥, 𝑦) =
1

2𝜋
∮
𝑠

[𝑓 ( ́𝑠)
𝜕

𝜕 ́𝑛
ln𝑅 + 𝑓𝑐 ( ́𝑠) 𝜕

𝜕 ́𝑠
ln𝑅]𝑑 ́𝑠, (15)

where 𝑅 is the distance between the point (𝑥, 𝑦) in 𝐷
and the current integration point (𝑥( ́𝑠), 𝑦( ́𝑠)) on 𝑆. The
representation of the conjugate function is given by

𝑓
𝑐
(𝑥, 𝑦) =

1

2𝜋
∮
𝑠

[𝑓
𝑐
( ́𝑠)
𝜕

𝜕 ́𝑛
ln𝑅 − 𝑓 ( ́𝑠) 𝜕

𝜕 ́𝑠
ln𝑅]𝑑 ́𝑠. (16)

The integral representations (15) and (16) for the har-
monic functions𝑓 and𝑓𝑐 replace the usual Cauchy-Riemann
conditions

𝜕𝑓

𝜕𝑥
=
𝜕𝑓
𝑐

𝜕𝑦
,

𝜕𝑓

𝜕𝑦
= −
𝜕𝑓
𝑐

𝜕𝑥
. (17)

When the point (𝑥, 𝑦) tends to a boundary point (𝑥(𝑠), 𝑦(𝑠)),
relation (15) yields

𝑓 (𝑠) =
1

𝜋
∮
𝑠

[𝑓 ( ́𝑠)
𝜕

𝜕 ́𝑛
ln𝑅 + 𝑓𝑐 ( ́𝑠) 𝜕

𝜕 ́𝑠
ln𝑅]𝑑 ́𝑠. (18)

Replacing (𝜕/𝜕 ́𝑛) ln𝑅 by (𝜕/𝜕 ́𝑠)Θ in (15), (16), and their
boundary version (18), where Θ is the complex conjugate of
ln𝑅, it is readily seen that these integral relations are invariant
under the transformation of parameter from the arc length
𝑠 to any other suitable parameter. This property makes the
method more flexible.
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3.2. Conditions for the Uniqueness of the Solution. Before
dealing with each of the two above-mentioned fundamental
problems, we first turn to the conditions to be satisfied in
order to determine the unknown harmonic functions in
an unambiguous manner. This is of primordial importance
for any numerical treatment of the problem, for a proper
use of the solving algorithm. We will require the following
supplementary conditions to be satisfied at the point 𝑄

0
(𝑠 =

0) of the boundary, in order to determine the totality of
the arbitrary integration constants appearing throughout
the solution process. These additional conditions have no
physical implications on throughout the problem.

(i) The vanishing of the function 𝑈 and its first order
partial derivatives at 𝑄

0

𝑈 =
𝜕𝑈

𝜕𝑥
=
𝜕𝑈

𝜕𝑦
= 0. (19)

Or, equivalently,

𝑈 =
𝜕𝑈

𝜕𝑠
=
𝜕𝑈

𝜕𝑛
= 0, (20)

which, in terms of the boundary values of the unknown
harmonic functions, give

𝑥 (0)Φ (0) + 𝑦 (0)Φ
𝑐
(0) + Ψ (0) = 0,

𝑥 (0)Φ
.
(0) + 𝑦 (0)Φ

𝑐
.

(0) + Ψ
.
(0)

+ 𝑥
.
(0)Φ (0) + 𝑦

.
(0)Φ
𝑐
(0) = 0,

𝑥 (0)Φ
𝑐
.

(0) − 𝑦 (0)Φ
.
(0) + Ψ

𝑐
.

(0)

+ 𝑦
.
(0)Φ (0) − 𝑥

.
(0)Φ
𝑐
(0) = 0,

(21)

(ii) The vanishing of the expression

𝑥 (0)Φ
𝑐
(0) − 𝑦 (0)Φ (0) + Ψ

𝑐
(0) = 0. (22)

This last additional condition amounts to determining the
value of Ψ𝑐 at 𝑄

0
and this is chosen to simplify the formule.

3.3. Boundary Condition for the First Fundamental Problem of
Elasticity. In the first fundamental problem, we are given the
force distribution on the boundary 𝑆 of the domain𝐷.

Let

f = 𝑓
𝑥
i + 𝑓
𝑦
j = 𝑓
𝜏
𝜏 + 𝑓
𝑛
n (23)

denote the external force per unit length of the boundary.
Then, at a general boundary point 𝑄, the stress vector

𝜎
𝑛
= f (24)

or, in components,

𝜎
𝑥𝑥
𝑛
𝑥
+ 𝜎
𝑥𝑦
𝑛
𝑦
= 𝑓
𝑥
, 𝜎

𝑥𝑦
𝑛
𝑥
+ 𝜎
𝑦𝑦
𝑛
𝑦
= 𝑓
𝑦
. (25)

The stress function 𝑈 at the boundary point 𝑄

𝜕𝑈

𝜕𝑠
(𝑠) = −𝑥̇ (𝑠) 𝑌 (𝑠) + ̇𝑦 (𝑠)𝑋 (𝑠) ,

𝜕𝑈

𝜕𝑛
(𝑠) = − ̇𝑦 (𝑠) 𝑌 (𝑠) − 𝑥̇ (𝑠)𝑋 (𝑠) ,

(26)

or, in terms of the unknown harmonic functions,

𝑥 (𝑠) Φ̇ (𝑠) + 𝑦 (𝑠)Φ
𝑐
.

(𝑠) + Ψ̇ (𝑠) + 𝑥̇ (𝑠) Φ (𝑠) + ̇𝑦 (𝑠)Φ
𝑐
(𝑠)

= −𝑥̇ (𝑠) 𝑌 (𝑠) + ̇𝑦 (𝑠)𝑋 (𝑠) ,

𝑥 (𝑠) ̇Φ
𝑐
(𝑠) − 𝑦 (𝑠) Φ̇ (𝑠) + Ψ̇

𝑐
(𝑠) + ̇𝑦 (𝑠)Φ (𝑠) − 𝑥̇ (𝑠) Φ

𝑐
(𝑠)

= − ̇𝑦 (𝑠) 𝑌 (𝑠) − 𝑥̇ (𝑠)𝑋 (𝑠) .

(27)

3.4. Boundary Condition for the Second Fundamental Problem
of Elasticity. In this problem, we are given the displacement
vector on the boundary 𝑆 of the domain𝐷. Let this vector be
denoted

d = 𝑑
𝑥
i + 𝑑
𝑦
j = 𝑑
𝜏
𝜏 + 𝑑
𝑛
n. (28)

Multiplying the restriction of expression (13) to the
boundary 𝑆 by 𝑥̇(𝑠) and that of expression (14) by ̇𝑦(𝑠) and
adding, one gets

(3 − 4V) (𝑥̇ (𝑠) 𝜙 (𝑠) + ̇𝑦 (𝑠) 𝜙
𝑐
(𝑠))

− 𝑥 (𝑠) ̇𝜙 (𝑠) − 𝑦 (𝑠) ̇𝜙
𝑐
(𝑠) − 𝜓̇ (𝑠)

=
𝐸

1 + V
(𝑥̇ (𝑠) 𝑑

𝑥
(𝑠) + ̇𝑦 (𝑠) 𝑑

𝑦
(𝑠)) 𝜔.

(29)

Similarly, if one multiplies the restriction of expression
(13) to the boundary 𝑆 by ̇𝑦(𝑠) and that of expression (14) by
𝑥̇(𝑠) and subtracts, one obtains

(3 − 4V) ( ̇𝑦 (𝑠) 𝜙 (𝑠) − 𝑥̇ (𝑠) 𝜙𝑐 (𝑠))

− 𝑥 (𝑠) ̇𝜙
𝑐
(𝑠) + 𝑦 (𝑠) ̇𝜙 (𝑠) − 𝜓̇

𝑐
(𝑠)

=
𝐸

1 + V
( ̇𝑦 (𝑠) 𝑑

𝑥
(𝑠) − 𝑥̇ (𝑠) 𝑑

𝑦
(𝑠)) 𝜔.

(30)

These last two relations may be conveniently rewritten as

(3 − 4V) (𝑥̇ (𝑠) 𝜙 (𝑠) + ̇𝑦 (𝑠) 𝜙
𝑐
(𝑠)) − 𝑥 (𝑠) ̇𝜙 (𝑠)

− 𝑦 (𝑠) ̇𝜙
𝑐
(𝑠) − 𝜓̇ (𝑠) =

𝐸

1 + V
𝑑
𝜏
(𝑠) 𝜔,

(3 − 4V) ( ̇𝑦 (𝑠) 𝜙 (𝑠) − 𝑥̇ (𝑠) 𝜙𝑐 (𝑠)) − 𝑥 (𝑠) ̇𝜙𝑐 (𝑠)

+ 𝑦 (𝑠) ̇𝜙 (𝑠) − 𝜓̇
𝑐
(𝑠) =

𝐸

1 + V
𝑑
𝑛
𝜔.

(31)

3.5. Boundary Conditions for the Third Fundamental Problem
of Elasticity. This is a problem with mixed boundary condi-
tions. For definiteness, we will restrict further considerations
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to the case where one-half of the boundary has a prescribed
pressure on it, while the other half of the boundary is fixed.
This problem will be replaced by two subproblems, each with
homogeneous boundary condition. The first subproblem is
of the first kind. It involves the given known pressure on
the same half of the boundary as the initial problem and an
unknown stress on the other half. This stress is expressed
through its normal and tangential components, respectively,
denoted 𝑃̃

𝑛
, 𝑃̃
𝜏
. The second subproblem is of the second type.

It involves zero displacement on the same half of the bound-
ary as the initial problem and an unknown displacement on
the other half. This displacement is expressed through its
normal and tangential components, respectively, denoted 𝑢̃

𝑛
,

𝑢̃
𝜏
.
In what follows, we will apply this idea to solve three

problems for the ellipse, the nearly circular boundary, and
the Cassini oval. In choosing these boundaries, we have tried
to keep away from boundaries involving singular points,
as our main task is to deal with the mixed boundary
conditions, which, on its own, includes two boundary points
of separation which need special attention.

3.6. Calculation of the Harmonic Functions at Internal Points.
Having determined the boundary values of the harmonic
functions, formulae (15) and (16) may now be used to
calculate the values of these functions at any point (𝑥, 𝑦)
inside the domain. For this we write

𝑅 = √(𝑥 − 𝑥 (𝑠󸀠))
2

+ (𝑦 − 𝑦 (𝑠󸀠))
2

,

𝜕 ln (𝑅)
𝜕𝑛

= n ⋅ ∇ (ln𝑅) ,

𝜕 ln (𝑅)
𝜕𝑠

= 𝜏 ⋅ ∇ (ln𝑅) .

(32)

We can also proceed otherwise. In fact, if we write down
expansions of the four harmonic functions involved in the
calculations in terms of some adequately chosen basis, we
can then determine the expansion coefficients using the
well-known boundary collocation method (BCM). This is
in fact the method we have used to calculate the unknown
functions in the circular domain. The expansions of the four
basic harmonic functions in terms of polar harmonics are as
follows:

Φ =

𝑁

∑

𝑛=1

𝑟
𝑛
(𝐴
𝑛
cos 𝑛𝜃 + 𝐵

𝑛
sin 𝑛𝜃) ,

Φ
𝑐
=

𝑁

∑

𝑛=1

𝑟
𝑛
(𝐴
𝑛
sin 𝑛𝜃 − 𝐵

𝑛
cos 𝑛𝜃) ,

Ψ =

𝑁

∑

𝑛=1

𝑟
𝑛
(𝐸
𝑛
cos 𝑛𝜃 + 𝐷

𝑛
sin 𝑛𝜃) ,

Ψ
𝑐
=

𝑁

∑

𝑛=1

𝑟
𝑛
(𝐸
𝑛
sin 𝑛𝜃 − 𝐷

𝑛
cos 𝑛𝜃) ,

(33)

while the stress function is

𝑈 = 𝑥Φ + 𝑦Φ
𝑐
+ Ψ (34)

and the quantities of practical interest are

2𝜇𝑢 =

𝑁

∑

𝑛=1

𝑟
𝑛
(𝐴
𝑛
cos 𝑛𝜃 + 𝐵

𝑛
sin 𝑛𝜃)

−

𝑁

∑

𝑛=1

𝑛𝑟
𝑛
(𝐴
𝑛
cos (𝑛 − 2) 𝜃 + 𝐵

𝑛
sin (𝑛 − 2) 𝜃)

−

𝑁

∑

𝑛=1

𝑛𝑟
𝑛−1
(𝐸
𝑛
cos (𝑛 − 1) 𝜃 + 𝐷

𝑛
sin (𝑛 − 1) 𝜃) ,

2𝜇𝜐 =

𝑁

∑

𝑛=1

𝑟
𝑛
(𝐴
𝑛
sin 𝑛𝜃 − 𝐵

𝑛
cos 𝑛𝜃)

−

𝑁

∑

𝑛=1

𝑛𝑟
𝑛
(−𝐴
𝑛
sin (𝑛 − 2) 𝜃 + 𝐵

𝑛
cos (𝑛 − 2) 𝜃)

−

𝑁

∑

𝑛=1

𝑛𝑟
𝑛−1
(−𝐸
𝑛
sin (𝑛 − 1) 𝜃 + 𝐷

𝑛
cos (𝑛 − 1) 𝜃) .

(35)

The equations for the normal and the tangential stresses
on any given element of area with unit normal (𝑛

𝑥
, 𝑛
𝑦
) inside

the body or on its boundary are given by the following
formulae:

𝜎
𝑛𝑛
=

𝑁

∑

𝑛=1

𝑟
𝑛−1
𝐴
𝑛
(cos (𝑛 − 1) 𝜃 ((3𝑛 − 𝑛2) 𝑛2

𝑟
+ (𝑛
2
+ 𝑛) 𝑛

2

𝜃
)

+ 2 (𝑛
2
− 𝑛) 𝑛

𝑟
𝑛
𝜃
sin (𝑛 − 1) 𝜃)

+

𝑁

∑

𝑛=1

𝑟
𝑛−1
𝐵
𝑛
(sin (𝑛 − 1) 𝜃 ((3𝑛 − 𝑛2) 𝑛2

𝑟
+ (𝑛
2
+ 𝑛) 𝑛

2

𝜃
)

+ 2 (𝑛
2
− 𝑛) 𝑛

𝑟
𝑛
𝜃
cos (𝑛 − 1) 𝜃)

+

𝑁

∑

𝑛=1

𝑟
𝑛−2
𝐶
𝑛
(cos 𝑛𝜃 ((𝑛 − 𝑛2) 𝑛2

𝑟
+ (𝑛
2
− 𝑛) 𝑛 − 𝜃

2
)

+ 2 (𝑛
2
− 𝑛) 𝑛

𝑟
𝑛
𝜃
sin 𝑛𝜃)

+

𝑁

∑

𝑛=1

𝑟
𝑛−2
𝐷
𝑛
(sin 𝑛𝜃 ((𝑛 − 𝑛2) 𝑛2

𝑟
+ (𝑛
2
− 𝑛) 𝑛

2

𝜃
)

+2 (𝑛 − 𝑛
2
) 𝑛
𝑟
𝑛
𝜃
cos 𝑛𝜃) ,

𝜎
𝑛𝜏
=

𝑁

∑

𝑛=1

𝑟
𝑛−1
𝐴
𝑛
(cos (𝑛 − 1) 𝜃 ((−2𝑛 + 2𝑛2) 𝑛

𝑟
𝑛
𝜃
)

+ (𝑛
2
− 𝑛) (𝑛

2

𝑟
− 𝑛
2

𝜃
) sin (𝑛 − 1) 𝜃)

+

𝑁

∑

𝑛=1

𝑟
𝑛−1
𝐵
𝑛
(sin (𝑛 − 1) 𝜃 ((−2𝑛 + 2𝑛2) 𝑛

𝑟
𝑛
𝜃
)
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Figure 1: Boundary values of the basic harmonic functions.

+ (𝑛 − 𝑛
2
) (𝑛
2

𝑟
− 𝑛
2

𝜃
) cos (𝑛 − 1) 𝜃)

+

𝑁

∑

𝑛=1

𝑟
𝑛−2
𝐶
𝑛
(cos 𝑛𝜃 (−2𝑛 + 2𝑛2) 𝑛

𝑟
𝑛
𝜃
+ (𝑛
2
− 𝑛) 𝑛

2

𝜃

+ 2 (𝑛
2
− 𝑛) (𝑛

2

𝑟
− 𝑛
2

𝜃
) sin 𝑛𝜃)

+

𝑁

∑

𝑛=1

𝑟
𝑛−2
𝐷
𝑛
(sin 𝑛𝜃 (−2𝑛 − 2𝑛2) 𝑛

𝑟
𝑛
𝜃

+ (𝑛 − 𝑛
2
) (𝑛
2

𝑟
− 𝑛
2

𝜃
) cos 𝑛𝜃) .

(36)

The relevant boundary relations are discretized in the
usual way by considering a partition of the boundary. As a
result, the actual boundary is replaced by a contour formed
by broken lines. The differential and integral equations thus
reduce to a rectangular system of linear algebraic equations
which are solved by the least squares method. The conver-
gence of the solution to the discretized system of equations
to the solution to the initial problem was discussed elsewhere
[20]. Here, we only notice the existence of removable singu-
larities in the formulae of integral representation of harmonic
functions. These are dealt with in the manner explained
in [18]. Also, the tangential derivatives of the unknown
harmonic functions have to be evaluated carefully. We have
calculated these derivatives using 15 points.

4. Numerical Results and Discussion

The force acting on one-half of the boundary is a pressure of
intensity 𝑓 given by

𝑓 = −𝑝
0
(sin 𝜃)6 𝜋 < 𝜃 ≤ 2𝜋. (37)

The other half of the boundary is completely fixed:

𝑢 = 𝜐 = 0, 0 < 𝜃 ≤ 𝜋. (38)

For definiteness, we have taken 𝑝
0
= 1. The motivation

for the above choice of the pressure on half the boundary is to
make the pressure distribution tend to zero smoothly enough
at both ends of its interval of definition.

The above boundary integral equations are solved numer-
ically, from which we have obtained the boundary values
of the harmonic functions 𝜙, 𝜙𝑐, 𝜓, 𝜓𝑐, 𝜎̃

𝑛
, 𝜎̃
𝜏
, 𝑢̃
𝑛
, and 𝑢̃

𝜏

and, accordingly, of the stress function 𝑈. The boundary
was discretized by placing a number of nodal points on it
as explained; 240 boundary nodes were needed in order to
get the present results. The nodal points were distributed
uniformly on the boundary. The results are shown below.

Figure 1 gives the boundary values of the four basic
harmonic functions.

All the four figures show a weak discontinuity at the point
𝜃 = 𝜋. It goes without saying that the same takes place for
𝜃 = 0 from symmetry considerations. The emplacements of
these discontinuities are referred to by arrows on the figures.
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Figure 2: Boundary values of the normal and tangential stress and displacement components.

Figure 2 shows the normal and the tangential compo-
nents of the unknown displacement and stress on the relevant
parts of the boundary. As may be noticed three of figures,
some difficulties were encountered when performing the
calculations in the vicinity of the singular points at 𝜃 = 0 and
at 𝜃 = 𝜋. It was not possible to increase the number of nodal
points beyond 240 for stability reasons in order to improve
the results.

The normal displacement component reached zero value
at both separation points as should be, while the tangential
displacement component failed to do so, but the results
improved as the number of nodes was augmented, up to a
certain limit. Unwanted oscillations appeared on the curves
for stress near these two points. Curve fitting techniques by
polynomial functions were used to improve the curves. Addi-
tionally, two logarithmic functions based on the singularities
were used for fitting, only the function 𝜎̃

𝜏
. These are the

smooth curves on the figures, based on these observations.
One suspects the presence of a logarithmic behavior of the
function 𝜎̃

𝜏
at the singular points.

Figure 3 shows the boundary values of the stress func-
tion. The curve is skewed towards the second half of the
boundary, but thus asymmetry should not raise any concerns
as it depends on the additional conditions imposed on this
function.

−0.2

−0.4

−0.6

−0.8

1 2 3 4 5 6

𝜃

U
(𝜃
)

Figure 3: Boundary values of the stress function.

We have used the well-known boundary collocation
method to directly compute the unknown functions 𝜎

𝑛𝑛
, 𝜎
𝑛𝜏
,

𝑢, and 𝜐 on concentric circles centered at the origin inside the
domain using (33)–(36), together with the given boundary
conditions.Thus, there is no ambiguity in the meaning of the
normal unit vector appearing in the equations. A maximum
number of 120 nodes were used.The results are shown on the
following three-dimensional plots, where we have also shown
on each of them the circular region in which the unknown
functions are plotted (Figure 4).
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Figure 4: Displacement and stress components inside the circle by BCM.

The surfaces for the displacement components are in con-
formity with our expectations. The normal stress component
is regular, while the tangential stress component shows the
singular behavior mentioned above (Figure 5).

Here again, we notice a singular behavior of the stress
components 𝜎

𝑦𝑦
and 𝜎
𝑥𝑦
at the two singular boundary points.

In the other cases, the comparison ismadewith the correction
of the analytical results obtained in [29] as a special case.
The numerically obtained results are compared with those
obtained analytically in [30].

5. On the Singular Solution

Wepropose to add a function𝜓
(𝑠)
with boundary singularities

to the function 𝜓, in order to get the required logarithmic
behavior of the function 𝜎

𝑛𝜏
at the singular points (±𝑎, 0).

This function was proposed by Abou-Dina and Ghaleb [31]
in connection with the solution to some boundary-value
problems for Laplace’s equation in rectangular domains; here
it is used in a special setting.

Figure 6 shows the emplacements of the singularities of
function 𝜓

(𝑠)
, as well as the variables 𝜃

1
, 𝜃
2
, 𝜌
1
, and 𝜌

2
.

As to the function 𝜓s, is of the form

𝜓
𝑠
=
1

2𝜋
(𝜌
2

1
(sin 2𝜃

1
ln 𝜌
1
+ 𝜃
1
cos 2𝜃

1
))

+ (𝜌
2

2
(sin 2𝜃

2
ln 𝜌
2
+ 𝜃
2
cos 2𝜃

2
)) ,

(39)

where

𝜌
1
= √𝑟2 − 2𝑎𝑟 cos 𝜃 + 𝑎2,

𝜌
2
= √𝑟2 + 2𝑎𝑟 cos 𝜃 + 𝑎2,

𝜃
1
= tan−1 𝑎 − 𝑟 cos 𝜃

−𝑟 sin 𝜃
,

𝜃
2
= tan−1 𝑟 cos 𝜃 + 𝑎

−𝑟 sin 𝜃
.

(40)

Figure 7 shows the singular stress and displacement
components obtained from the singular function 𝜓

𝑠
. These

functions are also labeled “𝑠.” The singular behavior of
function 𝜎

𝑛𝜏
is clear. It is recalled that the normal and the

tangential components of stress are calculated on concentric
circles centered at the origin inside the domain; thus the
meaning of the unit normal vector is clear.

The details of the calculations and the final results for
the stresses and displacements when the singular function is
added will be considered in a separate publication for other
types of boundaries.

6. Conclusions

The following conclusions are due.
(1) We have considered a boundary-value problem of

the plane theory of elasticity with mixed boundary
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Figure 5: Stress components inside the circle by BCM.
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Figure 6: Singular points.

conditions in a circle. Half of the boundary is sub-
jected to pressure, while the other half is completely
fixed. The shape of the boundary was chosen as the
simplest, in order to focus on problems raised by the
boundary singularities. We have also chosen smooth
boundary pressure that decreases smoothly enough to
zero towards the points of separation.

(2) The correct calculation of this type of problems
requires a large number of boundary points at which
the unknowns are to be calculated. For the present
case, 240 points could be reached without obtaining
satisfactory results in the whole boundary.The reason

for this is the presence of singular boundary points at
the separation points of the boundary conditions.

(3) To get the solution on the boundary, we have replaced
our problem by two subproblems, each with homo-
geneous boundary condition of one type, having a
common solution.

(4) The calculations on the boundary were performed
using a known boundary integral technique involving
harmonic functions only, including regularization
and a careful calculation of the tangential derivatives
of functions using 15 points.

(5) The boundary calculations indicated a logarithmic
behavior of the tangential stress component on the
fixed part of the boundary.

(6) The solution inside the domain was obtained by
the collocation method directly using the prescribed
boundary conditions. A maximum number of 120
uniformly distributed nodes were used.

(7) In solving the arising systems of linear algebraic equa-
tions, we have used least squares andQR-factorization
techniques; both yielded the same results. Each time a
linear system of equations was solved, we verified that
the obtained results satisfy the system.The errors did
not exceed 1%.

(8) We have proposed a solution having a logarithmic
boundary singularity to improve the solution. The
absolute errors in satisfying the boundary conditions
on an interval and including the separation points
could thus be reduced from nearly 3.
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Figure 7: Singular displacement and stress components inside the circle.

(9) The obtained results show stress concentration and
thus indicate the need to introduce domains of pos-
sible plastic behavior of the material around the two
boundary separation points.

(10) The method extends to other geometries of the
boundary. In the presence of corner points, a smooth-
ing process must be applied. Numerical experi-
ments have clearly indicated that the best results are
obtained for boundaries of smoothness of the fourth
order.

(11) Future work will involve more complicated shapes of
the boundary and other types of boundary condi-
tions.
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