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We consider the MINRES seed projection method for solving multiple right-hand side linear systems 𝐴𝑋 = 𝐵, where 𝐴 ∈ 𝑅
𝑛×𝑛 is

a nonsingular symmetric matrix, 𝐵 ∈ 𝑅
𝑛×𝑝. In general, GMRES seed projection method is one of the effective methods for solving

multiple right-hand side linear systems. However, when the coefficient matrix is symmetric, the efficiency of this method would
be weak. MINRES seed projection method for solving symmetric systems with multiple right-hand sides is proposed in this paper,
and the residual estimation is analyzed. The numerical examples show the efficiency of this method.

1. Introduction

Consider the multiple right-hand side linear systems

𝐴𝑋 = 𝐵, (1)

where 𝐴 ∈ 𝑅
𝑛×𝑛 is a nonsingular symmetric matrix, and 𝐵 ∈

𝑅
𝑛×𝑝.
Equation (1) plays an important role in chemistry, elec-

tronics, structures, control, and other problems; see [1, 2] for
detail.

In the last few years, the block methods have been
developed to solve (1), such as the block conjugate gradient
algorithm (BCG) [3], the block generalized minimal residual
method [4–6], the block BiCGSTAB method [7], the block
QMR method [8], the block least squares method [9], the
block Lanczos method [10], and the block IDR(𝑠) method
[11] which have been proposed recently. In general, the block
methods are faster than solving each one separately.

The meshless methods are extensively used for solving
(1); these meshless methods show to be efficient and accurate
in terms of their numerical results; see [12–18]. The global
methods [19, 20] are also a class of important methods. Fol-
lowing the work [20], many other global methods have been
developed, including the global BiCG and global BiCGSTAB

methods [21], the global Hessenberg and global CMRH
methods [22], and the polynomial preconditioned global
CMRH method [23, 24]. Generally, the global methods are
more appropriate for large and sparse systems.

In many practical applications, the right-hand sides are
not arbitrary and are very close; then the seed projection
methods are often used to solve (1); see [1, 2, 25, 26]. The
main idea of this method is selecting one system to be the
seed systems firstly, then solving the seed systems by some
Krylov subspace method, and creating a Krylov subspace
𝐾, then projecting the residual of the other systems, called
nonseed systems, onto this Krylov subspace 𝐾 to get the
approximate solutions. The process is repeated with other
seed systems until all the systems are solved. The seed
projection methods were proposed by Smith et al. [1] for
the CG method firstly. When 𝐴 is unsymmetric, Simoncini
and Gallopulos [2] proposed the GMRES seed projection
method. Later, a seed method which uses Morgan’s Krylov
subspace augmented with eigenvectors was presented in [25].
Moreover, the seedmethod can be used to solve unsymmetric
shifted systems withmultiple right-hand sides [26]. However,
if 𝐴 is a symmetric matrix, the efficiency of these methods
would be weak.
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In this paper, we propose the MINRES seed projection
method for solving symmetric systems with multiple right-
hand sides, and the residual estimation is analyzed.

The paper is organized as follows. In Section 2, we give
a quick overview of the GMRES seed projection method. In
Section 3, we present the MINRES seed projection method
and the residual estimation. In the last section, we show the
efficiency of our method by numerical experiments.

2. GMRES Seed Projection Method

In this section, we recall the GMRES seed projection method
for solving (1). Details of the algorithm can be found in [2, 25].
We summarize it in the following algorithm.

Algorithm 1 (𝑋 = Gseed(𝐴, 𝐵,𝑋(0), 𝜀, 𝑚)). We have the
following:

(1) 𝑋 = 𝑋
(0);

(2) 𝑅 = 𝐵 − 𝐴𝑋;
(3) for 𝑙 = 1, 2, . . . , 𝑝 until all the systems are solved
(4) [𝜎, 𝑟

𝜎
] = 𝑆𝐸𝐸𝐷(𝑅), 𝛽 = ‖𝑟

𝜎
‖
2
;

(5) for 𝑘 = 1, 2, . . ., until convergence;
(6) [𝑉

𝑚+1
, 𝐻] = 𝐴𝑟𝑛𝑜𝑙𝑑𝑖(𝐴, 𝑟

𝜎
);

(7) 𝑏
𝜎
= 𝛽𝑒
1
, where 𝑒

1
= (1, 0, . . . , 0)

𝑇

∈ 𝑅
𝑚+1;

(8) 𝑏
𝑗
= 𝑉
Τ

𝑚+1
(𝑏
𝑗
− 𝐴𝑥
𝑗
), 𝑗 = 1, . . . , 𝑝, 𝑗 ̸= 𝜎;

(9) compute 𝑦
𝑗
by minimizing ‖𝐻𝑦 − 𝑏

𝑗
‖
2

, 𝑦 ∈ 𝑅
𝑚, 𝑗 =

1, . . . , 𝑝;
(10) 𝑋 = 𝑋 + 𝑉

𝑚
𝑌, where 𝑌 = [𝑦

1
, . . . , 𝑦

𝑝
]
Τ;

(11) 𝑅 = 𝐵 − 𝐴𝑋, 𝑟(𝑗) = ‖𝑅(:, 𝑗)‖
2
;

(12) if ‖𝑟(𝑗)‖
2
< 𝜀, then delete the 𝑗th systems, let 𝑤 be

the number of the 𝑗 conforming to this condition, and
then 𝑝 := 𝑝 − 𝑤;

(13) if ‖𝑟
𝜎
‖
2
< 𝜀, then delete these seed systems, set 𝑝 :=

𝑝 − 1, and go to 3;
(14) end(k);
(15) end(l).

We now make a few descriptions of Algorithm 1. Firstly,
we give an initial approximation to the solutions 𝑋(0), com-
pute the initial residuals, and select seed systems by a function
𝑆𝐸𝐸𝐷. In this algorithm, 𝑆𝐸𝐸𝐷 applied to the𝑅 returns 𝜎 and
𝑟
𝜎
, where 𝜎 is the index of column of 𝑅 having the maximum

norm. Secondly, we apply restarted GMRES method for
solving the seed systems and function 𝐴𝑟𝑛𝑜𝑙𝑑𝑖 applies the
Arnoldi procedure to generate an orthogonal basis 𝑉

𝑚+1
=

[V
1
, . . . , V

𝑚
] for the Krylov subspace𝐾

𝑚+1
(𝐴, 𝑟
𝜎
). Meanwhile,

the nonseed solutions are approximated by projecting the
residual 𝑟

𝑗
= 𝑏
𝑗
− 𝐴𝑥
𝑗
on 𝐾
𝑚+1

(𝐴, 𝑟
𝜎
) and solving the least

square problem min
𝑦𝑗∈𝑅
𝑚‖𝐻𝑦
𝑗
− 𝑉
Τ

𝑚+1
𝑟
𝑗
‖
2

. Thirdly, after the
seed systems are solved to desired accuracy, new seed systems
are selected from the unsolved systems and then the whole
procedure is repeated until all the systems are solved. Some

theoretical analysis about the above algorithm can be found
in [2, 25].

3. MINRES Seed Projection Method

Based on the MINRES method for solving the symmetric
linear systems, in this section, we combine the GMRES seed
projectionmethod and theMINRESmethod and propose the
MINRES seed projectionmethod for solving (1).The Arnoldi
procedure in GMRES seed projection method is exchanged
by Lanczos procedure, and applying the seed projection idea
to MINRES method, the MINRES seed projection method is
proposed as the following algorithm.

Algorithm 2 (𝑋 = Mseed(𝐴, 𝐵,𝑋(0), 𝜀, 𝑚)). We have the
following:

(1) 𝑋 = 𝑋
(0);

(2) 𝑅 = 𝐵 − 𝐴𝑋;
(3) for 𝑙 = 1, 2, . . . , 𝑝 until all the systems are solved;
(4) [𝜎, 𝑟

𝜎
] = 𝑆𝐸𝐸𝐷(𝑅), 𝛽 = ‖𝑟

𝜎
‖
2
;

(5) for 𝑘 = 1, 2, . . ., until convergence;
(6) [𝑄

𝑚+1
, 𝑇̃
𝑚
] = 𝐿𝑎𝑛𝑐𝑧𝑜𝑠(𝐴, 𝑟

𝜎
);

(7) 𝑏
𝜎
= 𝛽𝑒
1
, where 𝑒

1
= (1, 0, . . . , 0)

𝑇

∈ 𝑅
𝑚+1;

(8) 𝑏
𝑗
= 𝑉
Τ

𝑚+1
(𝑏
(𝑗)

− 𝐴𝑥
(𝑗)

), 𝑗 = 1, . . . , 𝑝, 𝑗 ̸= 𝜎;

(9) compute 𝑑
(𝑗) by minimizing ‖𝑇̃

𝑚
𝑑 − 𝑏
𝑗
‖
2

, 𝑑 ∈

𝑅
𝑚, 𝑗 = 1, . . . , 𝑝;

(10) 𝑋 = 𝑋 + 𝑄
𝑚
𝐷, where𝐷 = [𝑑

(1)

, . . . , 𝑑
(𝑝)

]
Τ;

(11) 𝑅̃ = 𝐵 − 𝐴𝑋, 𝑟(𝑗) = ‖𝑅̃(:, 𝑗)‖
2
;

(12) if ‖𝑟(𝑗)‖
2

< 𝜀, then delete 𝑗th system, let 𝑤 be the
number of the 𝑗 conforming to this condition, and
then 𝑝 := 𝑝 − 𝑤;

(13) if ‖𝑟
𝜎
‖
2
< 𝜀, then delete this seed systems, set 𝑝 :=

𝑝 − 1, go to 3;
(14) end(k);
(15) end(l).

We now make a few descriptions about Algorithm 2.
Firstly, we give an initial approximation to the solutions𝑋(0),
compute the initial residuals, and select seed systems by a
function 𝑆𝐸𝐸𝐷. In this algorithm, 𝑆𝐸𝐸𝐷 applied to the 𝑅

returns 𝜎 and 𝑟
𝜎
, where 𝜎 is the index of column of 𝑅 having

the maximum norm. Secondly, we apply restarted Lanczos
method for solving the seed systems and function 𝐿𝑎𝑛𝑐𝑧𝑜𝑠

applies the Lanczos procedure to generate an orthogonal basis
𝑄
𝑚+1

= [𝑞
1
, . . . , 𝑞

𝑚
] for the Krylov subspace 𝐾

𝑚+1
(𝐴, 𝑟
𝜎
).

Meanwhile, the nonseed solutions are approximated by pro-
jecting the residual 𝑟(𝑗) = 𝑏

(𝑗)

−𝐴𝑥
(𝑗) on𝐾

𝑚+1
(𝐴, 𝑟
𝜎
) and solv-

ing the least square problem min
𝑑
(𝑗)
∈𝑅
𝑚‖𝑇̃
𝑚
𝑑
(𝑗)

− 𝑄
Τ

𝑚+1
𝑟
(𝑗)

‖
2
.

Thirdly, after the seed systems are solved to desired accuracy,
new seed systems are selected from the unsolved systems and
then the whole procedure is repeated until all the systems are
solved.
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According to Algorithm 2, we can get

𝑟
(𝑗)

= 𝑏
(𝑗)

− 𝐴𝑥
(𝑗)

= 𝑏
(𝑗)

− 𝐴 (𝑥
(𝑗)

+ 𝑄
𝑚
𝑑
(𝑗)

)

= 𝑟
(𝑗)

− 𝐴𝑄
𝑚
𝑑
(𝑗)

= 𝑟
(𝑗)

− 𝑄
𝑚+1

𝑇̃
𝑚
𝑑
(𝑗)

(2)

and 𝑄
𝑇

𝑚+1
𝑟
(𝑗)

= 𝑄
𝑇

𝑚+1
𝑟
(𝑗)

− 𝑇̃
𝑚
𝑑
(𝑗). In addition, let 𝑃 =

𝑄
𝑚+1

𝑄
𝑇

𝑚+1
be the orthogonal operator on 𝐾

𝑚+1
(𝐴, 𝑟
(𝑠)

). It
follows that

𝑟
(𝑗)

= 𝑟
(𝑗)

− 𝐴𝑄
𝑚
𝑑
(𝑗)

= (𝐼 − 𝑃) 𝑟
(𝑗)

+ (𝑃𝑟
(𝑗)

− 𝐴𝑄
𝑚
𝑑
(𝑗)

)

= (𝐼 − 𝑃) 𝑟
(𝑗)

+ 𝑄
𝑚+1

(𝑄
𝑇

𝑚+1
𝑟
(𝑗)

− 𝑇̃
𝑚
𝑑
(𝑗)

) .

(3)

The following property can be attained.

Property 1. The residual 𝑟(𝑗) in nonseed systems in Algo-
rithm 2 satisfy

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑇

𝑚+1
𝑟
(𝑗)
󵄩󵄩󵄩󵄩󵄩2

= min
𝑥∈𝑥
(𝑗)
+𝐾𝑚

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑇

𝑚+1
(𝑏
(𝑗)

− 𝐴𝑥)
󵄩󵄩󵄩󵄩󵄩2
,

󵄩󵄩󵄩󵄩󵄩
𝑟
(𝑗)
󵄩󵄩󵄩󵄩󵄩

2

2

=
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑃) 𝑟

(𝑗)
󵄩󵄩󵄩󵄩󵄩

2

2

+ min
𝑑∈𝑅
𝑚

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑇

𝑚+1
𝑟
(𝑗)

− 𝑇̃
𝑚
𝑑
󵄩󵄩󵄩󵄩󵄩

2

2

.

(4)

Theorem 3. Set 𝐾
𝑚

≡ 𝐾
𝑚
(𝐴, 𝑟
(𝑠)

) as 𝑚-dimension Krylov
subspace; one has

(1) for the seed systems: 𝑥(𝑠) ∈ {𝑥
(𝑠)

} + 𝐾
𝑚
, 𝑟(𝑠) ∈ 𝐾

𝑚+1
,

and 𝑟(𝑠) ⊥ 𝐴𝐾
𝑚
⊆ 𝐾
𝑚+1

;
(2) for the nonseed systems:𝑥(𝑗) ∈ {𝑥

(𝑗)

}+𝐾
𝑚
, 𝑟(𝑗) ∈ {𝑟

(𝑗)

}+

𝐾
𝑚+1

, and 𝑟(𝑗) ⊥ 𝐴𝐾
𝑚
.

Proof. (1) According to the Lanczos method, the conclusion
of (1) is right obviously;

(2) since 𝑥(𝑗) = {𝑥
(𝑗)

} + 𝑄
𝑚
𝑑
(𝑗)

∈ {𝑥
(𝑗)

} + 𝐾
𝑚
, it follows

that

𝑟
(𝑗)

= 𝑏
(𝑗)

− 𝐴𝑥
(𝑗)

= 𝑟
(𝑗)

− 𝐴𝑄
𝑚
𝑑
(𝑗)

= 𝑟
(𝑗)

− 𝑄
𝑚+1

𝑇̃
𝑚
𝑑
(𝑗)

.

(5)

Using 𝐴𝑄
𝑚
as inner product, we can get

(𝐴𝑄
𝑚
)
𝑇

𝑟
(𝑗)

= 𝑇̃
𝑇

𝑚
𝑄
𝑇

𝑚+1
(𝑟
(𝑗)

− 𝑄
𝑚+1

𝑇̃
𝑚
𝑑
(𝑗)

)

= 𝑇̃
𝑇

𝑚
(𝑄
𝑇

𝑚+1
𝑟
(𝑗)

− 𝑇̃
𝑚
𝑑
(𝑗)

) .

(6)

Since 𝑑
(𝑗)

= argmin
𝑑∈𝑅
𝑚‖𝑄
𝑇

𝑚+1
𝑟
(𝑗)

− 𝑇̃
𝑚
𝑑‖
2
is the least

squares solution and satisfies the normal equation
𝑇̃
𝑇

𝑚
𝑇̃
𝑚
𝑑
(𝑗)

= 𝑇̃
𝑇

𝑚
𝑄
𝑇

𝑚+1
𝑟
(𝑗), then (𝐴𝑄

𝑚
)
𝑇

𝑟
(𝑗)

= 0.

4. Numerical Experiments

In order to prove the efficiency of our algorithm, we com-
pare the following methods. (1) MINRES1, it uses MINRES
method for solving the multiple right-hand side linear sys-
tems one by one and uses the convergent solution of (𝑗 −

1)th systems as the iterative initial vector of 𝑗th systems
when the (𝑗 − 1)th systems converge. (2) MINRES2, it uses

MINRES method for solving the multiple right-hand side
linear systems one by one, and the initial vector is zero vector.
(3)Mseed is MINRES seed projection method.

All numerical experiments are implemented inMATLAB
2009 and run in Intel Pentium Dual T2390 computer. We set
𝑚 = 30; all the tests are stopped as soon as ‖𝑟(𝑗)‖

2
< 𝜀 ≡ 10

−6.

Example 1. 𝐴 is a 1024 × 1024 symmetric matrix:

𝐴 =

[
[
[
[
[
[
[
[

[

1 0.1 0.5 0.5 ⋅ ⋅ ⋅ 0.5

0.1 2 0.1

0.5 0.1 3 0.1

0.5 0.1 4 d
... d d 0.1

0.5 0.1 1024

]
]
]
]
]
]
]
]

]

. (7)

In numerical experiment, the right-hand sides of systems
are constructed by two forms as the following, respectively.

Form 1:

𝐵
1
= [𝑏
(1)

, . . . , 𝑏
(𝑝)

] ,

𝑏
(𝑗)

≡ 𝑏
(𝑗)

(𝑡
𝑖
) = − cos(5 cos(𝑡

𝑖
−
2 (𝑗 − 1) 𝜋

128
)) ,

(8)

where 𝑗 = 1, . . . , 𝑝; 𝑡
𝑖
= 1 + 0.1(𝑖 − 1), 𝑖 = 1, . . . , 𝑛.

Form 2:

𝐵
2
=[𝑏
(1)

, . . . , 𝑏
(𝑝)

] , where 𝑏
(𝑗)

=𝐴𝑢
(𝑗)

, 𝑢
(1)

=(1, . . . , 1)
𝑇

,

𝑢
(𝑗)

= 𝑗 ⋅ cos ((2𝑗 + 𝑖) × 10
6

) ⋅ sin ((3 (4 − 𝑗) + 𝑖) × 10
(6)

) ,

𝑖 = 1, . . . , 𝑛, 𝑗 = 2, . . . , 𝑝.

(9)

The numerical results are shown in Tables 1 and 2 and the data
in bracket is the sum of iterative steps.

In Table 1, the iterative steps of each system are listed and
the data in bracket are the sum of iterative steps of all systems.
From Table 1, we can know that Mseed can do better than
MINRES1 and MINRES2.

Figures 1, 2, and 3 are the convergent curve of three
methods, respectively, when the right side is 𝐵

1
. And from

them, we can see that Mseed can do better than MINRES1
and MINRES2.

Example 2. Next example comes fromMatrixMarket, and all
the matrices are symmetric as shown in Table 3:

𝐵
1
= [𝑏
(1)

, . . . , 𝑏
(𝑝)

] , 𝑗 = 1, . . . , 𝑝, (10)

where 𝑡
𝑖
= 1 + 0.1(𝑖 − 1), 𝑖 = 1, . . . , 𝑛, 𝐵

2
= [𝑏
(1)

, . . . , 𝑏
(𝑝)

],
and 𝑏

(𝑗)

= (1, . . . , 1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗−1

)
𝑇.

Let 𝑝 = 5, and the dimensions of projection space𝑚 = 25

and results of calculation are shown in Table 4.
From Table 4, we can see that Mseed is superior to

MINRES method.
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Table 1: Iterative steps of convergent solution of each system.

Right-hand Mseed MINRES1 MINRES2
𝐵
1

(81) 29, 16, 8, 9, 19 (155) 29, 20, 40, 45, 21 (286) 29, 41, 57, 73, 86
𝐵
2

(57) 25, 15, 15, 2, 0 (125) 25, 27, 25, 21, 27 (181) 25, 36, 34, 46, 40

Table 2: Convergent time (second) of each method.

Right-hand Mseed MINRES1 MINRES2
𝐵
1

17.1720 19.2810 20.8430
𝐵
2

17.0870 18.5620 19.7832

Table 3

Matrix name Order If diagonal
dominance

Conditions
number

bcsstm19 817 × 817 Y 2.3𝑒 + 05

bcsstk27 1224 × 1224 N 7.7𝑒 + 04

bcsstk22 138 × 138 N 1.7𝑒 + 05

Example 3. 𝐴 is a 1000 × 1000 symmetric matrix:

𝐴 =

[
[
[
[
[
[
[

[

1 0.1

0.1 2 0.1

0.1 3 0.1

0.1 4 d
d d 0.1

0.1 1024

]
]
]
]
]
]
]

]

. (11)

Form 1:

𝐵
1
= [𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑝
] ,

(𝑏
𝑗
)
𝑖

= − cos(5 cos(𝑖 −
2 (𝑗 − 1) 𝜋

128
)) ,

(12)

where 𝑗 = 1, . . . , 𝑝; 𝑡
𝑖
= 1 + 0.1(𝑖 − 1), 𝑖 = 1, . . . , 𝑛.

Form 2:

𝐵
2
=[𝑏
(1)

, . . . , 𝑏
(𝑝)

] , where 𝑏
(𝑗)

=𝐴𝑢
(𝑗)

, 𝑢
(1)

=(1, . . . , 1)
𝑇

,

𝑢
(𝑗)

= 𝑗 ⋅ cos ((2𝑗 + 𝑖) × 10
3

) ⋅ sin ((3 (4 − 𝑗) + 𝑖) × 10
3

) ,

𝑖 = 1, . . . , 𝑛, 𝑗 = 2, . . . , 𝑝.

(13)

The numerical results are shown in Tables 5 and 6 and the
data in bracket is the sum of iterative steps.

5. Conclusion

In this paper, we propose the MINRES seed projection
method for solving symmetric systems with multiple right-
hand sides, and the residual estimation is analyzed. The
numerical examples show that our method is effective.

0 5 10 15 20 25 30

0

−5

−10

−15
Lo

g 
m

od
el

 re
sid

ua
l n

or
m

al
Iterations

b
(1)

b
(2)

b
(3)

b
(4)

b
(5)

Figure 1: MINRES seed projection method.
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Table 4: Convergent iterative steps of each system and CPU time (second).

𝐵 𝐴
Minres seed projection method Minres2
Iterative steps T1 (s) Iterative steps T2 (s)

𝐵
1

bcsstm9 (718) 171, 146, 179, 129, 93 3.13 (980) 171, 201, 241, 191, 176 5.77
bcsstk27 (781) 211, 187, 154, 124, 105 11.82 (1033) 211, 206, 203, 203, 210 24.98
bcsstk22 (1833) 984, 574, 142, 119, 14 4.32 (4705) 984, 935, 850, 1014, 922 16.82

𝐵
2

bcsstm9 (475) 175, 124, 62, 68, 46 2.24 (898) 175, 201, 175, 176, 171 5.37
bcsstk27 (748) 215, 156, 143, 140, 94 11.34 (1079) 215, 216, 216, 216, 216 25.85
bcsstk22 (2312) 1019, 590, 393, 162, 148 5.33 (5231) 1019, 986, 1079, 1059, 1088 18.85

Table 5: Iterative steps of convergent solution of each system.

Right-hand Mseed MINRES1 MINRES 2
𝐵
1

(34) 11, 8, 6, 4, 5 (48) 11, 10, 9, 9, 9 (54) 11, 11, 11, 10, 11
𝐵
2

(36) 11, 13, 11, 0, 1 (60) 11, 11, 13, 12, 13 (60) 11, 11, 12, 13, 13

Table 6: Convergent time (second) of each method.

Right-hand Mseed MINRES1 MINRES2
𝐵
1

4.785072 5.967727 6.053866
𝐵
2

4.934010 5.739067 5.823134
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