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The interior decorationmaterials and the new furniture using formaldehyde, ammonia, and other poisonous substances are known
as the main sources of indoor air pollutions. However, it is still a big challenge to estimate accurately the overall air quality by using
the current measuring tools. Accordingly, the region-dot fusion (RDF) algorithm is proposed to evaluate the air quality in this
paper. For the conversion from a region to a dot, the region-dot function is firstly defined as the summation of the belief function
and the weighted width of the belief interval. In the RDF algorithm, the belief intervals of the two sensors with the basic probability
functions are calculated based on the measurements of formaldehyde sensor and ammonia sensor. Then, the belief intervals are
converted to the specific values. After the computation of collision degree and combination, the pollution level represented by a
belief interval with the maximum probability is selected as the outcome of fusion decision. Compared with the weighted fusion
algorithm and D-S evidence reasoning method, it is experimentally proved that the RDF algorithm can improve the separability of
the belief intervals of the belief functions. Also, the evidence collision degree is decreased dramatically.

1. Introduction

Environment pollution is one of the most severe problems on
the earth. Among them, indoor air pollution produced from
decoration and new furniture is also of concern but easily
ignored. Usually, the decoration materials and the new furni-
ture contain formaldehyde, ammonia, and other poisonous
components. It is quite clear that the indoor air pollution
exists within our living surrounding widely. Aiming at these
poisonous substances, the development of the effective air
quality estimation method is a crucial research topic.

Based on the recent publications, scientists [1] used the
differential optical absorption spectroscopy, Fourier trans-
form infrared spectroscopy, and ceilometer to interpret and
estimate the air quality of the surrounding. However, these
studies were focused exclusively on the outdoor air quality
estimations so that they may not be suitable for indoor case.

For the indoor air quality study, researchers [2]
developed the preconcentrator for the detection of trace
amounts of formaldehyde. In addition, Akshath et al. [3]
detected formaldehyde in food samples by the enhanced

chemiluminescence. Although these methods may detect the
formaldehyde efficiently, the gas mixture which also pollutes
the indoor air was not considered. Panagopoulos et al.
[4] studied the computational fluid dynamics simulation
of volatile organic compounds and indoor air pollution
dispersion. Unfortunately, the evidence collision degree and
imprecision problems were not revealed in these works.

To solve the collision and imprecision problem, the neural
network with Dempster-Shafer evidential reasoning [5] was
applied for data fusion.However, the neural network required
a large number of training samples which were usually
difficult to be obtained. Based on the expert knowledge, Bayes
networks [6] were used to calculate the posterior probabil-
ity. Scientists [7] defined the uncertainty of a hierarchical
quotient space structure and then proposed the information
entropy sequence to complete the reasoning. These methods
have the advantage for the prediction in collision case, but it
may suffer from the differentiation between the collision and
the unknown one.

In advanced study, Wang et al. [8] used the improved
Dempster-Shafer (D-S) evidential reasoning to evaluate the
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quality level of the indoor air efficiently. The uncertainty
problem has been studied, but the evidence collision problem
was not worked out. In another case, the adaptive-weighting
fusion (AWF) method [9] could employ efficiently the orig-
inal data without the experience knowledge, but it lacks
adequate capability in the collision problem.

Opposite to the algorithm from pixels to region [10]
and making use of advantage of the multiple sensor fusion
[11, 12], we developed the region-dot fusion (RDF) algorithm
for the air quality estimation in this paper. In Section 1,
the literature reviews about related study are provided. In
Section 2, the background about the RDF algorithm and the
indoor air quality estimation are described. It includes the
basic probability function, belief function, D-S combination
rule, and adaptive weighted fusion (AWF) algorithm. In
Section 3, we illustrate how the system architecture is erected.
It includes the hardware scheme, software profile, and RDF
algorithm description. In Section 4, the experiments and
comparison analyses are given to demonstrate the proposed
RDF algorithm for the indoor air quality estimation. The
conclusion is given in Section 5.

2. Background

In this section, we introduce the theoretical background of
RDF. It includes the basic probability function, the belief
function, the evidence combination rule, and the AWF
method.

2.1. Basic Probability Function. In the evidential reasoning
theory [13, 14], proposition 𝐴 is an element of identification
frame Γ, and the elements satisfy the incompatible condition.
The basic probability function 𝑃(𝐴) of the proposition 𝐴

can be obtained by analyzing the evidence. It denotes the
accurate belief degree of proposition 𝐴 and represents the
direct support to the proposition 𝐴. The function 𝑃(𝐴) is a
mapping from a set 2Γ to [0, 1]. If the function 𝑃(𝐴) : 2

Γ
→

[0, 1] satisfies the following conditions:

𝑃 (Φ) = 0

𝑃 (𝐴) ≥ 0

∑

𝐴∈2
Θ

𝑃 (𝐴) = 1

∀𝐴 ∈ 2
Γ

(1)

then 𝑃(𝐴) is the basic probability function of proposition 𝐴

and Φ is an empty set and Θ belongs to the integer.

2.2. Belief Function. For a given basic probability assignment
function 𝑃 and an arbitrary proposition 𝐴 ∈ 2

Γ, the
corresponding belief function Bel(𝐴) of proposition 𝐴 is

Bel (𝐴) = ∑

𝑋𝑖⊆𝐴

𝑃 (𝑋
𝑖
) , 𝑖 = 1, 2, . . . , 𝑁, (2)

where𝑋
𝑖
is the 𝑖th component which is included in 𝐴.
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Figure 1: Evidence intervals.

Function Bel(𝐴) represents the total belief degree of
proposition 𝐴

Bel (Φ) = 0

Bel (Ω) = 1,

(3)

whereΩ is the set of the total propositions, andΦ is an empty
set.

The plausibility function Pl(𝐴) is

Pl (𝐴) = 1 − Bel (𝐴) , (4)

where 𝐴 = Γ − 𝐴.
Function Pl(𝐴) is the nonnegation function. It denotes

that the belief degree of the proposition 𝐴 is not denied.
Function Pl(𝐴) is the sum of the basic probability assignment
functions of the sets which have the intersection with the
proposition 𝐴.

If the evidence denies the proposition 𝐴, there is

Pl (𝐴) = 0. (5)

If the evidence does not deny the proposition 𝐴, there is

Pl (𝐴) = 1

Pl (𝐴) ≥ Bel (𝐴) .
(6)

The region [Bel(𝐴),Pl(𝐴)] represents the belief interval
[15, 16] of the proposition 𝐴. If a subset of the identification
frame Γ is the proposition𝐴, and 𝑝(𝐴) > 0, then the subset𝐴
of frame Γ is the focal element of the belief function Bel(𝐴).
Evidence intervals are shown in Figure 1.

2.3. D-S Combination Rule. According to D-S combination
rule [17], if𝑃

1
and𝑃
2
are the belief functions in the same iden-

tification frame Γ, and the focal elements are 𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑘

and 𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑘
, respectively, then the jointed belief func-

tion 𝑃(𝑊) : 2
Γ
→ [0, 1] is written bellow:

𝑃 (𝑊) =

{{{

{{{

{

1

1 − 𝐶
∑

𝑈𝑖∩𝑉𝑗

[𝑃
1
(𝑈
𝑖
) 𝑃
2
(𝑉
𝑗
)] , 𝑈

𝑖
∩ 𝑉
𝑗

̸= Φ

0, 𝑈
𝑖
∩ 𝑉
𝑗
= Φ,

(7)

where

𝑊 = 𝑈
𝑖
∩ 𝑉
𝑗

𝐶 = ∑

𝑈𝑖∩𝑉𝑗=Φ

𝑃
1
(𝑈
𝑖
) 𝑃
2
(𝑉
𝑗
) .

(8)
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The denominator of (7) is a modifying factor, which
is used to normalize the coefficient. In order to avoid the
fact that the nonzero probability is assigned to the empty
set and then the deserted belief degree of the empty set is
assigned to the nonempty set, the factor (1−𝐶) was employed.
The parameter 𝐶 reflects the collision degree between the
evidences during the fusion process, 0 ≤ 𝐶 ≤ 1. The larger
the parameter 𝐶 is, the severer the collision degree would be.
If the parameter𝐶 is close to 1, the unreasonable result would
appear likely, and the fusion decision would be opposite to
the intuition. If 𝐶 is equal to 1, the D-S theory could not be
used for fusion.

D-S evidence combination rule provides the method to
combine two evidences. Formore evidences combination, we
may use (7) repeatedly to make the pairwise combinations
until the solution is satisfactory.

2.4. Adaptive Weighted Fusion Algorithm. In AWF method,
the optimal function is the least mean-squared error function
of the measurement of a sensor. The fusion value of the mea-
surement of a sensor is obtained by finding the corresponding
weights. In this process, the AWF method is used [18–22].

Assume that the 𝑛 measurements of a sensor, 𝑋 =

[𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
], are independent of each other. The vari-

ances of the sensors are 𝜎
2

1
, 𝜎
2

2
, . . . , 𝜎

2

𝑛
, respectively. The

weighted factors are introduced as 𝜔 = [𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
]

𝑛

∑

𝑖=1

𝜔
𝑖
= 1. (9)

The detailed steps of the AWF algorithm are described as
follows [18, 23–25].

Firstly, calculate the mean value 𝑋
𝑖
(𝑘) of sensor 𝑖 using

the 𝑛measurements

𝑋
𝑖 (𝑛) =

1

𝑛

𝑛

∑

𝑗=1

𝑋
𝑗 (𝑖 = 1, 2, . . . , 𝑘) , (10)

where 𝑋
𝑗
is the 𝑗th measurement; 𝑛 is the total number of

measurements of a sensor; and 𝑖 represents the 𝑖th sensor
among the 𝑘 sensors.

Secondly, find each variance 𝜎2
𝑖
[26, 27] of each sensor 𝑖

𝜎
2

𝑖
= 𝐸 [(𝑋 − 𝑋)

2

] . (11)

Thirdly, calculate the optimal weighted factor 𝜔
𝑖

𝜔
𝑖
=

1

𝜎
2

𝑖
∑
2

𝑖=1
(1/𝜎
2

𝑖
)

. (12)

Finally, calculate the fusion value ̂𝑋 [28]

̂
𝑋 =

𝑘

∑

𝑖=1

𝜔
𝑖
𝑋
𝑖 (𝑛) . (13)

Consequently, the AWF value ̂𝑋 is obtained by (13).

3. System and RDF Algorithm

The proposed system contains the hardware scheme and the
software profile. The RDF algorithm is used in the system.

3.1. Hardware Scheme. In Figure 2, the system hardware
includes two signal conditioning circuits for the formalde-
hyde sensor and ammonia sensor, TMS320LF2407A con-
troller, communication circuit between the monitor and the
controller, LED display circuit, and alarming circuit using
acoustic and optical circuit. Figure 3 shows a photo of the real
system.

The outputs of the formaldehyde sensor and ammonia
sensor are the voltage signals.The signal conditioning circuits
magnify the voltages to 0–3.3 V to match the controller
TMS320LF2407A interface. The controller has an A/D con-
verter with 10 bits. The analog data is converted to the digital
data by the A/D converter.

The RDF algorithm is used in the controller to obtain
the air quality estimation result. Consequently, the fused air
quality value can be contrasted with the standard level.

If the fused concentration of the poison gases is
beyond the standard level, the alarming circuit will be
activated immediately. Meanwhile, the concentration values
and the fused result are sent to the monitor by RS-232 for
displaying.

3.2. Software Profile. The system software consists of the VB
language program, the assemble language program, and C
language program.

VB language program is designed for the monitoring
purpose, including real-time data transmission, data storage,
and gas concentration display. The assemble language pro-
gram and C language program are written in the controller.
It implements the functions such as the system initiation,
interruption sampling, acoustic and optical alarming, and
data transmission. Figure 4 shows the flow chart of air quality
estimation.

3.3. RDF Algorithm Description. Belief interval represents
the believable degree of a proposition that is located in a
region. It alsomeans that the proposition has a certain degree
of uncertainty although it has a certain degree of certainty.
The uncertainty would make the problem complicated so
that it would be difficult to be solved. To eliminate the
uncertainty of a proposition and make the problem simple,
belief interval should be converted to specific value. In the
proposed RDF algorithm, the conversion is firstly defined
from a region to dot value. Then, the RDF algorithm is
developed by the combination of the conversion formula
with the D-S theory. The RDF algorithm scheme is shown in
Figure 5.

It can be seen that the measurements of the two sensors
are converted after the corresponding belief degree values are
assigned, and then the D-S combination rule is processed.
Finally, the decision is thus made.
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Figure 2: Hardware scheme of the air quality estimation system.

Figure 3: A photo of the real system.
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Figure 4: Flow chart of air quality estimation.

Definition of RD Function. The conversion formula is defined
from a region to a dot as the summation of the belief function
and the weighted width of the belief interval

𝑚(𝐴) ≜ Bel (𝐴) + 𝛼 [Pl (𝐴) − Bel (𝐴)] , (14)

where 𝐴 is a proposition, Bel(𝐴) and Pl(𝐴) denote, respec-
tively, the lower and upper probabilities of the belief interval
of a proposition, and 𝛼 is a coefficient, 0 ≤ 𝛼 ≤ 1.

RDF algorithm is described as follows.

Step 1. Input themeasurements𝑈
𝑖
and𝑉
𝑖
of the formaldehyde

and ammonia sensors.

Step 2. Assign the basic probability function values and the
belief interval.

Step 3. Calculate the belief function and plausibility function
of the belief intervals of the measurements to construct the
belief intervals

Bel (𝑈) = ∑

𝑈𝑖⊆𝑈

𝑃 (𝑈
𝑖
) (15)

Pl (𝑈) = 1 − Bel (𝑈) (16)

Bel (𝑉) = ∑

𝑈𝑖⊆𝑈

𝑃 (𝑉
𝑖
) (17)

Pl (𝑉) = 1 − Bel (𝑉) , (18)

where 𝑈 and 𝑉 are, respectively, the measurement set of
sensor formaldehyde and sensor ammonia; 𝑈

𝑖
and 𝑉

𝑖
are,

respectively, the 𝑖th measurement of sensor formaldehyde
and sensor ammonia.

Step 4. Convert the belief interval to a specified value by using
the RD function

𝑚(𝑈) = Bel (𝑈) + 𝛼 [Pl (𝑈) − Bel (𝑈)]
𝑚 (𝑉) = Bel (𝑈) + 𝛼 [Pl (𝑉) − Bel (𝑉)] .

(19)

Step 5. Calculate the evidence collision degree parameter 𝐶

𝐶 = ∑

𝑈𝑖∩𝑉𝑗=Φ

𝑃
1
(𝑈
𝑖
) 𝑃
2
(𝑉
𝑗
) . (20)

Step 6. Calculate the combination result 𝑃

𝑃 (𝑈,𝑉) =

{{

{{

{

1

1 − 𝐶
∑

𝑈𝑖∩𝑉𝑗=𝑊

[𝑃
1
(𝑈
𝑖
) 𝑃
2
(𝑉
𝑗
)] , 𝑊 ̸=Φ

0, 𝑊 = Φ,

(21)

where 𝑃means the probability that the fusion result belongs
to a belief interval 𝐵

𝑖
.

Step 7. Make the fusion decision

𝑃 ∈ 𝐵
𝑖

𝑃
𝑖
= max {𝐼

𝑗
, 𝑗 = 1, 2, . . . ,𝑀} ,

(22)

where𝑀 is the total number of the belief intervals 𝐵
𝑖
.
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Figure 5: Scheme of region-dot fusion algorithm.

The proposed RDF algorithm calculates the belief inter-
vals of the two sensors with the basic probability functions
based on the sensor’s measurements of formaldehyde and
ammonia sensors. Then, the belief intervals are converted
to the determined belief values. After the combination, the
belief interval with the maximum probability is selected as
the outcome of fusion decision.

4. Experimental Results and Discussions

To verify the effectiveness of the proposed RDF algorithm for
indoor air quality estimation, the experiments were carried
out in this section.

4.1. Data Collection. Generally, the standard for indoor air
pollution level can be defined in Table 1, where the pollution
index 𝐼 is used for classification of pollution level. The 4
intervals are defined as

𝐵
1
= [0, 0.1) , 𝐵

2
= [0.1, 0.3) ,

𝐵
3
= [0.3, 0.5) , 𝐵

4
= [0.5, 1] .

(23)

They represent the pollution levels in “no pollution,” “light
pollution,” “medium pollution,” and “serious pollution,”
respectively.

In this experiment, the data is collected 10 times using
formaldehyde and ammonia sensors. The measurement
results with basic probabilities are listed in Tables 2 and 3.
Please note that the unit “ppm” is the gas concentration,
indicating the contamination volume number in the million
volumes.

4.2. Results with AWF Algorithm. The data shown in Tables
2 and 3 was also used to perform the adaptive weighted
fusion. The mean values of formaldehyde and ammonia are
calculated below:

Formaldehyde : 𝑋
1 (𝑛) =

1

10

10

∑

𝑗=1

𝑋
𝑗
= 0.5422

Ammonia : 𝑋
2 (𝑛) =

1

10

10

∑

𝑗=1

𝑋
𝑗
= 0.6125.

(24)

The variances and the weighted factors of formaldehyde
and ammonia are shown in Table 4.

Table 1: Indoor air pollution level.

Pollution level Pollution index 𝐼
No pollution 𝐼 < 0.1

Light pollution 0.1 ≤ 𝐼 < 0.3

Medium pollution 0.3 ≤ 𝐼 < 0.5

Serious pollution 𝐼 ≥ 0.5

Then, the AWF value is

̂
𝑋 =

𝑘

∑

𝑖=1

𝜔
𝑖
𝑋
𝑖 (𝑛) = 0.6582 × 0.5422 + 0.3418 × 0.6125

= 0.5662 > 0.5.

(25)

According to the standard in Table 1, the AWF value
indicates that the indoor air pollution belongs to the serious
pollution level.

4.3. Results with RDF Algorithm. Based on (15) and (16), the
upper boundary and lower boundary of the probability of
each evidence interval can be obtained by using the data
in Table 2. Further, the probability intervals of formalde-
hyde concentrations are found to be [0, 0.05], [0, 0.05],
[0.28, 0.33], and [0.67, 0.72], respectively.

In addition, the ammonia measurements were processed
based on (17) and (18) by using the data in Table 3. The
probability intervals of ammonia concentrations are obtained
to be [0, 0.05], [0, 0.05], [0.19, 0.24], and [0.76, 0.81],
respectively.

The basic belief intervals of formaldehyde and ammonia
are shown in Table 5. Accordingly, the dot value based on
(7) by using the data in Table 5 can be obtained in Table 6,
where “𝐶” represents the collision degree. Using the belief
values of formaldehyde and ammonia shown in Table 6, the
combinations of formaldehyde and ammonia are achieved in
Table 7. Finally, the fusion process can be done completely,
and its result is shown in Table 8.

Before the RD conversion fusion, as can be seen in
Table 8, the basic belief function value of formaldehyde for
level of “serious pollution” is 0.68, larger than the values of
the other classes of 0.1, 0.1, and 0.29. On the other hand, the
basic belief function value of ammonia for level of “serious
pollution” is 0.77, larger than the values of the other levels of
0.01, 0.01, and 0.20.

After the RD conversion fusion, the basic belief function
value becomes 0.8998, larger than the values of the other
classes of 0.0002, 0.0002, and 0.0996. Consequently, it is
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Table 2: Indoor formaldehyde measurement belief intervals and probabilities.

Measurement 𝑈
𝑖

(ppm)
Belief interval = 0.95, 𝑛 = 10

basic probability𝑚(𝑈
𝑖
) = 0.95/𝑛

Possible overall interval of truth value 𝑈it
(ppm)

Basic probability𝑚(𝑈it)

of truth value 𝑈it 𝑛 = 10

𝑚(𝑈it) = 0.5/𝑛

0.501 0.095 [0, 1] 0.005
0.498 0.095 [0, 1] 0.005
0.589 0.095 [0, 1] 0.005
0.579 0.095 [0, 1] 0.005
0.657 0.095 [0, 1] 0.005
0.603 0.095 [0, 1] 0.005
0.527 0.095 [0, 1] 0.005
0.472 0.095 [0, 1] 0.005
0.481 0.095 [0, 1] 0.005
0.515 0.095 [0, 1] 0.005

Table 3: Indoor ammonia measurement belief intervals and probabilities.

Measurement 𝑉
𝑖

(ppm)

Belief interval = 0.95
𝑛 = 10

Basic probability𝑚(𝑉
𝑖
) = 0.95/𝑛

Possible overall
interval of truth value 𝑉it

(ppm)

Basic probability𝑚(𝑉it)

of truth value 𝑉it
𝑛 = 10

𝑚(𝑉it) = 0.5/𝑛

0.604 0.095 [0, 1] 0.005
0.714 0.095 [0, 1] 0.005
0.682 0.095 [0, 1] 0.005
0.687 0.095 [0, 1] 0.005
0.592 0.095 [0, 1] 0.005
0.735 0.095 [0, 1] 0.005
0.523 0.095 [0, 1] 0.005
0.612 0.095 [0, 1] 0.005
0.485 0.095 [0, 1] 0.005
0.491 0.095 [0, 1] 0.005

Table 4:Variance andweighted factors of formaldehyde and ammo-
nia.

Gas Formaldehyde Ammonia
Variances 𝜎2

1𝑖
, 𝜎2
2𝑖

0.00262 0.00505
Weighted factors 𝜔

1𝑖
, 𝜔
2𝑖

0.65820 0.34180

found that the difference between the level of “serious pol-
lution” and the other levels is quite evident. This conclusion
proves that the estimation using RDF algorithm is rather
reasonable. Furthermore, the collision degree parameter 𝐶 is
decreased dramatically from 0.01 to 0.0002.

The evidence collision degree is very important for
region-dot conversion fusion (RDF) algorithm. Because if
it is extremely severe, 𝐶 = 1, the result could not be
obtained according to (21). Fortunately, the evidence collision
degree was decreased in RDF algorithm compared with D-S
approach.

4.4. Comparison. Based on the above process, the experi-
mental results are listed in Table 9. In addition, the perfor-
mance comparisons are concluded in Table 10. Obviously,

the RDF algorithm has improved the separation of the belief
interval. Also, the evidence collision degree is decreased
dramatically so that the evidential reasoning can continue to
be completed.

As for the stability, cost, and complex, the RDF algorithm
has a better stability than D-S approach because the evidence
collision degree is decreased in RDF algorithm, and it has no
extra cost, but it is a little complex than AWF.

5. Conclusion

In this paper, the RDF algorithm has been developed to
implement the indoor air quality estimation successfully.
Firstly, the RD function is defined and the belief interval
is converted to a specific value. The RD function is then
combined with the D-S evidential reasoning to complete the
RDF processing.The RDF algorithm estimates accurately the
indoor air quality because it solves the evidence collision
degree problem. Moreover, the separability of the basic belief
functions is improved. As can be seen, the original belief
function values of formaldehyde were 0.01, 0.01, 0.29, and
0.68 for the 4 belief intervals, respectively; and the original
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Table 5: Belief intervals of formaldehyde and ammonia.

Item No pollution Light pollution Medium pollution Serious pollution
Formaldehyde [0, 0.05] [0, 0.05] [0.28, 0.33] [0.67, 0.72]

Ammonia [0, 0.05] [0, 0.05] [0.19, 0.24] [0.76, 0.81]

Table 6: Dot values of Belief values of formaldehyde and ammonia.

Item No pollution Light pollution Medium pollution Serious pollution Collision degree 𝐶
Formaldehyde 0.01 0.01 0.29 0.68 0.01
Ammonia 0.01 0.01 0.20 0.77 0.01

Table 7: Combinations of formaldehyde and ammonia.

Item Basic belief value𝑚(𝑈
𝑖
) of formaldehyde

Basic belief value
𝑚(𝑉
𝑖
) of ammonia

No pollution
0.01

Light
pollution

0.01

Medium
pollution

0.29

Serious
pollution
0.68

Collision degree 𝐶

0.01

No pollution
0.01 0.0001 0.0001 0.0029 0.0068 0.0001

Light pollution
0.01 0.0001 0.0001 0.0029 0.0068 0.0001

Medium pollution
0.20 0.0020 0.0020 0.0580 0.1360 0.0050

Serious pollution
0.77 0.0077 0.0077 0.2233 0.5236 0.0050

Collision degree 𝐶
0.01 0.0001 0.0001 0.0029 0.0068 0.0001

Table 8: Fusion results of formaldehyde and ammonia.

Item No pollution Light pollution Medium pollution Serious pollution Collision degree 𝐶
formaldehyde 0.01 0.01 0.29 0.68 0.01
ammonia 0.01 0.01 0.20 0.77 0.01
Fusion value 0.0002 0.0002 0.0996 0.8998 0.0002

Table 9: Fusion result comparison between AWF method and RDF method.

Formaldehyde
measurements
(ppm)

Ammonia
measurements

(ppm)

AWF
(ppm)

RDF
(probability value)

0.501 0.604

Pollution index
𝐼 =

̂
𝑋 = 0.5662.

The pollution level
belongs to the serious
pollution.

The probabilities of the pollution level belong to the “no
pollution,” “light pollution,” “medium pollution,” and
“serious pollution” which are 0.0002, 0.0002, 0.0996,
and 0.8998, respectively. The Collision degree is 0.0002.
The pollution level belongs to the serious pollution.

0.498 0.714
0.589 0.682
0.579 0.687
0.657 0.592
0.603 0.735
0.527 0.523
0.472 0.612
0.481 0.485
0.515 0.491

Table 10: Performance comparison between AWF, D-S, and RDF.

Item AWF D-S RDF
Air quality estimation Serious pollution Serious pollution Serious pollution
Separability of basic belief function Not changed Normal Better
Evidence collision degree Not changed Normal Lower
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ammonia values were 0.01, 0.01, 0.20, and 0.77, respectively.
Using the proposed scheme, the outcome values become
0.0002, 0.0002, 0.0996, and 0.8998, respectively. The result
reveals that the air pollution condition could be accurately
classified. In addition, the evidence collision degree was
decreased from 0.01 to 0.0002. Compared with the AWF
algorithm and D-S method, the proposed RDF algorithm
can provide more correct and effective indoor air quality
estimation.

Region-dot conversion fusion algorithm is not only suit-
able for air quality evaluation but also suitable for other
aspects, such as object recognition fusion.
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