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A novel approach for modeling and control of servo systems with backlash and friction is proposed based on the characteristic
model. Firstly, to deal with friction-induced nonlinearities, a smooth Stribeck frictionmodel is introduced.The backlash ismodeled
by a continuous and derivable mathematical function. Secondly, a characteristic model in the form of a second-order slowly time-
varying difference equation is established and verified by simulations. Thirdly, a composite controller including the golden-section
adaptive control law and the integral control law is designed and the stability of the closed-loop system is analyzed. The simulation
and experimental results show that the proposed control scheme is effective and can improve the steady-state precision and the
dynamic performance of the servo system with backlash and friction.

1. Introduction

Servo systems have been widely used in various applications,
such as machine tools, robots, semiconductor manufactur-
ing manipulators, radars, and satellite antennas. With the
development of technology, there is an increasing demand
for high precision position controllers, which should have
fast tracking behavior, disturbance rejection ability, and
robustness to uncertainties. However, the nonsmooth non-
linearities including backlash and friction are often present
in servo systems, which can lead to steady-state tracking
errors, undesired stick-slip motion, and limit cycles [1, 2].
Although some control approaches [1, 2], such as PD control,
fuzzy control, adaptive control, robust adaptive control,
neural networks control, and slidingmode control, have been
given to reduce the backlash and friction effect, it is still a
challenging problem because of the nondifferentiable nature
of the backlash and friction. In addition, backlash and friction
have previously been studied separately [1, 2], more rarely
together. In many servo systems, a controller designed to
compensate only for friction may perform poor performance
in the presence of backlash, and vice versa, because they
coexist in these systems. Thus, both of them should be taken
into consideration in the controller design.

Backlash is present in servo systems with gear transmis-
sions, where the motor temporarily loses direct contact with
the load when the backlash gap opens. It may often cause
delays, oscillations, and steady-state errors. Since backlash
is characterized by nondifferentiable nonlinearity, which is
poorly known, the control system with unknown backlash
is a difficult problem. Therefore, a number of different
approaches to model and compensate for backlash have
been investigated for several decades. A recent survey paper
[2] summarizes the backlash models and the compensa-
tion methods. Different mathematical models have been
developed to describe the backlash phenomenon, such as
dead-zone model and hysteresis model [2]. The dead-zone
model is a static, scalar nonlinear function, which means
that it is relatively easy to be analyzed. In this paper, we
will adopt it as the backlash model. Many papers deal with
the compensation for the backlash. An adaptive control
scheme developed by Tao and Kokotović for the systems with
unknown backlash is given in [3]. The scheme of Selmic
and Lewis [4] implements a dynamic inversion compensation
for backlash using the backstepping technique with neural
networks. In [5], an optimal control scheme is employed
for backlash compensation and a feedback linearization is
designed to decouple the multivariable nonlinear dynamics
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so that backlash compensation and tracking control can be
both achieved. In [6], a novel adaptive control design is
achieved by introducing a smooth inverse function of the
dead zone and using it in the controller design with the
backstepping technique. A hybrid model based on model
predictive control (MPC) scheme for backlash compensation
is introduced in [7]. A second-order sliding mode observer
ensuring the finite time convergence of estimated state values
towards real state values in a nonlinear mechanical system
with backlash is given in [8]. A linear estimator for the
fast and accurate estimation of the position and velocity
in the presence of backlash in automotive power trains is
described in [9]. In [10], an adaptive dynamic surface control
scheme combined with sliding mode control to compensate
for backlash nonlinearities in a linear stage motion system is
present. In [11], an extended state observer (ESO) combined
with the adaptive sliding mode control theory is proposed to
deal with a nonlinear pneumatic servo system characterized
with input backlash.

Friction is one of the most important limitations in high
precision position systems. It can cause tracking errors, self-
excited vibration, and limit cycles [1]. Friction modeling
and compensation have been studied extensively in the past
few decades but is still full of interesting problems due
to their practical significance and the complex behavior of
friction. Satisfactory friction compensation can be obtained
if a good friction model is available. However, friction
is a highly nonlinear phenomenon, which is difficult to
be described by a simple model [1]. Some models, which
include both static and dynamic, have been proposed by
researchers. A classical static friction model contains the
property such as Coulomb friction, stiction, Stribeck effect,
and viscous friction [1]. Dynamic friction models, mainly
including theDahlmodel [12] and the LuGremodel [13], have
been proposed and shown to be more beneficial. However,
experimental measurements have proved that a good static
friction model can approximate the real friction force with a
degree of 90% fidelity [14]. The dynamic friction behaviour
can be introduced in the static model as a bounded additive
model uncertainty [1]. Therefore, the static friction model
with Stribeck effect has a great significance for practical
applications. The control methods for friction compensation
are divided into three categories [1, 15]: the model-oriented
friction compensation scheme, the adaptive compensation
scheme, and the soft computing approach. In [16], a nonlinear
proportional-integral-derivative (NPID) control has been
designed to improve compensation for friction by applying
a state feedback NPID control law with time-varying state
feedback gains. In [17–19], a fuzzy system is utilized to
adaptively learn unknown friction behavior and compensate
for it. In [20], an adaptive friction compensator structure is
proposed in which the Stribeck friction term is approximated
by RBF-type neural network. To handle model uncertainties,
robust adaptive control techniques [21, 22] are also very
popular for friction compensation.

From the preceding discussion, it can be found that the
majority of previous studies have addressed either the fric-
tion compensation problem or the backlash compensation
problem. Very few papers deal with the control of systems in

the presence of backlash and friction [23, 24]. This motivates
us to carry out present work. In this paper, we adopt a new
adaptive control method based on a characteristic model
to handle both friction and backlash. The characteristic
modeling theory and methods, proposed byWu in the 1990s,
are an integrated and practical modeling and control theory
based on the control-oriented design thought, and improved
gradually in the recent 20 years, which has already been
applied successfully in more than 400 systems belonging to
nine kinds of engineering plants in the field of astronautics
and industry [25–27]. The characteristic modeling is based
on the dynamics characteristics and control performance
requirements of the plants, rather than being only based on
accurate plant dynamics analysis. This method provides a
feasible low-order intelligent controller design method for
various complicated plants with nonlinearities and uncer-
tainties, and whose output variables cannot be measured
online continuously. Currently, it has not been applied in
servo systems with backlash and friction. Therefore, we will
attempt to use a characteristic model to describe the servo
system with backlash and friction and design the controller.

The remainder of this paper is organized as follows.
In Section 2, we describe the original dynamic model and
the characteristic model of the servo system with backlash
and friction. In Section 3, the composite controller including
the golden-section adaptive control law and the integral
control law is designed, and the stability of the closed-loop
system is analyzed. Sections 4 and 5 present consecutively the
simulation and experimental results. Finally, the conclusion is
given in Section 6.

2. Characteristic Modeling

The characteristicmodeling is based on the dynamics charac-
teristics and control performance requirements of the plants,
rather than being only based on accurate plant dynamics
analysis.Thismethod provides a feasible low-order intelligent
controller designmethod for various complicated plants with
nonlinearities and uncertainties.

A characteristic model has the following features [25].

(1) For the same input, a plant characteristic model
is equivalent to its practical plant in output. In a
dynamic process, the output error can be maintained
within a permitted range. In the steady state, their
outputs are equal.

(2) Besides plant characteristics, the form and order
of a characteristic model mainly rely on control
performance requirements.

(3) The structure of a characteristic model should be
simpler, than an original dynamic equation, easier,
and more convenient to be realized in engineering.

(4) A characteristic model is different from the reduced-
order model of a high-order system. It compresses all
the information of the high-order model into several
characteristic parameters. In the bandwidth of the
control system, no information is lost. In general,
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Figure 1: Structure of a typical electromechanical system driven by gears.

a characteristicmodel is represented by a slowly time-
varying difference equation.

Characteristic modeling mainly considers the character-
istic relation between control input and output. There are
two approaches to establish characteristic model. One is
to establish the characteristic model directly according to
the dynamic features of the practical plant and the control
performance requirements. And the other is to establish the
characteristic model based on the original dynamic model.
The latter one is applied in this paper; that is, the original
dynamicmodel containing backlash and friction seems as the
standard plant model of the system. Then the characteristic
model is established based on it.

2.1. Dynamic Model. The structure of a typical electrome-
chanical system driven by gears is shown in Figure 1. 𝜃

𝑚

and ̇𝜃
𝑚

denote the angular displacement and the angular
velocity of the motor, respectively. 𝜃

𝑑
and ̇𝜃

𝑑
denote the

angular displacement and the angular velocity of the load,
respectively, 𝐽

𝑚
and 𝐽

𝑑
denote the rotational inertia of the

motor and the load, respectively,𝑇
𝑚
and𝑇
𝑑
denote the torque

of the motor and the load, respectively, 𝑏
𝑚

and 𝑏
𝑑
denote

the viscous friction coefficient of the motor and the load,
respectively, and 𝑖 denotes the gear ratio.

The dead-zone model is used to model the backlash in
Figure 1, and 𝜏

1
can be expressed as

𝜏
1
= 𝑘
𝑏
𝑓 (𝑧) (1)

𝑓 (𝑧) =

{{

{{

{

𝑧 + 𝛼 𝑧 < 𝛼

0 |𝑧| ≤ 𝛼

𝑧 − 𝛼 𝑧 > 𝛼,

(2)

where 𝜏
1
denotes the elastic torque between the motor and

the load, 𝑘
𝑏
denotes the stiffness, 𝑓(𝑧) denotes the dead-

zone function, 𝑧 (𝑧 = 𝜃
𝑚

− 𝑖𝜃
𝑑
) denotes the relative angular

displacement between the motor and the load, and 𝛼 denotes
half of the backlash width.

Besides the backlash nonlinearity, the friction nonlinear-
ity should be also considered in the system. The Stribeck
model is used to describe the friction in this paper. So the
friction torque 𝜏

2
can be expressed as

𝜏
2
= [𝐹
𝑐
+ (𝐹
𝑠
− 𝐹
𝑐
) 𝑒
−(
̇
𝜃
𝑚
/
̇
𝜃
𝑠
)

𝛿

] sgn ( ̇𝜃
𝑚
) + 𝐵 ̇𝜃

𝑚
, (3)

where 𝐹
𝑐
, 𝐹
𝑠
, 𝐵, ̇𝜃
𝑚
, and ̇𝜃

𝑠
represent the Coulomb friction,

themaximum static friction, the viscous damping coefficient,
the angular velocity of the motor, and the Stribeck speed,
respectively, and sgn(⋅) represents the sign function. ̇𝜃

𝑠
and

𝛿 are empirical constants, which are usually assumed to be
0.05 and 2, respectively.

The dynamic equations of a typical electromechanical
system driven by gears can be expressed as

𝑈 (𝑡) = 𝑘
𝑒

̇𝜃
𝑚
(𝑡) + 𝑅𝐼 (𝑡) + 𝐿

𝑑𝐼 (𝑡)

𝑑𝑡

𝐽
𝑚

̈𝜃
𝑚
(𝑡) + 𝑏

𝑚

̇𝜃
𝑚
(𝑡) = 𝑇

𝑚
− 𝜏
1
− 𝜏
2

𝐽
𝑑

̈𝜃
𝑑
(𝑡) + 𝑏

𝑑

̇𝜃
𝑑
(𝑡) = 𝑖𝜏

1

𝑇
𝑚

= 𝑘
𝑑
𝐼 (𝑡)

𝜏
1
= 𝑘
𝑏
𝑓 (𝑧)
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Figure 2: Structure diagram of the electromechanical system.

𝑓 (𝑧) =

{{

{{

{

𝑧 + 𝛼 𝑧 < −𝛼

0 |𝑧| ≤ 𝛼

𝑧 − 𝛼 𝑧 > 𝛼

𝜏
2
= [𝐹
𝑐
+ (𝐹
𝑠
− 𝐹
𝑐
) 𝑒
−(
̇
𝜃
𝑚
/
̇
𝜃
𝑠
)

𝛿

] sgn ( ̇𝜃
𝑚
) + 𝐵 ̇𝜃

𝑚
,

(4)

where 𝑈(𝑡) denotes the armature voltage, 𝐼(𝑡) denotes the
armature current, 𝑅 and 𝐿 denote the resistance and the
inductance, respectively, 𝑘

𝑒
denotes the back electromotive

force coefficient of the motor, and 𝑘
𝑑
denotes the torque

coefficient of the motor.
The system (2.1) can also be represented by the structure

diagram as shown in Figure 2.

2.2. Characteristic Model. The nonlinear system is expressed
as

𝑥̇ (𝑡) = 𝑓 (𝑥, 𝑥̇, . . . , 𝑥
(𝑛)

, 𝑢, 𝑢̇, . . . , 𝑢
(𝑚)

) . (5)

Let 𝑥 = 𝑥
1
, 𝑥̇ = 𝑥

2
, . . . , 𝑥

(𝑛)

= 𝑥
𝑛+1

and 𝑢 = 𝑢
1
, 𝑢̇ =

𝑢
2
, . . . , 𝑢

(𝑚)

= 𝑢
𝑚+1

; then (5) can be rewritten as

𝑥̇ (𝑡) = 𝑓 (𝑥
1
, . . . , 𝑥

𝑛+1
, 𝑢
1
, . . . , 𝑢

𝑚+1
) . (6)

This nonlinear system (6) is assumed as follows (see [28]).

Assumption 1. The system is a SISO system.

Assumption 2. The order of control input 𝑢 is 1.

Assumption 3. If all the variables 𝑥
𝑖
and 𝑢

𝑖
in 𝑓(⋅) are zero,

𝑓(⋅) = 0.

Assumption 4. 𝑓(⋅) is continuous differentiable to all the
variables, and all partial derivatives are bounded.

Assumption 5. |𝑓(𝑥(𝑡+Δ𝑡), 𝑢(𝑡+Δ𝑡))|−|𝑓(𝑥(𝑡), 𝑢(𝑡))| < 𝑀Δ𝑡,
where𝑀 is positive constant and Δ𝑡 is sample period.

Assumption 6. All the variables 𝑥
𝑖
and 𝑢

𝑖
are bounded. This

assumption can be satisfied easily in practical engineering.

Lemma 7 (see [28]). If the system (5) satisfies the above
Assumptions 1–4 and sample timeΔ𝑡 satisfies some certain con-
ditions, the characteristicmodel of the system can be established

in the form of a second-order time-varying difference equation
as

𝑥 (𝑘 + 1) = 𝛼
1
(𝑘) 𝑥 (𝑘) + 𝛼

2
(𝑘) 𝑥 (𝑘 − 1)

+ 𝛽
0
(𝑘) 𝑢 (𝑘) + 𝛽

1
(𝑘) 𝑢 (𝑘 − 1) ,

(7)

where 𝛼
1
(𝑘), 𝛼
2
(𝑘), 𝛽
0
(𝑘), and 𝛽

1
(𝑘) are coefficients.

When the controlled system is stable and satisfies Assump-
tions 5 and 6, the following conclusions can be drawn.

(1) In a dynamic process, under the same input, the output
of the characteristic model is equal to that of the
practical plant (suitably selected sampling period Δ𝑡

can make sure that the output error is kept within a
permitted range). In the steady state, both outputs are
equal.

(2) The coefficients 𝛼
1
(𝑘), 𝛼

2
(𝑘), 𝛽

0
(𝑘), and 𝛽

1
(𝑘) are

slowly time-varying.
(3) The range of these coefficients can be determined

beforehand.
If the system is a minimum phase system, 𝛽

1
(𝑘)𝑢(𝑘 − 1) in

(7) can be left out.

According to Lemma 7, the characteristic model only can
be applied to the system which is continuous differentiable to
all the variables andwhere all partial derivatives are bounded.
But in the system dynamic equations (2.1), the dead-zone
function of the backlashmodel and the sign function sgn(⋅) in
the frictionmodel are both indifferentiable.Thus, to establish
the characteristic model of the system, the backlash model
and the friction model should be smoothed.

According to themodelingmethod of backlash (see [29]),
a continuous approximate dead-zone function is introduced
as

𝑓
∗

(𝑧) = 𝑧 − 𝑎𝛼 (
2

1 + 𝑒−𝑟𝑧
− 1) , (8)

where 𝑎 > 0 and 𝑟 > 0 are undetermined parameters
in the backlash model. For analysing the degree of the
approximation of the function (8) to (2), Δ𝑓(𝑧) is defined to
be the difference between the two functions:

Δ𝑓 (𝑧) =

{{{{{{{{

{{{{{{{{

{

−𝑎𝛼(
2

1 + 𝑒−𝑟𝑧
− 1) − 𝛼, 𝑧 < −𝛼,

𝑧 − 𝑎𝛼 (
2

1 + 𝑒−𝑟𝑧
− 1) , |𝑧| ≤ 𝛼,

−𝑎𝛼 (
2

1 + 𝑒−𝑟𝑧
− 1) + 𝛼, 𝑧 > 𝛼.

(9)
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Figure 3: (2/𝜋) arctan(𝑘V).

Lemma 8 (see [29]). When 𝑎 = 1 and 𝑟 = 2/𝛼, the following
conclusions can be obtained:

(1) lim
𝑧→∞

Δ𝑓(𝑧) = 0;
(2) 𝑓∗(𝑧) is a monotonous increasing function;
(3) the area enclosed by 𝑓

∗

(𝑧) and 𝑓(𝑧) is the minimum;
(4) |Δ𝑓(𝑧)| ≤ 2𝛼𝑒

−𝑟𝛼

/(1 + 𝑒
−𝑟𝛼

).

Thus, the approximate dead-zone function 𝑓
∗

(𝑧) can be
used to replace the dead-zone function in the system dynamic
equations (2.1), and 𝜏

1
can be rewritten as

𝜏
1
= 𝑘
𝑏
[𝑧 − 𝛼 (

2

1 + 𝑒−𝑟𝑧
− 1)] . (10)

To make the friction model smooth, the function
(2/𝜋) arctan(𝑘V) is used to replace the sign function sgn(⋅) in
the friction model. Δg2(𝑘, ̇𝜃

𝑚
) is defined as

Δg (𝑘, ̇𝜃
𝑚
) = sgn ( ̇𝜃

𝑚
) −

2

𝜋
arctan (𝑘 ̇𝜃

𝑚
) . (11)

As shown in Figure 3, the function Δg(𝑘, ̇𝜃
𝑚
) is smaller

and smaller with 𝑘 increasing.
Thus, the friction torque 𝜏

2
can be rewritten as

𝜏
2
= [𝐹
𝑐
+ (𝐹
𝑠
− 𝐹
𝑐
) 𝑒
−(
̇
𝜃
𝑚
/
̇
𝜃
𝑠
)
𝛿

]
2

𝜋
arctan (𝑘𝜃

𝑚
) + 𝐵 ̇𝜃

𝑚
.

(12)

Define 𝑥
1
= 𝜃
𝑚
(𝑡), 𝑥
2
= ̇𝜃
𝑚
(𝑡), 𝑥
3
= 𝜃
𝑑
(𝑡), 𝑥
4
= ̇𝜃
𝑑
(𝑡), and

𝑥
5
= 𝐼(𝑡); then

𝜏
1
= 𝑘
𝑏
[(𝑥
1
− 𝑖𝑥
3
) − 𝛼 (

2

1 + 𝑒−𝑟(𝑥1−𝑖𝑥3)
− 1)]

𝜏
2
= [𝐹
𝑐
+ (𝐹
𝑠
− 𝐹
𝑐
) 𝑒
−(𝑥
2
/
̇
𝜃
𝑠
)

𝛿

]
2

𝜋
arctan (𝑘𝑥

2
) + 𝐵𝑥

2
.

(13)

u

+

− e
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Figure 4: Scheme of verifying the characteristic model.

The system (2.1) can be expressed by state

𝑥̇
1
= 𝑥
2

𝑥̇
2
=

1

𝐽
𝑚

(𝑘
𝑑
𝑥
5
− 𝜏
1
− 𝜏
2
− 𝑏
𝑚
𝑥
2
)

𝑥̇
3
= 𝑥
4

𝑥̇
4
=

1

𝐽
𝑑

(𝑖𝜏
1
− 𝑏
𝑑
𝑥
4
)

𝑥̇
5
=

1

𝐿
(𝑈 − 𝑘

𝑒
𝑥
2
− 𝑅𝑥
5
)

𝑦 = 𝑥
3
.

(14)

The characteristic model of the system can be obtained based
on Lemma 7 as

𝑦 (𝑘) = 𝛼
1
(𝑘) 𝑦 (𝑘 − 1) + 𝛼

2
(𝑘) 𝑦 (𝑘 − 2)

+ 𝛽
0
(𝑘) 𝑢 (𝑘 − 1) = 𝜙

𝑇

(𝑘 − 1) 𝜃 (𝑘) ,

(15)

where

𝜙
𝑇

(𝑘 − 1) = [𝑦 (𝑘 − 1) 𝑦 (𝑘 − 2) 𝑢 (𝑘 − 1)]

𝜃
𝑇

(𝑘) = [𝛼
1
(𝑘) 𝛼

2
(𝑘) 𝛽

0
(𝑘)] ,

(16)

where the parameters 𝛼
1
(𝑘), 𝛼
2
(𝑘), and 𝛽

0
(𝑘) are all bounded

and the bound can be determined beforehand according to
Lemma 7. These coefficients are time-varying and need to be
estimated online, so the recursive least squares (RLS)method
with forgetting factor 𝑓 is applied. The recursive formula is
shown as

𝐾 (𝑘) =
𝑃 (𝑘 − 1) 𝜙 (𝑘 − 1)

𝑓 + 𝜙𝑇 (𝑘 − 1) 𝑃 (𝑘 − 1) 𝜙 (𝑘 − 1)

𝜃 (𝑘) = 𝜃 (𝑘 − 1) + 𝐾 (𝑘) [𝑦 (𝑘) − 𝜙
𝑇

(𝑘 − 1) 𝜃 (𝑘 − 1)]

𝑃 (𝑘) =
1

𝑓
[𝐼 − 𝐾 (𝑘) 𝜙

𝑇

(𝑘)] 𝑃 (𝑘 − 1) .

(17)

To verify the effectiveness of the proposed characteristic
model, the simulations of verifying the characteristic model
are performed based onMATLAB.Theoutput of the dynamic
model is as the standard output. The scheme of verifying the
characteristic model is shown in Figure 4.
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Figure 5: Verification results when 𝑢(𝑡) = 10V.

The system parameters are as 𝐿 = 0.0375H, 𝑅 =

1.3Ω, 𝑘
𝑒

= 67.2V/krpm, 𝑘
𝑑

= 1.11N ⋅m/A, 𝑘
𝑏

= 7 ×

10
4N ⋅m/rad, 𝐽

𝑚
= 0.00259 kg ⋅m2, 𝐽

𝑑
= 23.12 kg ⋅m2, 𝑏

𝑚
=

0.015N⋅m/krpm, 𝑏
𝑑
= 0.024N⋅m/krpm, 𝑖 = 238, 𝛼 = 0.18

∘,
and 𝑟 = 1.7/𝛼, 𝑘 = 10.

The sampling period Δ𝑡 is 5ms. Define the error 𝑒(𝑘)

between the output of the characteristic model 𝜃
𝑑
and the

standard output 𝜃
𝑑
as

𝑒 (𝑘) = 𝜃
𝑑
(𝑘) − 𝜃

𝑑
(𝑘) = 𝜃

𝑑
(𝑘) − 𝜙

𝑇

(𝑘 − 1) 𝜃 (𝑘) . (18)

The RLS method expressed in (17) is used to estimate
the characteristic parameters; the initial values are selected as
𝜃̂(0) = 10

−3

×[1 1 1]
𝑇, P(0) = 10

6

× I
3×3

, and the forgetting
factor 𝑓 is 0.99.

The results of verifying the characteristic model are
shown in Figures 5–7.

(1) When 𝑢(𝑡) = 10V, the results are shown in Figure 5.

(2) When 𝑢(𝑡) = 10𝑡V, the results are shown in Figure 6.

(3) When 𝑢(𝑡) = 30 sin(𝑡)V, the results are shown in
Figure 7.

According to Figures 5–7, the error between the char-
acteristic model and the dynamic model is very small. The
results indicate that the characteristicmodel canwell describe
the electromechanical system.

3. Controller Design and Stability Analysis

According to [25], the system error characteristic equation
can be expressed as a second-order slowly time-varying
difference equation:

𝑦
𝑒
(𝑘 + 1) = 𝛼

1
(𝑘) 𝑦
𝑒
(𝑘) + 𝛼

2
(𝑘) 𝑦
𝑒
(𝑘 − 1) + 𝛽

0
(𝑘) 𝑢 (𝑘) ,

(19)
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Figure 6: Verification results when 𝑢(𝑡) = 10𝑡V.

where 𝑦
𝑒
(𝑘) (𝑦

𝑒
(𝑘) = 𝑦(𝑘) − 𝑦

𝑟
(𝑘)) is the error output, 𝑦(𝑘)

is the system input, and 𝑢(𝑘) is the controller input which is
designed as

𝑢 (𝑘) = 𝑢
1
(𝑘) + 𝑢

2
(𝑘) , (20)

where 𝑢
1
(𝑘) and 𝑢

2
(𝑘) are the golden-section adaptive con-

trol law, and the integral control law, respectively, which
satisfy

𝑢
1
(𝑘) = −

[𝑙
1
𝛼̂
1
(𝑘) 𝑦
𝑒
(𝑘) + 𝑙

2
𝛼̂
2
(𝑘) 𝑦
𝑒
(𝑘 − 1)]

𝛽
0
(𝑘)

,

𝑢
2
(𝑘) = 𝑢

2
(𝑘 − 1) + 𝛼

0
(𝑘) 𝑦
𝑒
(𝑘)

= 𝑢
2
(𝑘 − 2) + 𝛼

0
(𝑘 − 1) 𝑦

𝑒
(𝑘 − 1) + 𝛼

0
(𝑘) 𝑦
𝑒
(𝑘) ,

(21)

where 𝑙
1

= 0.382 and 𝑙
2

= 0.618 are the golden-section
feedback coefficients, 𝛼̂

1
(𝑘), 𝛼̂
2
(𝑘), and𝛽

0
(𝑘) are the estimates

of 𝛼
1
(𝑘), 𝛼

2
(𝑘), and 𝛽

0
(𝑘), and −1 < 𝛼

0
(𝑘) < 0 is a variable

integral coefficient. Take (20) and (21) into (19) to obtain

𝑦
𝑒
(𝑘 + 1) = −𝑓

1
(𝑘) 𝑦
𝑒
(𝑘) − 𝑓

2
(𝑘) 𝑦
𝑒
(𝑘 − 1)

− 𝑓
3
(𝑘) 𝑢
2
(𝑘 − 2) ,

(22)

where

𝑓
1
(𝑘) = 𝑙

1

𝛽
0
(𝑘) 𝛼̂
1
(𝑘)

𝛽
0
(𝑘)

− 𝛼
1
(𝑘) − 𝛼

0
(𝑘) 𝛽
0
(𝑘) ,
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Figure 7: Verification results when 𝑢(𝑡) = 30 sin(𝑡)V.

𝑓
2
(𝑘) = 𝑙

2

𝛽
0
(𝑘) 𝛼̂
2
(𝑘)

𝛽
0
(𝑘)

− 𝛼
2
(𝑘) − 𝛼

0
(𝑘 − 1) 𝛽

0
(𝑘) ,

𝑓
3
(𝑘) = −𝛽

0
(𝑘) .

(23)

Define 𝑌(𝑘) = [𝑦
0
(𝑘 − 1) 𝑦

𝑒
(𝑘) 𝑦

𝑒
(𝑘 + 1)]

𝑇, where
𝑦
0
(𝑘 − 1) = 𝑢

2
(𝑘 − 1) so that the system (22) can be expressed

as

𝑌 (𝑘 + 1) = 𝐴 (𝑘 + 1) 𝑌 (𝑘) , (24)

where

𝐴 (𝑘 + 1) = [

[

1 𝛼
0

0

0 0 1

−𝑓
3
(𝑘 + 1) −𝑓

2
(𝑘 + 1) −𝑓

1
(𝑘 + 1)

]

]

.

(25)

In order to analyze the uniform asymptotic stability of
system (22), the following three lemmas are introduced.

Lemma 9 (see [30]). Assume that a linear time-varying
discrete system can be written as

𝑌 (𝑘 + 1) = 𝐴 (𝑘 + 1) 𝑌 (𝑘) , (26)
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where 𝐴(𝑘 + 1) ∈ 𝑅
𝑛×𝑛, 𝑌(𝑘) ∈ 𝑅

𝑛×1, and the origin is the
equilibrium state of the system. For a given uniformly bounded,
positive definite symmetric matrix 𝑃(𝑘), if 𝑄(𝑘) which can be
obtained by

𝐴
𝑇

(𝑘 + 1) 𝑃 (𝑘 + 1)𝐴 (𝑘 + 1) − 𝑃 (𝑘) = −𝑄 (𝑘) (27)

is a uniformly bounded, positive definite symmetric matrix,
then the equilibrium state of the system (26) is uniformly
asymptotically stable according to Lyapunov theory.

Lemma 10 (see [30]). Assume that 𝐵(𝑘) = (𝑏
𝑖𝑗
(𝑘)) is a

symmetric matrix which satisfies

(1) every element and principal minor of 𝐵(𝑘) can be
expressed as a continuous function about 𝑓

𝑖
(𝑘) or a

constant;
(2) 𝑓
𝑖
(𝑘) (𝑖 = 1, 2, . . . , 𝑁) belongs to a finite closed

interval, where𝑁 is a finite positive integer;
(3) all principal minors of 𝐵(𝑘) are greater than zero.

Then 𝐵(𝑘) is a uniformly bounded, positive definite sym-
metric matrix.

Lemma 11 (see [30]). Assume that𝑀(𝑘) ∈ 𝑅 and 0 < 𝑀(𝑘) <

𝑀, where𝑀 is a positive constant. Assume that 𝐵(𝑘+1),𝐶(𝑘+

1),𝐷(𝑘), 𝐸
0
(𝑘), 𝐸

1
(𝑘), and 𝐹(𝑘) satisfy

𝐸
0
(𝑘) = 𝑀 (𝑘) 𝐵

2

(𝑘 + 1) + 𝐸
1
(𝑘) 𝐵 (𝑘 + 1)

− 𝑀 (𝑘) 𝐶
2

(𝑘 + 1) + 𝐹 (𝑘) 𝐶 (𝑘 + 1) + 𝐷 (𝑘) ,

(28)

𝐸
1
(𝑘) = −2𝑀 (𝑘) 𝐵 (𝑘 + 1) − 2𝑀 (𝑘) 𝐶 (𝑘 + 1) + 𝐹 (𝑘) .

(29)

The quadratic trinomial about 𝑍(𝑘) is

−𝑀(𝑘)𝑍
2

(𝑘) + 𝐸
1
(𝑘) 𝑍 (𝑘) + 𝐸

0
(𝑘) (30)

whose discriminant root is Δ(𝑘) = 𝐸
2

1
(𝑘) + 4𝑀(𝑘)𝐸

0
(𝑘) =

𝐹
2

(𝑘) + 4𝑀(𝑘)𝐷(𝑘). When

Δ (𝑘) > 0

𝐸
1
(𝑘) − √Δ (𝑘)

2𝑀 (𝑘)
< 𝑍 (𝑘) <

𝐸
1
(𝑘) + √Δ (𝑘)

2𝑀 (𝑘)
,

(31)

the quadratic trinomial (30) is greater than zero.
Design the symmetric matrix 𝑃(𝑘) as

𝑝
𝑖𝑖
(𝑘) = 𝑝

𝑖𝑖
(𝑖 = 1, 2, 3) , (32)

where𝑝
11
, 𝑝
22
, and 𝑝

33
are all positive constants and 0 < 𝑝

11
<

𝑝
22

< 𝑝
33
:

𝑝
12

(𝑘) = 𝑝
21

(𝑘) = 𝜀
3
𝑓
3
(𝑘) ,

𝑝
13

(𝑘) = 𝑝
31

(𝑘) = 𝜀
2
𝑓
2
(𝑘) ,

𝑝
23

(𝑘) = 𝑝
32

(𝑘) = 𝜀
1
𝑓
1
(𝑘) ,

(33)

where 𝜀
1
, 𝜀
2
, and 𝜀

3
are positive constants and 0 < 𝜀

𝑖
≤

(𝑝
11
/𝑀
𝑖
√5) (𝑖 = 1, 2, 3), where 𝑀

𝑖
is the bound of 𝑓

𝑖
(𝑘); that

is, |𝑓
𝑖
(𝑘)| < 𝑀

𝑖
.

Then the 𝑄(𝑘) can be calculated as

(𝑄
𝑖𝑗
(𝑘))
3×3

≜ 𝑄 (𝑘)

= −𝐴
𝑇

(𝑘 + 1) 𝑃 (𝑘 + 1)𝐴 (𝑘 + 1) + 𝑃 (𝑘) ,

(34)

where

𝑄
11

(𝑘) = 2𝑝
13

(𝑘 + 1) 𝑓
3
(𝑘 + 1) − 𝑝

33
𝑓
2

3
(𝑘 + 1) ,

𝑄
12

(𝑘) = 𝑄
21

(𝑘)

= 𝑝
12

(𝑘) − 𝛼
0
𝑝
11

+ 𝛼
0
𝑝
13

(𝑘 + 1) 𝑓
3
(𝑘 + 1)

+ 𝑝
13

(𝑘 + 1) 𝑓
2
(𝑘 + 1) − 𝑝

33
𝑓
2
(𝑘 + 1) 𝑓

3
(𝑘 + 1) ,

𝑄
13

(𝑘) = 𝑄
31

(𝑘)

= 𝑝
13

(𝑘) − 𝑝
12

(𝑘 + 1) + 𝑝
23

(𝑘 + 1) 𝑓
3
(𝑘 + 1)

+ 𝑝
13

(𝑘 + 1) 𝑓
1
(𝑘 + 1) − 𝑝

33
𝑓
1
(𝑘 + 1) 𝑓

3
(𝑘 + 1) ,

𝑄
22

(𝑘) = 𝑝
22

− 𝛼
2

0
𝑝
11

+ 2𝛼
2

0
𝑝
13

(𝑘 + 1) 𝑓
2
(𝑘 + 1)

− 𝑝
33
𝑓
2

2
(𝑘 + 1) ,

𝑄
23

(𝑘) = 𝑄
32

(𝑘)

= 𝑝
23

(𝑘) − 𝛼
0
𝑝
12

(𝑘 + 1) + 𝛼
0
𝑝
13

(𝑘 + 1) 𝑓
1
(𝑘 + 1)

+ 𝑝
23

(𝑘 + 1) 𝑓
2
(𝑘 + 1) − 𝑝

33
𝑓
1
(𝑘 + 1) 𝑓

2
(𝑘 + 1) ,

𝑄
33

(𝑘) = 𝑝
33

− 𝑝
22

+ 2𝑝
23

(𝑘 + 1) 𝑓
1
(𝑘 + 1)

− 𝑝
33
𝑓
2

1
(𝑘 + 1) .

(35)

Theorem 12. The sufficient conditions which guarantee the
uniform asymptotic stability of the time-varying discrete system
(15) are

(1) 𝑓
1
(𝑘), 𝑓
2
(𝑘), and 𝑓

3
(𝑘) satisfy

󵄨󵄨󵄨󵄨𝑓1 (𝑘)
󵄨󵄨󵄨󵄨 < √

𝑝
33

− 𝑝
22

𝑝
33

= 𝑀
1

(36)

󵄨󵄨󵄨󵄨𝑓2 (𝑘)
󵄨󵄨󵄨󵄨 <

√
𝑝
22

− 𝛼
2

0
𝑝
11

𝑝
33

, 𝑓
2
(𝑘) ̸= 0 (37)

𝜀
2

𝑝
33

(𝑓
2
(𝑘 + 1) −

󵄨󵄨󵄨󵄨𝑓2 (𝑘 + 1)
󵄨󵄨󵄨󵄨)

< 𝑓
3
(𝑘) <

𝜀
2

𝑝
33

(𝑓
2
(𝑘 + 1) +

󵄨󵄨󵄨󵄨𝑓2 (𝑘 + 1)
󵄨󵄨󵄨󵄨) .

(38)
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(2) The change rate of 𝑓
1
(𝑘), 𝑓
2
(𝑘), and 𝑓

3
(𝑘) satisfy

(𝑆
23
/2) − √𝑀

𝑄2
(𝑘) (𝑄

11
(𝑘) 𝑄
33

(𝑘) − 𝑄2
13

(𝑘))

𝑄
11

(𝑘)
< −𝜀
1
Δ𝑓
1
(𝑘)

<

(𝑆
23
/2) + √𝑀

𝑄2
(𝑘) (𝑄

11
(𝑘) 𝑄
33

(𝑘) − 𝑄2
13

(𝑘))

𝑄
11

(𝑘)

(39)

𝑆
13

2
− √𝑄

11
(𝑘) 𝑄
33

(𝑘)

< −𝜀
2
Δ𝑓
2
(𝑘) <

𝑆
13

2
+ √𝑄

11
(𝑘) 𝑄
33

(𝑘)

(40)

𝑆
12

2
− √𝑄

11
(𝑘) 𝑄
22

(𝑘)

< −𝜀
3
Δ𝑓
3
(𝑘) <

𝑆
12

2
+ √𝑄

11
(𝑘) 𝑄
22

(𝑘),

(41)

where
𝑆
23

= − 2𝑄
11

(𝑘) 𝑝
23

(𝑘 + 1) − 2𝑄
11

(𝑘)

× (−𝛼
0
𝑝
12

(𝑘 + 1) + 𝛼
0
𝑝
13

(𝑘 + 1) 𝑓
1
(𝑘 + 1)

+ 𝑝
23

(𝑘 + 1) 𝑓
2
(𝑘 + 1)

−𝑝
33
𝑓
1
(𝑘 + 1) 𝑓

2
(𝑘 + 1)) + 2𝑄

12
(𝑘) 𝑄
13

(𝑘) ,

𝑆
13

= − 2𝑝
13

(𝑘 + 1)

− 2 (−𝑝
12

(𝑘 + 1) + 𝑝
23

(𝑘 + 1) 𝑓
3
(𝑘 + 1)

+𝑝
13

(𝑘 + 1) 𝑓
1
(𝑘 + 1)

−𝑝
33
𝑓
1
(𝑘 + 1) 𝑓

3
(𝑘 + 1)) ,

𝑆
12

= − 2𝑝
12

(𝑘 + 1)

− 2 (−𝛼
0
𝑝
11

+ 𝛼
0
𝑝
13

(𝑘 + 1) 𝑓
3
(𝑘 + 1)

+𝑝
13

(𝑘 + 1) 𝑓
2
(𝑘 + 1)

−𝑝
33
𝑓
2
(𝑘 + 1) 𝑓

3
(𝑘 + 1))

(42)

𝑀
𝑄2

(𝑘) = 𝑄
11

(𝑘) 𝑄
22

(𝑘) − 𝑄
2

12
(𝑘) (43)

Δ𝑓
𝑖
(𝑘) = 𝑓

𝑖
(𝑘 + 1) − 𝑓

𝑖
(𝑘) (𝑖 = 1, 2, 3) . (44)

Remark 13. Due to −1 < 𝛼
0
(𝑘) < 0, we obtain |𝑓

2
(𝑘)| <

√(𝑝
22

− 𝛼2
0
𝑝
11
)/𝑝
33

< √𝑝
22
/𝑝
33

= 𝑀
2
by (37). According

to (38), we get

0 < 𝑓
3
(𝑘) <

2𝜀
2

𝑝
33

𝑓
2
(𝑘 + 1) 𝑓

2
(𝑘 + 1) > 0

2𝜀
2

𝑝
33

𝑓
2
(𝑘 + 1) < 𝑓

3
(𝑘) < 0 𝑓

2
(𝑘 + 1) < 0.

(45)

So |𝑓
3
(𝑘)| < (2𝜀

2
/𝑝
33
)|𝑓
2
(𝑘 + 1)| < (2/𝑝

33
)(𝑝
11
/𝑀
2
√5)𝑀

2
=

2√5𝑝
11
/5𝑝
33

= 𝑀
3
.

Remark 14. The bound of 𝑓
2
(𝑘) and 𝑓

3
(𝑘) is related to 𝛼

0
(𝑘)

and 𝑓
2
(𝑘 + 1), respectively, in (37) and (38). In order to make

the conditions (37) and (38) possible to be satisfied in the
operation of the system, we reduce the range for

𝛿 <
󵄨󵄨󵄨󵄨𝑓2 (𝑘)

󵄨󵄨󵄨󵄨 < √
𝑝
22

− 𝑝
11

𝑝
33

0 < 𝑓
3
(𝑘) <

2𝜀
2

𝑝
33

𝛿 𝑓
2
(𝑘 + 1) > 0

−
2𝜀
2

𝑝
33

𝛿 < 𝑓
3
(𝑘) < 0 𝑓

2
(𝑘 + 1) < 0,

(46)

where 𝛿 is a positive constant. In this way, the upper bound
and lower bound of 𝑓

2
(𝑘) and 𝑓

3
(𝑘) are constant and they are

possible to implement in real system.

Proof of Theorem 12. The first-order principal minor of 𝑃(𝑘)
satisfies

𝑀
𝑝1

(𝑘) = 𝑝
11
, 𝑝
11

> 0. (47)

The second-order principal minor of 𝑃(𝑘) satisfies

𝑀
𝑝2

(𝑘) = 𝑝
11
𝑝
22

− 𝑝
2

12
(𝑘) = 𝑝

11
𝑝
22

− 𝜀
2

3
𝑓
2

3
(𝑘)

> 𝑝
11
𝑝
22

−
𝑝
2

11

5𝑀2
3

𝑀
2

3
> 𝑝
2

11
−

𝑝
2

11

5
> 0.

(48)

The third-order principal minor of 𝑃(𝑘) satisfies

𝑀
𝑝3

(𝑘) = 𝑝
11
𝑝
22
𝑝
33

+ 2𝜀
1
𝜀
2
𝜀
3
𝑓
1
(𝑘) 𝑓
2
(𝑘) 𝑓
3
(𝑘)

− 𝑝
11
𝜀
2

1
𝑓
2

1
(𝑘) − 𝑝

22
𝜀
2

2
𝑓
2

2
(𝑘) − 𝑝

33
𝜀
2

3
𝑓
2

3
(𝑘)

> 𝑝
11
𝑝
22
𝑝
33

− 2
𝑝
11

𝑀
1
√5

𝑝
11

𝑀
2
√5

𝑝
11

𝑀
3
√5

𝑀
1
𝑀
2
𝑀
3

− 𝑝
11

𝑝
2

11

5𝑀2
1

𝑀
2

1
− 𝑝
22

𝑝
2

11

5𝑀2
2

𝑀
2

2
− 𝑝
33

𝑝
2

11

5𝑀2
3

𝑀
2

3

>
2

5
𝑝
3

11
+

1

5
𝑝
3

11
+

1

5
𝑝
22
𝑝
2

11
+

1

5
𝑝
33
𝑝
2

11
−

2

5√5
𝑝
3

11

−
1

5
𝑝
3

11
−

1

5
𝑝
22
𝑝
2

11
−

1

5
𝑝
33
𝑝
2

11
> 0.

(49)

As a result, 𝑃(𝑘) is a uniformly bounded, positive definite
symmetric matrix by Lemma 10.

The first-order principal minor of 𝑄(𝑘) is

𝑀
𝑄1

(𝑘) = 𝑄
11

(𝑘) = 2𝜀
2
𝑓
2
(𝑘 + 1) 𝑓

3
(𝑘 + 1) − 𝑝

33
𝑓
2

3
(𝑘 + 1)

= −𝑝
33

[𝑓
3
(𝑘 + 1) −

𝜀
2
𝑓
2
(𝑘 + 1) + 𝜀

2

󵄨󵄨󵄨󵄨𝑓2 (𝑘 + 1)
󵄨󵄨󵄨󵄨

𝑝
33

]

× [𝑓
3
(𝑘 + 1) −

𝜀
2
𝑓
2
(𝑘 + 1) − 𝜀

2

󵄨󵄨󵄨󵄨𝑓2 (𝑘 + 1)
󵄨󵄨󵄨󵄨

𝑝
33

] .

(50)
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According to (38) and 𝑓
2
(𝑘) ̸= 0 in (37), we can obtain

𝑀
𝑄1

(𝑘) = 𝑄
11
(𝑘) > 0.

Define

𝑎
12

(𝑘 + 1) = 𝑄
12

(𝑘) − 𝑝
12

(𝑘)

= −𝛼
0
𝑝
11

+ 𝛼
0
𝑝
13

(𝑘 + 1) 𝑓
3
(𝑘 + 1)

+ 𝑝
13

(𝑘 + 1) 𝑓
2
(𝑘 + 1)

− 𝑝
33
𝑓
2
(𝑘 + 1) 𝑓

3
(𝑘 + 1) .

(51)

According to (43), the second-order principal minor of 𝑄(𝑘)

is

𝑀
𝑄2

(𝑘) = −[𝑝
12

(𝑘) + 𝑎
12

(𝑘 + 1)]
2

+ 𝑄
11

(𝑘) 𝑄
22

(𝑘)

= −[𝑝
12

(𝑘) − 𝑝
12

(𝑘 + 1)]
2

+ 𝑆
12

[𝑝
12

(𝑘) − 𝑝
12

(𝑘 + 1)] + 𝑇
12
,

(52)

where

𝑆
12

= − 2𝑝
12

(𝑘 + 1) − 2𝑎
12

(𝑘 + 1) ,

𝑇
12

= 𝑝
2

12
(𝑘 + 1) + 𝑆

12
𝑝
12

(𝑘 + 1)

− 𝑎
2

12
(𝑘 + 1) + 𝑄

11
(𝑘) 𝑄
22

(𝑘) .

(53)

𝑆
12
and 𝑇

12
can be expressed in the form of (29) and (28):

𝐵 (𝑘 + 1) = 𝑝
12

(𝑘 + 1) , 𝐶 (𝑘 + 1) = 𝑎
12

(𝑘 + 1) ,

𝐷 (𝑘) = 𝑄
11

(𝑘) 𝑄
22

(𝑘) , 𝐹 (𝑘) = 0, 𝑀 (𝑘) = 1.

(54)

Then the discriminant root of the quadratic trinomial (52)
about [𝑝

12
(𝑘) − 𝑝

12
(𝑘 + 1)] is

Δ
12

(𝑘) = 𝐹
2

(𝑘) + 4𝑀 (𝑘)𝐷 (𝑘) = 4𝑄
11

(𝑘) 𝑄
22

(𝑘)

= 4𝑀
𝑄1

(𝑘) 𝑄
22

(𝑘) ,

(55)

where

𝑄
22

(𝑘) = 𝑝
22

− 𝛼
2

0
𝑝
11

+ 2𝛼
2

0
𝜀
2
𝑓
2

2
(𝑘 + 1) − 𝑝

33
𝑓
2

2
(𝑘 + 1) .

(56)

We can get 𝑄
22
(𝑘) > 0 by (37), so Δ

12
(𝑘) > 0. Then we have

𝑀
𝑄2

(𝑘) > 0 according to (41) and Lemma 11.
The third-order principal minor of 𝑃(𝑘) is

𝑀
𝑄3

(𝑘) = −𝑄
11

(𝑘) 𝑄
2

23
(𝑘) + 2𝑄

12
(𝑘) 𝑄
13

(𝑘) 𝑄
23

(𝑘)

− 𝑄
22

(𝑘) 𝑄
2

13
(𝑘) + 𝑄

33
(𝑘)𝑀

𝑄2
(𝑘) .

(57)

Define

𝑎
23

(𝑘 + 1) = 𝑄
23

(𝑘) − 𝑝
23

(𝑘)

= −𝛼
0
𝑝
12

(𝑘 + 1) + 𝛼
0
𝑝
13

(𝑘 + 1) 𝑓
1
(𝑘 + 1)

+ 𝑝
23

(𝑘 + 1) 𝑓
2
(𝑘 + 1)

− 𝑝
33
𝑓
1
(𝑘 + 1) 𝑓

2
(𝑘 + 1) .

(58)

We get

𝑀
𝑄3

(𝑘) = −𝑄
11

(𝑘) [𝑝
23

(𝑘) + 𝑎
23

(𝑘 + 1)]
2

+ 2𝑄
12

(𝑘) 𝑄
13

(𝑘) 𝑎
23

(𝑘 + 1) − 𝑄
22

(𝑘) 𝑄
2

13
(𝑘)

+ 𝑄
33

(𝑘)𝑀
𝑄2

(𝑘)

= −𝑄
11

(𝑘) [𝑝
23

(𝑘) − 𝑝
23

(𝑘 + 1)]
2

+ 𝑆
23

[𝑝
23

(𝑘) − 𝑝
23

(𝑘 + 1)] + 𝑇
23
,

(59)

where

𝑆
23

= −2𝑄
11

(𝑘) 𝑝
23

(𝑘 + 1) − 2𝑄
11

(𝑘) 𝑎
23

(𝑘 + 1)

+ 2𝑄
12

(𝑘) 𝑄
13

(𝑘) ,

𝑇
23

= 𝑄
11

(𝑘) 𝑝
2

23
(𝑘 + 1) + 𝑆

23
𝑝
23

(𝑘 + 1)

− 𝑄
11

(𝑘) 𝑎
2

23
(𝑘 + 1) + 2𝑄

12
(𝑘) 𝑄
13

(𝑘) 𝑎
23

(𝑘 + 1)

− 𝑄
22

(𝑘) 𝑄
2

13
(𝑘) + 𝑄

33
(𝑘)𝑀

𝑄2
(𝑘) .

(60)

𝑆
23
and 𝑇

23
can be expressed in the form of (29) and (28):

𝑀(𝑘) = 𝑄
11

(𝑘) , 𝐵 (𝑘 + 1) = 𝑝
23

(𝑘 + 1) ,

𝐶 (𝑘 + 1) = 𝑎
23

(𝑘 + 1) ,

𝐷 (𝑘) = −𝑄
22

(𝑘) 𝑄
2

13
(𝑘) + 𝑄

33
(𝑘)𝑀

𝑄2
(𝑘) ,

𝐹 (𝑘) = 2𝑄
12

(𝑘) 𝑄
13

(𝑘) .

(61)

Then the discriminant root of the quadratic trinomial (59)
about [𝑝

23
(𝑘) − 𝑝

23
(𝑘 + 1)] is

Δ
23

(𝑘) = 𝐹
2

(𝑘) + 4𝑀 (𝑘)𝐷 (𝑘) = 4𝑄
2

12
(𝑘) 𝑄
2

13
(𝑘)

+ 4𝑄
11

(𝑘) [−𝑄
22

(𝑘) 𝑄
2

13
(𝑘) + 𝑄

33
(𝑘)𝑀

𝑄2
(𝑘)]

= 4𝑄
2

13
(𝑘) [𝑄

2

12
(𝑘) − 𝑄

11
(𝑘) 𝑄
22

(𝑘)]

+ 4𝑄
11

(𝑘) 𝑄
33

(𝑘)𝑀
𝑄2

(𝑘)

= 4𝑀
𝑄2

(𝑘) [𝑄
11

(𝑘) 𝑄
33

(𝑘) − 𝑄
2

13
(𝑘)] .

(62)

Define

𝑎
13

(𝑘 + 1) = 𝑄
13

(𝑘) − 𝑝
13

(𝑘)

= −𝑝
12

(𝑘 + 1) + 𝑝
23

(𝑘 + 1) 𝑓
3
(𝑘 + 1)

+ 𝑝
13

(𝑘 + 1) 𝑓
1
(𝑘 + 1)

− 𝑝
33
𝑓
1
(𝑘 + 1) 𝑓

3
(𝑘 + 1) .

(63)
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Figure 8: Structure of the closed-loop system.
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Figure 9: Simulation results for the step signal input.
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Figure 11: Simulation results for the 30∘/s slope signal input.
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Figure 12: Simulation results for the 0.6∘/s and 0.6∘/s2 sine signal input.

We get

𝑄
11

(𝑘) 𝑄
33

(𝑘) − 𝑄
2

13
(𝑘)

= −[𝑝
13

(𝑘) + 𝑎
13

(𝑘 + 1)]
2

+ 𝑄
11

(𝑘) 𝑄
33

(𝑘)

= −[𝑝
13

(𝑘) − 𝑝
13

(𝑘 + 1)]
2

+ 𝑆
13

[𝑝
13

(𝑘) − 𝑝
13

(𝑘 + 1)] + 𝑇
13
,

(64)

where

𝑆
13

= −2𝑝
13

(𝑘 + 1) − 2𝑎
13

(𝑘 + 1) ,

𝑇
13

= 𝑝
2

13
(𝑘 + 1) + 𝑆

13
𝑝
13

(𝑘 + 1)

− 𝑎
2

13
(𝑘 + 1) + 𝑄

11
(𝑘) 𝑄
33

(𝑘) .

(65)
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Figure 13: Simulation results for the 30∘/s and 30∘/s2 sine signal input.
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Figure 14: Experimental system.

𝑆
13
and 𝑇

13
can be expressed in the form of (29) and (28):

𝐵 (𝑘 + 1) = 𝑝
13

(𝑘 + 1) , 𝐶 (𝑘 + 1) = 𝑎
13

(𝑘 + 1) ,

𝐷 (𝑘) = 𝑄
11

(𝑘) 𝑄
33

(𝑘) , 𝐹 (𝑘) = 0, 𝑀 (𝑘) = 1.

(66)

Then the discriminant root of the quadratic trinomial (64)
about [𝑝

13
(𝑘) − 𝑝

13
(𝑘 + 1)] is

Δ
13

(𝑘) = 𝐹
2

(𝑘) + 4𝑀 (𝑘)𝐷 (𝑘)

= 4𝑄
11

(𝑘) 𝑄
33

(𝑘) = 4𝑀
𝑄1

(𝑘) 𝑄
33

(𝑘) ,

(67)

where

𝑄
33

(𝑘) = 𝑝
33

− 𝑝
22

+ 2𝜀
1
𝑓
2

1
(𝑘 + 1) − 𝑝

33
𝑓
2

1
(𝑘 + 1) .

(68)

We can get 𝑄
33
(𝑘) > 0 by (44), so Δ

13
(𝑘) > 0. According to

(40) and Lemma 11, we obtain

𝑄
11

(𝑘) 𝑄
33

(𝑘) − 𝑄
2

13
(𝑘) > 0. (69)

So we get Δ
23
(𝑘) > 0 by (62). Then we have 𝑀

𝑄3
(𝑘) > 0,

according to (39) and Lemma 11.
Thus, 𝑄(𝑘) is a uniformly bounded, positive definite

symmetric matrix by Lemma 10. Furthermore, the time-
varying discrete system (22) is uniformly asymptotically
stable by Lemma 9. The proof is completed.

4. Simulation Results

Considering the characters of the servo system, a composite
controller which is composed of golden-section adaptive
control law, integral control law, and feed-forward control
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Figure 15: 30∘ step response.

law is applied in the system simulation. The structure of the
closed-loop system is shown in Figure 8.

The golden-section adaptive control law 𝑢
𝑙
(𝑘) is given as

𝑢
𝑙
(𝑘) =

1

𝛽
0
(𝑘) + 𝜆

[𝑙
1
𝛼̂
1
(𝑘) 𝑒 (𝑘) + 𝑙

2
𝛼̂
2
(𝑘) 𝑒 (𝑘 − 1)] , (70)

where 𝑒(𝑘) = 𝑦
𝑟
(𝑘) − 𝑦(𝑘), 𝑙

1
= 0.382, 𝑙

2
= 0.618, and 𝜆 is a

small positive constant which ensures that the golden-section
adaptive control law is bounded when 𝛽

0
(𝑘) = 0.

The integral control law is given as

𝑢
𝑖
(𝑘) = 𝑢

𝑖
(𝑘 − 1) + 𝑘

𝑖
𝑒 (𝑘) . (71)

The feed-forward control law is given as
𝑢
𝑓
(𝑘) = 𝑘

𝑓
(𝑦
𝑟
(𝑘) − 𝑦

𝑟
(𝑘 − 1)) , (72)

where 𝑘
𝑓
is the feed-forward coefficient.

In summary, the composite controller is

𝑢 (𝑘) = 𝑢
𝑎
(𝑘) + 𝑢

𝑓
(𝑘) = 𝑢

𝑙
(𝑘) + 𝑢

𝑖
(𝑘) + 𝑢

𝑓
(𝑘) . (73)

The values of the controller parameters are 𝜆 = 2 ×

10
−3, 𝑘
𝑖
= 0.6, and 𝑘

𝑓
= 50.

In order to verify the effectiveness of the servo system,
step signal, slope signal, and sine signal, which are often
used in the performance test of servo systems, are used as
input signals in this paper. In the simulations, the system
responses under 30

∘ step signal input, 0.6
∘

/s slope signal
input, 30∘/s slope signal input, 0.6∘/s, 0.6∘/s2 sine signal input,
and 30

∘

/s, 30∘/s2 sine signal input are tested, respectively.

(1) When the input signal is 𝑦
𝑟
(𝑡) = 30

∘, the results are
shown in Figure 9.
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Figure 16: 0.6∘/s slope response.

(2) When the input signal is 𝑦
𝑟
(𝑡) = 0.6

∘

/s, the results are
shown in Figure 10.

(3) When the input signal is 𝑦
𝑟
(𝑡) = 30

∘

/s, the results are
shown in Figure 11.

(4) When the input signal is 𝑦
𝑟
(𝑡) = 0.6

∘ sin(𝑡), the results
are shown in Figure 12.

(5) When the input signal is 𝑦
𝑟
(𝑡) = 30

∘ sin(𝑡), the results
are shown in Figure 13.

5. Experimental Results

To verify the effectiveness of the proposed control scheme,
the experiments are conducted on the experimental system as
shown in Figure 14. The experimental system consisted of an
upper computer, a servo drive, a servo motor, a reducer, and
a load. The PC104 (SCM/SPT4) module is used as the upper
computer, and it is mainly used for sending instructions
and monitoring the status of the system. The servo drive is
designed by us based on the DSP TMS320F28335, which has
a CAN communication interface and can receive the position
instruction from the upper computer in real time. In the
running process, the drive implements the control of current,
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Figure 17: 30∘/s slope response.

speed, and position of the motor. The PMSM (M-403-B)
produced by Kollmorgen Company is selected as the servo
motor in the experiment. The parameters of the motor are
listed in Table 1. The high speed and high rigidity planetary
gear reducer (FIC-A35-119) produced by Sumitomo Heavy
Machinery Company is utilized in the experiment, whose
reduction ratio is 1 : 119, and the reduction ratio of the final
gears is 1 : 2.

The backlash between the motor and the load is 0.36∘. PI
control scheme is used in the speed controller and current
controller of the motor drive; the proportion and integral
gains of the speed controller and current controller are 1.2,
0.02, 1.5, and 0.02, respectively, after adjustment. For the
sake of comparison, the position controller based on PI con-
trol scheme with feed-forward compensation (PIF) and the
composite position controller including the golden-section

Table 1: Parameters of the servo motor (M-403-B).

Name Units Value
Rated power kW 2.5
Rated speed rpm 3000
Torque coefficient N⋅m/A 1.11
EMF V/krpm 67.2
Line resistance ohms 2.6
Line induction mH 50
Inertia Kg⋅m2 0.00259
Static friction N⋅m 0.24
Viscous friction N⋅m/krpm 0.015

adaptive control law, the integral control law, and feed
forward compensation (GSAIF) are tested, respectively, in the
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Figure 18: 0.6∘/s and 0.6∘/s2 sine response.

experiment. In the PIF scheme, the proportion and integral
gains are 4.2 and 0.23, respectively, and the feed-forward
gain is 0.25. In the GSAIF scheme, 𝑓 = 0.995, and 𝜆 =

0.01, the coefficients of integral gain and feed forward gain
are 0.29 and 0.25. Position step, slope, and sine signals are
used in the experiments to test the system performance. The
experimental results are shown in Figures 15–19.
(1) Tracking the 30∘ Step Signal. From Figure 15 it can be
obtained that the system overshoot is 1.8∘ using PIF control
scheme; after 1.5 s the system is in a stable state and the
tracking error is zero. When using GSAIF control scheme,
the overshoot does not appear, and after 0.8 s the system is

in a stable state and the stable tracking error is zero too. The
comparison results show that the GSAIF scheme has a better
dynamic performance and the response speed is much better
than the PIF scheme.
(2) Tracking the 0.6∘/s and the 30∘/s Slope Signal. As shown
in Figures 16 and 17, the system is tested for tracking
0.6∘/s and 30∘/s position slope signal. In the 0.6∘/s tracking
experiment, the maximum stable error is 0.023∘ using PIF
scheme. When the system tracks the command signal using
GSAIF, the maximum tracking error is only 0.01∘. In the
30∘/s tracking test, the stable error increases using both of
the control schemes. The maximum stable tracking error
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Figure 19: 30∘/s and 30∘/s2 sine response.

using PIF scheme is 0.12∘. When using GSAIF scheme, the
maximum tracking error is 0.08∘. The comparison results
show that the GSAIF scheme has better smoothness and
higher precision tracking performance compared with PIF
scheme when tracking the position slope signals.

(3) Tracking the 0.6∘/s, 0.6∘/𝑠2 and 30
∘/s, 30∘/𝑠2 Sine Signal. As

shown in Figures 18 and 19, the system is tested for tracking
position sine signal; the maximum speed and acceleration
of the command signals are 0.6∘/s, 0.6∘/s2 and 30∘/s, 30∘/s2,
respectively. In the 0.6∘/s, 0.6∘/s2 sine signal tracking test, the
maximum tracking error is 0.06∘ when using PIF scheme.
However, using GSAIF scheme, the maximum tracking error
is 0.04∘. In the 30∘/s, 30∘/s2 sine signal tracking test, the
tracking error vibrates severely using the PIF scheme and

the maximum tracking error reaches 0.42∘. Using GSAIF
scheme, there is no obvious vibrations and the maximum
tracking error is only 0.26∘.The comparison results show that
the GSAIF scheme possesses a better suppression ability of
nonlinear uncertainties such as backlash and friction when
tracking sine signals, and it improves the system tracking
precision.

6. Conclusions

In this paper, the characteristicmodeling technique is applied
for modeling and control of the servo system with backlash
and friction. Tomeet the demands of characteristicmodeling,
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a continuous approximation of dead-zone function is intro-
duced to describe the backlashmodel, and the sgn(⋅) function
is replaced by (2/𝜋) arctan(𝑘V) to make the Stribeck friction
model smooth. The characteristic model of the system is
established based on a second-order slowly time-varying
difference equation and verified by simulations. The com-
posite controller based on golden-section adaptive law, feed-
forward compensation, and integral law is proposed, and the
stability of the closed-loop system is analyzed by Lyapunov
theory. It is shown by both simulation and experimental
results that it is feasible to establish the characteristic model
of the servo system with backlash and friction. The GSAIF
controller is also effective, and it can reduce the effect of
backlash and friction and improve the steady-state precision
and the dynamic performance of the servo system.
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“A new model for control of systems with friction,” IEEE
Transactions on Automatic Control, vol. 40, no. 3, pp. 419–425,
1995.

[14] L. Márton and B. Lantos, “Control of mechanical systems with
Stribeck friction and backlash,” Systems & Control Letters, vol.
58, no. 2, pp. 141–147, 2009.

[15] B. Bona and M. Indri, “Friction compensation in robotics:
an overview,” in Proceedings of the 44th IEEE Conference on
Decision and Control, and the European Control Conference
(CDC-ECC ’05), pp. 4360–4367, Seville, Spain, December 2005.

[16] B. Armstrong, D. Neevel, and T. Kusik, “New results in NPID
control: tracking, integral control, friction compensation and
experimental results,” IEEE Transactions on Control Systems
Technology, vol. 9, no. 2, pp. 399–406, 2001.
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