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As an important content in fuzzy mathematics, similarity measure is used to measure the similarity degree between two fuzzy sets.
Considering the existing similarity measures, most of them do not consider the hesitancy degree and some methods considering
the hesitancy degree are based on the intuitionistic fuzzy sets, intuitionistic fuzzy values. It may cause some counterintuitive results
in some cases. In order to make up for the drawback, we present a new approach to construct the similarity measure between two
interval-valued intuitionistic fuzzy sets using the entropymeasure and considering the hesitancy degree. In particular, the proposed
measurewas demonstrated to yield a similaritymeasure. Besides, some examples are given to prove the practicality and effectiveness
of the new measure. We also apply the similarity measure to expert system to solve the problems on pattern recognition and the
multicriteria group decisionmaking. In these examples, we also compare it with existingmethods such as other similarity measures
and the ideal point method.

1. Introduction

In 1989, interval-valued intuitionistic fuzzy set (IVIFS), which
is characterized by a membership degree range and a non-
membership degree range, was proposed by Atanassov and
Gargov [1]. Due to the high complexity of the real world and
the limitation of people’s judgment, the use of interval-valued
intuitionistic fuzzy set has gained much attention [2–9]. As
one of the most important applications, the expert system to
solve problems under fuzzy environment is a hot research
topic [10–15]. We give an example of the decision problem
which is also an important aspect of the expert system. As
the time pressure and lack of data, the decision information
is often imprecise or uncertain. The experts may not express
their preference over the alternatives considered precisely. So
the evaluation can be given in the form of interval-valued
intuitionistic fuzzy numbers [1]. Accordingly, IVIFS is a very
suitable tool to describe the imprecise or uncertain decision

information and deal with the uncertainty and vagueness in
decision making.

As one of the important topics of fuzzy theory, the simi-
larity measures are used to estimate the degree of similarity
between two fuzzy sets. Functions expressing the degree
of similarity of items or sets are used in many different
fields, such as numerical taxonomy, ecology, information
retrieval, and psychology and the similarity measure plays
a very important role [16]. For example, many scholars take
advantages of the similarity measures, especially the Jaccard,
Dice, and cosine methods [17–19] to research the problems
in information retrieval, citation analysis, and automatic
classification. Therefore, the similarity measure has been
investigated by many authors [20–22]. For the similarity
measure to IVIFSs, Xu and Chen [23] generalized some
formulas of similarity measures which are based on the
distancemeasures for two IVIFSs. Besides,Wei et al. [24] gave
a formula of a similarity measure of IVIFSs based on entropy
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theory [25]. Ye [16] presented a Dice similarity measure
based on the reduct intuitionistic fuzzy sets of interval-valued
intuitionistic fuzzy sets and applied it tomulticriteria decision
making problems. Singh [26] and Ye [21] also proposed a
new cosine similarity measure for two IVIFSs, respectively.
Xu and Yager [27] had studied the intuitionistic and interval-
valued intuitionistic fuzzy preference relations and suggested
some new similarity measures to evaluate the agreement
within a group. However, many of these measures for two
IVIFSs do not consider the degree of hesitancy and may lead
to counterintuitive results in some cases. For example, for
𝐴, 𝐵, 𝐶 ∈ IVIFSs, we assume that the differences of member-
ship and nonmembership degree in 𝐴, 𝐵 and 𝐴,𝐶 are very
close and the difference of hesitancy degree between 𝐵 and
𝐶 is very large. Then, it may be incapable of distinguishing
which one between 𝐵 and 𝐶 is more similar to 𝐴 using the
existing similarity measure. Besides, many other similarity
measures for intuitionistic fuzzy values or intuitionistic fuzzy
sets have been proposed. Xu [28] developed some similarity
measures of intuitionistic fuzzy sets which consider the
hesitancy degree and also define the notions of positive ideal
intuitionistic fuzzy set and negative ideal intuitionistic fuzzy
set. Later, Xia and Xu [29] proposed a series of similarity
measures for intuitionistic fuzzy values (IFVs) based on the
intuitionistic fuzzy operators and the similarity measures
were also taking the hesitancy degree into consideration. In
2011, Xu and Xia [30] also studied the distance and similarity
measures for hesitant fuzzy sets. The similarity measures
considering the hesitancy degree outperform the existing
methods and can deal with the group decision well. So we
establish a new method of similarity measure by taking the
hesitancy degree into consideration and using the entropy
measure of IVIFSs.

The structure of this paper is organized as follows.
Section 2 focuses on the concepts of the interval-valued
intuitionistic fuzzy sets and analyses the drawbacks of some
existing similaritymeasures. Section 3 presents a new similar-
ity measure and illustrates its advantage. Section 4 describes
the application to expert system based on the similarity mea-
sure of the IVIFSs and presents some illustrative examples.
Section 5 concludes our work.

2. Basic Notions and the Drawback of Existing
Similarity Measures

2.1. Preliminaries

Definition 1 (see [1]). Aninterval-valued intuitionistic fuzzy
set in𝑋 is an expression 𝐴 given by

𝐴 = {⟨𝑥, 𝑢
𝐴 (𝑥) , V𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (1)

where

𝑢
𝐴
: 𝑋 → [0, 1] , V

𝐴
: 𝑋 → [0, 1] , (2)

with the condition 0 ≤ 𝑢
𝐴
(𝑥) + V

𝐴
(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋. The

intervals 𝑢
𝐴
(𝑥) and V

𝐴
(𝑥) denote the degree of membership

and nonmembership of 𝑥 to 𝐴, respectively.

If we let 𝑢
𝐴
(𝑥) = [𝑢

−

𝐴
(𝑥), 𝑢
+

𝐴
(𝑥)], V

𝐴
(𝑥) = [V−

𝐴
(𝑥), V+
𝐴
(𝑥)],

the interval-valued intuitionistic fuzzy set 𝐴 can be repre-
sented as follows:

𝐴 = {⟨𝑥, [𝑢
−

𝐴
(𝑥) , 𝑢

+

𝐴
(𝑥)] , [V−

𝐴
(𝑥) , V+

𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋} , (3)

where 0 ≤ 𝑢
+

𝐴
(𝑥) + V+

𝐴
(𝑥) ≤ 1. The interval,

[1 − 𝑢
+

𝐴
(𝑥) − V+

𝐴
(𝑥) , 1 − 𝑢

−

𝐴
(𝑥) − V−

𝐴
(𝑥)] , (4)

is denoted by 𝜋
𝐴

and abbreviated by [𝜋
−

𝐴
, 𝜋
+

𝐴
], which is

called the intuitionistic index of element 𝑥 in 𝐴. We call it
a hesitancy degree of 𝑥 to 𝐴.

For all𝐴, 𝐵 ∈ IVFSs(𝑋), we have the following expression
defined in [1]:

(1) 𝐴 ⊆ 𝐵 if and only if 𝑢−
𝐴
(𝑥) ≤ 𝑢

−

𝐵
(𝑥), 𝑢+

𝐴
(𝑥) ≤ 𝑢

+

𝐵
(𝑥),

V−
𝐴
(𝑥) ≥ V−

𝐵
(𝑥), V+
𝐴
(𝑥) ≥ V+

𝐵
(𝑥) for 𝑥 ∈ 𝑋;

(2) 𝐴 = 𝐵 if and only if 𝐴 ⊆ 𝐵, 𝐴 ⊇ 𝐵;
(3) 𝐴𝑐 = {(𝑥, [V−

𝐴
(𝑥), V+
𝐴
(𝑥)], [𝑢

−

𝐴
(𝑥), 𝑢
+

𝐴
(𝑥)]) | 𝑥 ∈ 𝑋}.

Definition 2 (see [24]). For 𝐴 ∈ IVFSs(𝑋), an entropy
measure on IVFSs(𝑋) can be given by

𝐸 (𝐴) =
1

𝑛

𝑛

∑

𝑗=1

(min {𝑢−
𝐴
(𝑥
𝑗
) , V−
𝐴
(𝑥
𝑗
)}

+min {𝑢+
𝐴
(𝑥
𝑗
) , V+
𝐴
(𝑥
𝑗
)}

+ 𝜋
−

𝐴
(𝑥
𝑗
) + 𝜋
+

𝐴
(𝑥
𝑗
))

× (max {𝑢−
𝐴
(𝑥
𝑗
) , V−
𝐴
(𝑥
𝑗
)}

+max {𝑢+
𝐴
(𝑥
𝑗
) , V+
𝐴
(𝑥
𝑗
)}

+ 𝜋
−

𝐴
(𝑥
𝑗
) + 𝜋
+

𝐴
(𝑥
𝑗
))
−1

.

(5)

It also has the following properties.

(1) 𝐸(𝐴) = 0 if and only if 𝐴 is the crispest.
(2) 𝐸(𝐴) = 1 if and only if [𝑢

−

𝐴
(𝑥
𝑗
), 𝑢
+

𝐴
(𝑥
𝑗
)] =

[V−
𝐴
(𝑥
𝑗
), V+
𝐴
(𝑥
𝑗
)] for all 𝑥

𝑗
∈ 𝑋.

(3) 𝐸(𝐴) = 𝐸(𝐴
𝑐
).

(4) 𝐸(𝐴) ≤ 𝐸(𝐵) if 𝐴 ⊆ 𝐵 when 𝑢
+

𝐵
(𝑥
𝑗
) ≤ V+

𝐵
(𝑥
𝑗
) and

𝑢
−

𝐵
(𝑥
𝑗
) ≤ V−
𝐵
(𝑥
𝑗
), for 𝑥

𝑗
∈ 𝑋, or 𝐴 ⊇ 𝐵 when 𝑢+

𝐵
(𝑥
𝑗
) ≥

V+
𝐵
(𝑥
𝑗
) and 𝑢−

𝐵
(𝑥
𝑗
) ≥ V−
𝐵
(𝑥
𝑗
) for 𝑥

𝑗
∈ 𝑋.

Definition 3 (see [21]). Let 𝐴, 𝐵 ∈ IVFS(𝑋), 𝑆 : IVFS(𝑋) ×
IVFS(𝑋) → [0, 1]; then, the degree of similarity between 𝐴
and 𝐵 is 𝑆(𝐴, 𝐵), if it satisfies the following requirements:

(1) 0 ≤ 𝑆(𝐴, 𝐵) ≤ 1;
(2) 𝑆(𝐴, 𝐵) = 1 if and only if 𝐴 = 𝐵;
(3) 𝑆(𝐴, 𝐵) = 𝑆(𝐵, 𝐴);
(4) if 𝐴, 𝐵, 𝐶 ∈ IVFS(𝑋), 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝑆(𝐴, 𝐶) ≤

𝑆(𝐴, 𝐵), 𝑆(𝐴, 𝐶) ≤ 𝑆(𝐵, 𝐶).
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2.2. The Existing Similarity Measures. Wei et al. [24] define a
method to construct similarity measure of IVFSs as follows.
Firstly, for 𝐴, 𝐵 ∈ IVFSs(𝑋), a new IVFS is defined, written
by𝑀(𝐴, 𝐵). Consider

𝑀
𝐴𝐵1 (𝑥) =

1 +min {𝑢
−

𝐴
(𝑥) − 𝑢

−

𝐵
(𝑥)

 ,
V
−

𝐴
(𝑥) − V−

𝐵
(𝑥)

}

2
,

𝑀
𝐴𝐵2 (𝑥) =

1 +min {𝑢
+

𝐴
(𝑥) − 𝑢

+

𝐵
(𝑥)

 ,
V
+

𝐴
(𝑥) − V+

𝐵
(𝑥)

}

2
,

𝑀
𝐴𝐵3 (𝑥) =

1 −max {𝑢
−

𝐴
(𝑥) − 𝑢

−

𝐵
(𝑥)

 ,
V
−

𝐴
(𝑥) − V−

𝐵
(𝑥)

}

2
,

𝑀
𝐴𝐵4 (𝑥) =

1 −max {𝑢
+

𝐴
(𝑥) − 𝑢

+

𝐵
(𝑥)

 ,
V
+

𝐴
(𝑥) − V+

𝐵
(𝑥)

}

2
.

(6)

Let

𝑢
−

𝑀(𝐴,𝐵)
(𝑥) = min {𝑀

𝐴𝐵1 (𝑥) ,𝑀𝐴𝐵2 (𝑥)} ,

𝑢
+

𝑀(𝐴,𝐵)
(𝑥) = max {𝑀

𝐴𝐵1 (𝑥) ,𝑀𝐴𝐵2 (𝑥)} ,

V−
𝑀(𝐴,𝐵)

(𝑥) = min {𝑀
𝐴𝐵3 (𝑥) ,𝑀𝐴𝐵4 (𝑥)} ,

V+
𝑀(𝐴,𝐵)

(𝑥) = max {𝑀
𝐴𝐵3 (𝑥) ,𝑀𝐴𝐵4 (𝑥)} .

(7)

Then we get

𝑀(𝐴, 𝐵) = {⟨[𝑢
−

𝑀(𝐴,𝐵)
(𝑥) , 𝑢

+

𝑀(𝐴,𝐵)
(𝑥)] ,

[V−
𝑀(𝐴,𝐵)

(𝑥) , V+
𝑀(𝐴,𝐵)

(𝑥)]⟩ | 𝑥 ∈ 𝑋} .

(8)

Then 𝑀(𝐴, 𝐵) ∈ IVFSs(𝑋) and the degree of similarity
between 𝐴 and 𝐵 is 𝑆

1
(𝐴, 𝐵) = 𝐸(𝑀(𝐴, 𝐵)).

Xu [31] also defines four different similaritymeasures of𝐴
and 𝐵. We assume that𝑋 is finite; that is,𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}

and 𝑗 = {1, 2, . . . , 𝑛}. Let

𝐴 = {(𝑥
𝑗
, [𝑢
−

𝐴
(𝑥
𝑗
) , 𝑢
+

𝐴
(𝑥
𝑗
)] ,

[V−
𝐴
(𝑥
𝑗
) , V+
𝐴
(𝑥
𝑗
)]) | 𝑥

𝑗
∈ 𝑋} ,

𝐵 = {(𝑥
𝑗
, [𝑢
−

𝐵
(𝑥
𝑗
) , 𝑢
+

𝐵
(𝑥
𝑗
)] ,

[V−
𝐵
(𝑥
𝑗
) , V+
𝐵
(𝑥
𝑗
)]) | 𝑥

𝑗
∈ 𝑋}

(9)

be two IVFSs. Let 𝑤 = {𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
} be the weight vector

of elements 𝑥
𝑗
, 𝑗 = 1, 2, . . . , 𝑛. The similarity measures of 𝐴

and 𝐵 are as follows:

𝑆
2 (𝐴, 𝐵)

= 1 −
1

4

𝑛

∑

𝑗=1

𝑤
𝑗
[

𝑢
−

𝐴
(𝑥
𝑗
) − 𝑢
−

𝐵
(𝑥
𝑗
)

+

𝑢
+

𝐴
(𝑥
𝑗
) − 𝑢
+

𝐵
(𝑥
𝑗
)


+

V−
𝐴
(𝑥
𝑗
) − V−
𝐵
(𝑥
𝑗
)


+

V+
𝐴
(𝑥
𝑗
) − V+
𝐵
(𝑥
𝑗
)

] ,

(10)

𝑆
3 (𝐴, 𝐵)

= 1 − (
1

4

𝑛

∑

𝑗=1

𝑤
𝑗
[(𝑢
−

𝐴
(𝑥
𝑗
) − 𝑢
−

𝐵
(𝑥
𝑗
))
2

+ (𝑢
+

𝐴
(𝑥
𝑗
) − 𝑢
+

𝐵
(𝑥
𝑗
))
2

+ (V−
𝐴
(𝑥
𝑗
) − V−
𝐵
(𝑥
𝑗
))
2

+ (V+
𝐴
(𝑥
𝑗
) − V+
𝐵
(𝑥
𝑗
))
2

])

1/2

,

(11)

𝑆
4 (𝐴, 𝐵)

= 1 −

𝑛

∑

𝑗=1

𝑤
𝑗

×max {𝑢
−

𝐴
(𝑥
𝑗
) − 𝑢
−

𝐵
(𝑥
𝑗
)

,

𝑢
+

𝐴
(𝑥
𝑗
) − 𝑢
+

𝐵
(𝑥
𝑗
)

,


V−
𝐴
(𝑥
𝑗
) − V−
𝐵
(𝑥
𝑗
)

,

V+
𝐴
(𝑥
𝑗
) − V+
𝐵
(𝑥
𝑗
)

} ,

(12)

𝑆
5 (𝐴, 𝐵)

= 1 − (

𝑛

∑

𝑗=1

𝑤
𝑗
max {(𝑢−

𝐴
(𝑥
𝑗
) − 𝑢
−

𝐵
(𝑥
𝑗
))
2

,

(𝑢
+

𝐴
(𝑥
𝑗
) − 𝑢
+

𝐵
(𝑥
𝑗
))
2

,

(V−
𝐴
(𝑥
𝑗
) − V−
𝐵
(𝑥
𝑗
))
2

,

(V+
𝐴
(𝑥
𝑗
) − V+
𝐵
(𝑥
𝑗
))
2

})

1/2

.

(13)

2.3.TheDrawback of Existing SimilarityMeasures. Wegive an
example to calculate the similarity of two fuzzy sets using the
above five different similarity measures. It proves that the five
different similarity measures are not reliable in some cases.
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Example 4. It is an example of group voting. We have three
plans written in the form of IFSs. Let 𝐴 = {𝑥, 0.5, 0.5}, 𝐵 =

{𝑥, 0.3, 0.7}, and𝐶 = {𝑥, 0.3, 0.3} be three IFSs and denote the
three plans. Plan 𝐴 denotes that the percentage of supporters
or dissenters is fifty percent. As to plan 𝐵, thirty percent of
the voters support the plan and seventy percent of the voters
oppose it. For plan 𝐶, we can know that the percentage of
supporters or dissenters is thirty percent while forty percent
of the voters abstain from voting.

Then we can get the results of the similarity of 𝐴 and 𝐵

based on the above similarity measure. Consider

𝑀
𝐴𝐵1 (𝑥)

= 𝑀
𝐴𝐵2 (𝑥)

= 0.5 ∗ (1 +min {𝑢𝐴 (𝑥) − 𝑢𝐵 (𝑥)
 ,
V𝐴 (𝑥) − V

𝐵 (𝑥)
})

= 0.6,

𝑀
𝐴𝐵3 (𝑥)

= 𝑀
𝐴𝐵4 (𝑥)

= 0.5 ∗ (1 −max {𝑢𝐴 (𝑥) − 𝑢𝐵 (𝑥)
 ,
V𝐴 (𝑥) − V

𝐵 (𝑥)
})

= 0.4,

𝑀 (𝐴, 𝐵) = {𝑥, 0.6, 0.4} , 𝑆
1 (𝐴, 𝐵) = 𝐸 (𝑀 (𝐴, 𝐵)) =

2

3
.

(14)

In the same way, we can get the similarity of 𝐴 and 𝐶; that is,
𝑆
1
(𝐴, 𝐶) = 𝐸(𝑀(𝐴, 𝐶)) = 2/3. Supposing 𝑤

𝑗
= 1, 𝑛 = 1, we

can get the following results:

𝑆
2 (𝐴, 𝐵) = 𝑆

2 (𝐴, 𝐶)

= 1 − 0.25 ∗ [0.2 + 0.2 + 0.2 + 0.2] = 0.8,

𝑆
3 (𝐴, 𝐵) = 𝑆

3 (𝐴, 𝐶)

= 1 − √0.25 ∗ [0.04 + 0.04 + 0.04 + 0.04] = 0.8,

𝑆
4 (𝐴, 𝐵) = 𝑆

4 (𝐴, 𝐶) = 1 −∑max {0.2, 0.2, 0.2, 0.2} = 0.8,

𝑆
5 (𝐴, 𝐵) = 𝑆

5 (𝐴, 𝐶)

= 1 − √∑max {0.04, 0.04, 0.04, 0.04} = 0.8.

(15)

Obviously, we could not distinguish which one between𝐵
and 𝐶 is more similar to 𝐴 using the five different similarity
measures. However, if we make a deep analysis, we can know
that 𝐴 is more similar to 𝐶 than to 𝐵. According to formula
(4), the hesitancy degree of 𝐶 is twenty percent while the
hesitancy degree of 𝐵 is zero. For plan 𝐶, the reason of
abstention may be different. For example, someone may be
absent for the vote. So, it is reasonable to assume that the
twenty percent of abstention has a certain degree 𝑟 (0 ≤ 𝑟 ≤

1) to support the plan.

If 𝑟 = 0 or 𝑟 = 1, all of the abstainers oppose or support
the plan 𝐶. We have the following results:

𝐶 = {𝑥, 0.3, 0.7} or 𝐶 = {𝑥, 0.7, 0.3} ,

𝑆
𝑖 (𝐴, 𝐶) = 𝑆

𝑖 (𝐴, 𝐵) , 𝑖 = 1, 2, . . . , 5.

(16)

If 𝑟 = 0.5, that is, half of the abstainers to plan 𝐶 are
supporters or dissenters, the percentage of supporters or
dissenters is fifty percent. We can get the result as follows:

𝐶 = {𝑥, 0.5, 0.5} , 𝑆
𝑖 (𝐴, 𝐶) = 1,

𝑆
𝑖 (𝐴, 𝐶) > 𝑆

𝑖 (𝐴, 𝐵) , 𝑖 = 1, 2, . . . , 5.

(17)

But in general, both situations do not always happen, and
it is just between them; that is, 0 < 𝑟 < 0.5, 0.5 < 𝑟 < 1. So
we can get the result as follows: 𝑆(𝐴, 𝐶) > 𝑆(𝐴, 𝐵).

According to our analysis, more reasonable result is that
𝐴 is more similar to 𝐶 than to 𝐵. It is different from the result
calculated by the existing five similarity measures. Besides,
we can also know that the five similarity measures do not
take the hesitancy degree into consideration according to
its definition. It is not reasonable to define the similarity
measure without considering the hesitancy degree of the
interval-valued intuitionistic fuzzy sets; otherwise, it may
make mistakes in some cases. So we present a new method
of similarity measure.

3. The New Similarity Measures
between IVIFSs

3.1. New Similarity Measure. Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a

finite universe of discourse. For 𝐴, 𝐵 ∈ IVFSs(𝑋), we define
IVFSs, written by𝑀(𝐴, 𝐵):

𝑀
𝐴𝐵1

(𝑥
𝑗
) = (2 +


𝑢
−

𝐴
(𝑥
𝑗
) − 𝑢
−

𝐵
(𝑥
𝑗
)


+

V−
𝐴
(𝑥
𝑗
) − V−
𝐵
(𝑥
𝑗
)


− (𝜋
+

𝐴
(𝑥
𝑗
) + 𝜋
+

𝐵
(𝑥
𝑗
))) × 4

−1
,

𝑀
𝐴𝐵2

(𝑥
𝑗
) = (2 +


𝑢
+

𝐴
(𝑥
𝑗
) − 𝑢
+

𝐵
(𝑥
𝑗
)


+

V+
𝐴
(𝑥
𝑗
) − V+
𝐵
(𝑥
𝑗
)


− (𝜋
−

𝐴
(𝑥
𝑗
) + 𝜋
−

𝐵
(𝑥
𝑗
))) × 4

−1
,

𝑀
𝐴𝐵3

(𝑥
𝑗
) = (2 − (


𝑢
−

𝐴
(𝑥
𝑗
) − 𝑢
−

𝐵
(𝑥
𝑗
)


+

V−
𝐴
(𝑥
𝑗
) − V−
𝐵
(𝑥
𝑗
)

)

− (𝜋
+

𝐴
(𝑥
𝑗
) + 𝜋
+

𝐵
(𝑥
𝑗
))) × 4

−1
,

𝑀
𝐴𝐵4

(𝑥
𝑗
) = (2 − (


𝑢
+

𝐴
(𝑥
𝑗
) − 𝑢
+

𝐵
(𝑥
𝑗
)


+

V+
𝐴
(𝑥
𝑗
) − V+
𝐵
(𝑥
𝑗
)

)

− (𝜋
−

𝐴
(𝑥
𝑗
) + 𝜋
−

𝐵
(𝑥
𝑗
))) × 4

−1
.

(18)
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And define

𝑢
−

𝑀(𝐴,𝐵)
(𝑥
𝑗
) = min {𝑀

𝐴𝐵1
(𝑥
𝑗
) ,𝑀
𝐴𝐵2

(𝑥
𝑗
)} , 𝑢
+

𝑀(𝐴,𝐵)
(𝑥
𝑗
)

= max {𝑀
𝐴𝐵1

(𝑥
𝑗
) ,𝑀
𝐴𝐵2

(𝑥
𝑗
)} ,

V−
𝑀(𝐴,𝐵)

(𝑥
𝑗
) = min {𝑀

𝐴𝐵3
(𝑥
𝑗
) ,𝑀
𝐴𝐵4

(𝑥
𝑗
)} , V+
𝑀(𝐴,𝐵)

(𝑥
𝑗
)

= max {𝑀
𝐴𝐵3

(𝑥
𝑗
) ,𝑀
𝐴𝐵4

(𝑥
𝑗
)} .

(19)

Then, we get

𝑀(𝐴, 𝐵) = {(𝑥
𝑗
, [𝑢
−

𝑀(𝐴,𝐵)
(𝑥
𝑗
) , 𝑢
+

𝑀(𝐴,𝐵)
(𝑥
𝑗
)] ,

[V−
𝑀(𝐴,𝐵)

(𝑥
𝑗
) , V+
𝑀(𝐴,𝐵)

(𝑥
𝑗
)]) | 𝑥

𝑗
∈ 𝑋} .

(20)

Theorem 5. Suppose that 𝐸 is an entropy measure for 𝐼𝑉𝐹𝑆.
The similarity measure on 𝐼𝑉𝐹𝑆(𝑋) is defined by 𝑆(𝐴, 𝐵) =

𝐸(𝑀(𝐴, 𝐵)) for each pair of 𝐼𝑉𝐹𝑆𝑠𝐴 and 𝐵.

Proof. It is easy to prove that 𝐸(𝑀(𝐴, 𝐵)) satisfies the condi-
tions listed in Definition 3.

(1) We can easily get 0 ≤ 𝐸(𝑀(𝐴, 𝐵)) ≤ 1 since 0 ≤

𝐸(𝐴) ≤ 1 for all 𝐴 ∈ IVIFS(𝑋) and 𝑀(𝐴, 𝐵) ∈

IVIFS(𝑋).

(2) With the definition of entropy and similaritymeasure,
we can obtain

𝐸 (𝑀 (𝐴, 𝐵)) = 1

⇐⇒ 𝑢
+

𝑀(𝐴,𝐵)
(𝑥
𝑗
) = V+
𝑀(𝐴,𝐵)

(𝑥
𝑗
) ,

𝑢
−

𝑀(𝐴,𝐵)
(𝑥
𝑗
) = V−
𝑀(𝐴,𝐵)

(𝑥
𝑗
) ,

∀𝑥
𝑗
∈ 𝑋

⇐⇒ 𝑢
+

𝐴
(𝑥
𝑗
) = 𝑢
+

𝐵
(𝑥
𝑗
) ,

V+
𝐴
(𝑥
𝑗
) = V+
𝐵
(𝑥
𝑗
) ,

𝑢
−

𝐴
(𝑥
𝑗
) = 𝑢
−

𝐵
(𝑥
𝑗
) ,

V−
𝐴
(𝑥
𝑗
) = V−
𝐵
(𝑥
𝑗
) , ∀𝑥

𝑗
∈ 𝑋

⇐⇒ 𝐴 = 𝐵.

(21)

(3) From the definition of 𝑀(𝐴, 𝐵), we can easily have
that 𝑀(𝐴, 𝐵) = 𝑀(𝐵, 𝐴). So it is obvious that
𝐸(𝑀(𝐴, 𝐵)) = 𝐸(𝑀(𝐵, 𝐴)).

(4) As 𝐴 ⊆ 𝐵 ⊆ 𝐶, that is, 𝑥
𝑗
∈ 𝑋, V−

𝐴
(𝑥
𝑗
) ≥ V−

𝐵
(𝑥
𝑗
) ≥

V−
𝐶
(𝑥
𝑗
), V+
𝐴
(𝑥
𝑗
) ≥ V+
𝐵
(𝑥
𝑗
) ≥ V+
𝐶
(𝑥
𝑗
), 𝑢−
𝐴
(𝑥
𝑗
) ≤ 𝑢
−

𝐵
(𝑥
𝑗
) ≤

𝑢
−

𝐶
(𝑥
𝑗
), 𝑢+
𝐴
(𝑥
𝑗
) ≤ 𝑢
+

𝐵
(𝑥
𝑗
) ≤ 𝑢
+

𝐶
(𝑥
𝑗
). We have

𝑀
𝐴𝐶1

(𝑥
𝑗
)

=
1

4
{2 +


𝑢
−

𝐴
(𝑥
𝑗
) − 𝑢
−

𝐶
(𝑥
𝑗
)

+

V−
𝐴
(𝑥
𝑗
) − V−
𝐶
(𝑥
𝑗
)


− (𝜋
+

𝐴
(𝑥
𝑗
) + 𝜋
+

𝐶
(𝑥
𝑗
))}

=
1

2
(𝑢
−

𝐶
(𝑥
𝑗
) + V−
𝐴
(𝑥
𝑗
)) ,

𝑀
𝐴𝐵1

(𝑥
𝑗
)

=
1

4
{2 +


𝑢
−

𝐴
(𝑥
𝑗
) − 𝑢
−

𝐵
(𝑥
𝑗
)

+

V−
𝐴
(𝑥
𝑗
) − V−
𝐵
(𝑥
𝑗
)


− (𝜋
+

𝐴
(𝑥
𝑗
) + 𝜋
+

𝐵
(𝑥
𝑗
))}

=
1

2
(𝑢
−

𝐵
(𝑥
𝑗
) + V−
𝐴
(𝑥
𝑗
)) .

(22)

So we can get 𝑀
𝐴𝐶1

(𝑥
𝑗
) ≥ 𝑀

𝐴𝐵1
(𝑥
𝑗
) because of 𝑢−

𝐵
(𝑥
𝑗
) ≤

𝑢
−

𝐶
(𝑥
𝑗
).

Thus in the same way, we can easily prove that

𝑀
𝐴𝐶1

(𝑥
𝑗
) ≥ 𝑀

𝐴𝐵1
(𝑥
𝑗
) , 𝑀

𝐴𝐶2
(𝑥
𝑗
) ≥ 𝑀

𝐴𝐵2
(𝑥
𝑗
) ,

𝑀
𝐴𝐶3

(𝑥
𝑗
) ≤ 𝑀

𝐴𝐵3
(𝑥
𝑗
) , 𝑀

𝐴𝐶4
(𝑥
𝑗
) ≤ 𝑀

𝐴𝐵4
(𝑥
𝑗
) .

(23)

We can also obtain

𝑢
−

𝑀(𝐴,𝐶)
(𝑥
𝑗
) ≥ 𝑢
−

𝑀(𝐴,𝐵)
(𝑥
𝑗
) ,

𝑢
+

𝑀(𝐴,𝐶)
(𝑥
𝑗
) ≥ 𝑢
+

𝑀(𝐴,𝐵)
(𝑥
𝑗
) ,

V−
𝑀(𝐴,𝐶)

(𝑥
𝑗
) ≤ V−
𝑀(𝐴,𝐵)

(𝑥
𝑗
) ,

𝑢
+

𝑀(𝐴,𝐶)
(𝑥
𝑗
) ≤ 𝑢
+

𝑀(𝐴,𝐵)
(𝑥
𝑗
) .

(24)

Therefore𝑀(𝐴, 𝐵) ⊆ 𝑀(𝐴, 𝐶).
Besides, we have 𝑢−

𝑀(𝐴,𝐵)
(𝑥
𝑗
) ≥ V−
𝑀(𝐴,𝐵)

(𝑥
𝑗
), 𝑢+
𝑀(𝐴,𝐵)

(𝑥
𝑗
) ≥

V+
𝑀(𝐴,𝐵)

(𝑥
𝑗
) by the definition of𝑀(𝐴, 𝐵). We can get the result

that

𝐸 (𝑀 (𝐴, 𝐵)) ≥ 𝐸 (𝑀 (𝐴, 𝐶)) , 𝑆 (𝐴, 𝐵) ≥ 𝑆 (𝐴, 𝐶) .

(25)

In the same way, we can also have 𝐸(𝑀(𝐵, 𝐶)) ≥ 𝐸(𝑀(𝐴, 𝐶)).
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Remark 6. Let 𝐴 = {⟨𝑥, [0.1, 0.2], [0.5, 0.6]⟩} and 𝐵 =

{⟨𝑥, [0.2, 0.3], [0.5, 0.6]⟩} be two IVIFSs. With (18), we can
have

𝑀
𝐴𝐵1 (𝑥) = 0.25 ∗ (2 + 0.1 − 0.7) = 0.35,

𝑀
𝐴𝐵2 (𝑥) = 0.25 ∗ (2 + 0.1 − 0.3) = 0.45,

𝑀
𝐴𝐵3 (𝑥) = 0.25 ∗ (2 − 0.1 − 0.7) = 0.3,

𝑀
𝐴𝐵2 (𝑥) = 0.25 ∗ (2 − 0.1 − 0.3) = 0.4.

𝑢
−

𝑀(𝐴,𝐵)
(𝑥) = min {𝑀

𝐴𝐵1 (𝑥) ,𝑀𝐴𝐵2 (𝑥)} = 0.35,

𝑢
+

𝑀(𝐴,𝐵)
(𝑥) = max {𝑀

𝐴𝐵1 (𝑥) ,𝑀𝐴𝐵2 (𝑥)} = 0.45,

V−
𝑀(𝐴,𝐵)

(𝑥) = min {𝑀
𝐴𝐵3 (𝑥) ,𝑀𝐴𝐵4 (𝑥)} = 0.3,

V+
𝑀(𝐴,𝐵)

(𝑥) = max {𝑀
𝐴𝐵3 (𝑥) ,𝑀𝐴𝐵4 (𝑥)} = 0.4.

(26)

Hence we obtain that𝑀(𝐴, 𝐵) = {⟨𝑥, [0.35, 0.45], [0.3, 0.4]⟩}.
We can get 𝐸(𝑀(𝐴, 𝐵)) = 12/13, if we chose the entropy

formula of IVIFSs defined in Definition 2.

Corollary 7. Let 𝐸 be the entropy measure defined in
Definition 2; that is, 𝐴 ∈ 𝐼𝑉𝐼𝐹𝑆(𝑋),

𝐸 (𝐴)

=
1

𝑛

𝑛

∑

𝑗=1

(min {𝑢−
𝐴
(𝑥
𝑗
) , V−
𝐴
(𝑥
𝑗
)} +min {𝑢+

𝐴
(𝑥
𝑗
) , V+
𝐴
(𝑥
𝑗
)}

+ 𝜋
−

𝐴
(𝑥
𝑗
) + 𝜋
+

𝐴
(𝑥
𝑗
))

× (max {𝑢−
𝐴
(𝑥
𝑗
) , V−
𝐴
(𝑥
𝑗
)}

+max {𝑢+
𝐴
(𝑥
𝑗
) , V+
𝐴
(𝑥
𝑗
)}

+ 𝜋
−

𝐴
(𝑥
𝑗
) + 𝜋
+

𝐴
(𝑥
𝑗
))
−1

.

(27)

Then the similarity measure is defined by

𝑆 (𝐴, 𝐵) =
1

𝑛

𝑛

∑

𝑗=1

4 − (𝑢
−

𝑗
+ 𝑢
+

𝑗
+ V−
𝑗
+ V+
𝑗
) + (𝜋

−

𝑗
+ 𝜋
+

𝑗
)

4 + (𝑢
−

𝑗
+ 𝑢
+

𝑗
+ V−
𝑗
+ V+
𝑗
) + (𝜋

−

𝑗
+ 𝜋
+

𝑗
)

, (28)

for 𝐴, 𝐵 ∈ 𝐼𝑉𝐼𝐹𝑆(𝑋), where

𝑢
−

𝑗
=

𝑢
−

𝐴
(𝑥
𝑗
) − 𝑢
−

𝐵
(𝑥
𝑗
)

, 𝑢

+

𝑗
=

𝑢
+

𝐴
(𝑥
𝑗
) − 𝑢
+

𝐵
(𝑥
𝑗
)

,

V−
𝑗
=

V−
𝐴
(𝑥
𝑗
) − V−
𝐵
(𝑥
𝑗
)

,

V+
𝑗
=

V+
𝐴
(𝑥
𝑗
) − V+
𝐵
(𝑥
𝑗
)

, 𝜋

−

𝑗
= 𝜋
−

𝐴
(𝑥
𝑗
) + 𝜋
−

𝐵
(𝑥
𝑗
) ,

𝜋
+

𝑗
= 𝜋
+

𝐴
(𝑥
𝑗
) + 𝜋
+

𝐵
(𝑥
𝑗
) .

(29)

Let 𝑤 = {𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
} be the weight vector of elements

𝑥
𝑗
(𝑗 = 1, 2, . . . , 𝑛), where 𝑤

𝑗
≥ 0, ∑𝑛

𝑗=1
𝑤
𝑗
= 1.

Then we get the weighted similarity measure as follows:

𝑆 (𝐴, 𝐵) =

𝑛

∑

𝑗=1

𝑤
𝑗

4 − (𝑢
−

𝑗
+ 𝑢
+

𝑗
+ V−
𝑗
+ V+
𝑗
) + (𝜋

−

𝑗
+ 𝜋
+

𝑗
)

4 + (𝑢
−

𝑗
+ 𝑢
+

𝑗
+ V−
𝑗
+ V+
𝑗
) + (𝜋

−

𝑗
+ 𝜋
+

𝑗
)

. (30)

Proof. We have 𝑢
−

𝑀(𝐴,𝐵)
(𝑥) ≥ V−

𝑀(𝐴,𝐵)
(𝑥), 𝑢+

𝑀(𝐴,𝐵)
(𝑥) ≥

V+
𝑀(𝐴,𝐵)

(𝑥), with the definition of𝑀(𝐴, 𝐵).Thenwe can obtain

𝐸 (𝑀 (𝐴, 𝐵))

=
1

𝑛

𝑛

∑

𝑗=1

(min {𝑢−
𝑀(𝐴,𝐵)

(𝑥
𝑗
) , V−
𝑀(𝐴,𝐵)

(𝑥
𝑗
)}

+min {𝑢+
𝑀(𝐴,𝐵)

(𝑥
𝑗
) , V+
𝑀(𝐴,𝐵)

(𝑥
𝑗
)}

+ 𝜋
−

𝑀(𝐴,𝐵)
(𝑥
𝑗
) + 𝜋
+

𝑀(𝐴,𝐵)
(𝑥
𝑗
))

× (max {𝑢−
𝑀(𝐴,𝐵)

(𝑥
𝑗
) , V−
𝑀(𝐴,𝐵)

(𝑥
𝑗
)}

+max {𝑢+
𝑀(𝐴,𝐵)

(𝑥
𝑗
) , V+
𝑀(𝐴,𝐵)

(𝑥
𝑗
)}

+ 𝜋
−

𝑀(𝐴,𝐵)
(𝑥
𝑗
) + 𝜋
+

𝑀(𝐴,𝐵)
(𝑥
𝑗
))
−1

=
1

𝑛

𝑛

∑

𝑗=1

(V−
𝑀(𝐴,𝐵)

(𝑥
𝑗
) + V+
𝑀(𝐴,𝐵)

(𝑥
𝑗
)

+ 𝜋
−

𝑀(𝐴,𝐵)
(𝑥
𝑗
) + 𝜋
+

𝑀(𝐴,𝐵)
(𝑥
𝑗
))

× (𝑢
−

𝑀(𝐴,𝐵)
(𝑥
𝑗
) + 𝑢
+

𝑀(𝐴,𝐵)
(𝑥
𝑗
)

+ 𝜋
−

𝑀(𝐴,𝐵)
(𝑥
𝑗
) + 𝜋
+

𝑀(𝐴,𝐵)
(𝑥
𝑗
))
−1

=
1

𝑛

𝑛

∑

𝑗=1

2 − 𝑢
−

𝑀(𝐴,𝐵)
(𝑥
𝑗
) − 𝑢
+

𝑀(𝐴,𝐵)
(𝑥
𝑗
)

2 − V−
𝑀(𝐴,𝐵)

(𝑥
𝑗
) − V+
𝑀(𝐴,𝐵)

(𝑥
𝑗
)

=
1

𝑛

𝑛

∑

𝑗=1

2 −𝑀
𝐴𝐵1

(𝑥
𝑗
) −𝑀

𝐴𝐵2
(𝑥
𝑗
)

2 −𝑀
𝐴𝐵3 (𝑥) − 𝑀𝐴𝐵4 (𝑥)

.

(31)

If we let

𝑢
−

𝑗
=

𝑢
−

𝐴
(𝑥
𝑗
) − 𝑢
−

𝐵
(𝑥
𝑗
)

, 𝑢

+

𝑗
=

𝑢
+

𝐴
(𝑥
𝑗
) − 𝑢
+

𝐵
(𝑥
𝑗
)

,

V−
𝑗
=

V−
𝐴
(𝑥
𝑗
) − V−
𝐵
(𝑥
𝑗
)

,

V+
𝑗
=

V+
𝐴
(𝑥
𝑗
) − V+
𝐵
(𝑥
𝑗
)

, 𝜋

−

𝑗
= 𝜋
−

𝐴
(𝑥
𝑗
) + 𝜋
−

𝐵
(𝑥
𝑗
) ,

𝜋
+

𝑗
= 𝜋
+

𝐴
(𝑥
𝑗
) + 𝜋
+

𝐵
(𝑥
𝑗
) ,

(32)

then

𝐸 (𝑀 (𝐴, 𝐵)) =
1

𝑛

𝑛

∑

𝑗=1

4 − (𝑢
−

𝑗
+ 𝑢
+

𝑗
+ V−
𝑗
+ V+
𝑗
) + (𝜋

−

𝑗
+ 𝜋
+

𝑗
)

4 + (𝑢
−

𝑗
+ 𝑢
+

𝑗
+ V−
𝑗
+ V+
𝑗
) + (𝜋

−

𝑗
+ 𝜋
+

𝑗
)

.

(33)
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Now we let 𝑤 = {𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
} be the weight vector of

elements 𝑥
𝑗
(𝑗 = 1, 2, . . . , 𝑛); the weighted similarity measure

can be written by the form

𝐸 (𝑀 (𝐴, 𝐵)) =

𝑛

∑

𝑗=1

𝑤
𝑗

4 − (𝑢
−

𝑗
+ 𝑢
+

𝑗
+ V−
𝑗
+ V+
𝑗
) + (𝜋

−

𝑗
+ 𝜋
+

𝑗
)

4 + (𝑢
−

𝑗
+ 𝑢
+

𝑗
+ V−
𝑗
+ V+
𝑗
) + (𝜋

−

𝑗
+ 𝜋
+

𝑗
)

.

(34)

The function 𝑆 defined by (30) is a similarity measure on
IVIFS(𝑋), fromTheorem 5.

3.2. Comparison with Some Existing Similarity Measures

Example 8. We test the new similarity measure by Example 4
given in Section 2.3. Consider 𝐴 = {𝑥, 0.5, 0.5}, 𝐵 =

{𝑥, 0.3, 0.7}, and 𝐶 = {𝑥, 0.3, 0.3}. From (18), we can have

𝑀
𝐴𝐵1

= 𝑀
𝐴𝐵2

= 0.25 ∗ {2 +
𝑢𝐴 (𝑥) − 𝑢𝐵 (𝑥)

 +
V𝐴 (𝑥) − V

𝐵 (𝑥)


− (𝜋
𝐴 (𝑥) + 𝜋𝐵 (𝑥))} = 0.6,

𝑀
𝐴𝐵3

= 𝑀
𝐴𝐵4

= 0.25 ∗ {2 − (
𝑢𝐴 (𝑥) − 𝑢𝐵 (𝑥)

 +
V𝐴 (𝑥) − V

𝐵 (𝑥)
)

− (𝜋
𝐴 (𝑥) + 𝜋𝐵 (𝑥))} = 0.4.

(35)

Then we can get𝑀(𝐴, 𝐵) = {𝑥, 0.6, 0.4}. The similarity of
𝐴 and 𝐵 is

𝑆 (𝐴, 𝐵) = 𝐸 (𝑀 (𝐴, 𝐵)) =
2

3
, (36)

by (30). In the same way, we can easily get

𝑀(𝐴,𝐶) = {𝑥, 0.5, 0.3} , 𝑆 (𝐴, 𝐶) = 𝐸 (𝑀 (𝐴, 𝐶)) =
5

7
.

(37)

So we can get the right answer that 𝐴 is more similar
to 𝐶 than to 𝐵; that is, 𝑆(𝐴, 𝐵) < 𝑆(𝐴, 𝐶). While using the
similarity measures 𝑆

1
, 𝑆
2
, 𝑆
3
, 𝑆
4
, and 𝑆

5
, we can get the result

𝑆(𝐴, 𝐵) = 𝑆(𝐴, 𝐶) from Section 2.3. It shows that the new
similarity measure is much more reasonable than the 𝑆

1
, 𝑆
2
,

𝑆
3
, 𝑆
4
, 𝑆
5
.

In [32], Hung and Yang proposed three similarity mea-
sures between IFSs. Let 𝐴, 𝐵 ∈ IFSs(𝑋) and 𝑑(𝐴, 𝐵) is the
distance between two IFSs. Consider

𝑆
6 (𝐴, 𝐵) = 1 − 𝑑 (𝐴, 𝐵) ,

𝑆
7 (𝐴, 𝐵) =

1 − 𝑑 (𝐴, 𝐵)

1 + 𝑑 (𝐴, 𝐵)
,

𝑆
8 (𝐴, 𝐵) =

𝑒
−𝑑(𝐴,𝐵)

− 𝑒
−1

1 − 𝑒−1
,

(38)

where 𝑑(𝐴, 𝐵) = (1/𝑛)∑
𝑛

𝑗=1
max{|𝑢

𝐴
(𝑥
𝑗
) − 𝑢
𝐵
(𝑥
𝑗
)|, |V
𝐴
(𝑥
𝑗
) −

V
𝐵
(𝑥
𝑗
)|}.

The following example shows some drawbacks of formu-
las (38).

Example 9. Let 𝐴 = {𝑥, 0.5, 0.5}, 𝐵 = {𝑥, 0.4, 0.6}, and 𝐶 =

{𝑥, 0.4, 0.5} be three IFSs.
Intuitively, one can see that𝐴 is more similar to𝐶 than to

𝐵. However, using the similarity measures given by (38), we
have

𝑑 (𝐴, 𝐵) = max {|0.5 − 0.4| , |0.5 − 0.6|} = 0.1,

𝑑 (𝐴, 𝐶) = max {|0.5 − 0.4| , |0.5 − 0.5|} = 0.1.

(39)

So 𝑆
6
(𝐴, 𝐵) = 𝑆

6
(𝐴, 𝐶), 𝑆

7
(𝐴, 𝐵) = 𝑆

7
(𝐴, 𝐶), 𝑆

8
(𝐴, 𝐵) =

𝑆
8
(𝐴, 𝐶), because of 𝑑(𝐴, 𝐵) = 𝑑(𝐴, 𝐶). Now we can calculate

the similarity measures 𝑆(𝐴, 𝐵) and 𝑆(𝐴, 𝐶) by formula (30).
We can get

𝑀
𝐴𝐵1

= 𝑀
𝐴𝐵2

= 0.25 ∗ (2 + 0.1 + 0.1 − 0) = 0.55,

𝑀
𝐴𝐵3

= 𝑀
𝐴𝐵4

= 0.25 ∗ (2 − 0.1 − 0.1 − 0) = 0.45,

𝑀 (𝐴, 𝐵) = {𝑥, 0.55, 0.45} ,

𝑆 (𝐴, 𝐵) = 𝐸 (𝑀 (𝐴, 𝐵)) =
9

11
,

𝑀
𝐴𝐶1

= 𝑀
𝐴𝐶2

= 0.25 ∗ (2 + 0 + 0.1 − 0.1) = 0.5,

𝑀
𝐴𝐶3

= 𝑀
𝐴𝐶4

= 0.25 ∗ (2 − 0 − 0.1 − 0.1) = 0.45,

𝑀 (𝐴, 𝐶) = {𝑥, 0.5, 0.45} ,

𝑆 (𝐴, 𝐶) = 𝐸 (𝑀 (𝐴, 𝐶)) =
10

11
,

𝑆 (𝐴, 𝐶) > 𝑆 (𝐴, 𝐵) ,

(40)

which means that𝐴 is more similar to𝐶 than to 𝐵, consistent
with the intuition.Therefore, the new similarity measure (30)
is proved to be more reasonable than 𝑆

6
, 𝑆
7
, 𝑆
8
in some cases.

Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} and 𝐴, 𝐵 ∈ IFSs(𝑋). Chen [33]

presented the following similarity measures between IFSs 𝐴
and 𝐵:

𝑆
9 (𝐴, 𝐵)

= 1 −

∑
𝑛

𝑗=1


𝑢
𝐴
(𝑥
𝑗
) − V
𝐴
(𝑥
𝑗
) − (𝑢

𝐵
(𝑥
𝑗
) − V
𝐵
(𝑥
𝑗
))


2𝑛
,

𝑆
10 (𝐴, 𝐵) = 1 −

𝑞
√
∑
𝑛

𝑗=1


𝜓
𝐴
(𝑥
𝑗
) − 𝜓
𝐵
(𝑥
𝑗
)


𝑞

𝑛
,

(41)

where 1 ≤ 𝑞 ≤ ∞, and, for each 𝑗,

𝜓
𝐴
(𝑥
𝑗
) = 0.5 (𝑢

𝐴
(𝑥
𝑗
) − V
𝐴
(𝑥
𝑗
) + 1) ,

𝜓
𝐵
(𝑥
𝑗
) = 0.5 (𝑢

𝐵
(𝑥
𝑗
) − V
𝐵
(𝑥
𝑗
) + 1) .

(42)

The following example indicates that the above similarity
measures 𝑆

9
, 𝑆
10
are also not reasonable in some cases.
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Example 10. Let 𝐴 = {𝑥, 0.5, 0.5}, 𝐵 = {𝑥, 0.2, 0.2}, and
𝐶 = {𝑥, 0.49, 0.51} be three IFSs. It is obvious that 𝐴 is more
similar to 𝐶 than to 𝐵.

We calculate the degree of similarity between 𝐴 and 𝐵,
as well as 𝐴 and 𝐶 using the new similarity measure given
by (30). Then 𝑆(𝐴, 𝐵) = 5/6, 𝑆(𝐴, 𝐶) = 99/101, which show
that 𝐴 is more similar to 𝐶 than to 𝐵 and is consistent with
intuition. But if we use formula (41) to calculate the similarity
measure, then

𝑆
9 (𝐴, 𝐵) = 1 − 0.5 ∗ |0.5 − 0.5 − (0.2 − 0.2)| = 1,

𝑆
9 (𝐴, 𝐶) = 1 − 0.5 ∗ |0.5 − 0.5 − (0.49 − 0.51)| = 0.99,

𝜓
𝐴
(𝑥
𝑗
) = 0.5, 𝜓

𝐵
(𝑥
𝑗
) = 0.5, 𝜓

𝐶
(𝑥
𝑗
) = 0.49,

𝑆
10 (𝐴, 𝐵) = 1 −

𝑞
√
|0.5 − 0.5|

𝑞

1
= 1,

𝑆
10 (𝐴, 𝐶) = 1 −

𝑞
√
|0.5 − 0.49|

𝑞

1
= 0.99,

𝑆
9 (𝐴, 𝐵) > 𝑆

9 (𝐴, 𝐶) , 𝑆
10 (𝐴, 𝐵) > 𝑆

10 (𝐴, 𝐶) ,

(43)

which is not reasonable. So the new similarity measure is
illustrated to be more effective than formula (41).

Let𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} and𝐴, 𝐵 ∈ IFSs(𝑋). Xu [28] gave

many similaritymeasures based on the distancemeasure.The
weight of each element is 𝑤

𝑗
, 𝑗 = 1, 2, . . . , 𝑛. Consider

𝑆
11 (𝐴, 𝐵)

= 1 − [

[

1

2

𝑛

∑

𝑗=1

𝑤
𝑗
(

𝑢
𝐴
(𝑥
𝑗
) − 𝑢
𝐵
(𝑥
𝑗
)


𝛼

+

V
𝐴
(𝑥
𝑗
) − V
𝐵
(𝑥
𝑗
)


𝛼

+

𝜋
𝐴
(𝑥
𝑗
) − 𝜋
𝐵
(𝑥
𝑗
)


𝛼

)]

]

1/𝛼

,

𝑆
12 (𝐴, 𝐵)

= 1 − [

[

(

𝑛

∑

𝑗=1

𝑤
𝑗
(

𝑢
𝐴
(𝑥
𝑗
) − 𝑢
𝐵
(𝑥
𝑗
)


𝛼

+

V
𝐴
(𝑥
𝑗
) − V
𝐵
(𝑥
𝑗
)


𝛼

+

𝜋
𝐴
(𝑥
𝑗
) − 𝜋
𝐵
(𝑥
𝑗
)


𝛼

))

× (

𝑛

∑

𝑗=1

𝑤
𝑗
(

𝑢
𝐴
(𝑥
𝑗
) + 𝑢
𝐵
(𝑥
𝑗
)


𝛼

+

V
𝐴
(𝑥
𝑗
) + V
𝐵
(𝑥
𝑗
)


𝛼

+

𝜋
𝐴
(𝑥
𝑗
) + 𝜋
𝐵
(𝑥
𝑗
)


𝛼

))

−1

]

]

1/𝛼

,

𝑆
13 (𝐴, 𝐵)

= (

𝑛

∑

𝑗=1

𝑤
𝑗
(min (𝑢

𝐴
(𝑥
𝑗
) , 𝑢
𝐵
(𝑥
𝑗
))

+min (V
𝐴
(𝑥
𝑗
) , V
𝐵
(𝑥
𝑗
))

+ min (𝜋
𝐴
(𝑥
𝑗
) , 𝜋
𝐵
(𝑥
𝑗
))))

× (

𝑛

∑

𝑗=1

𝑤
𝑗
(max (𝑢

𝐴
(𝑥
𝑗
) , 𝑢
𝐵
(𝑥
𝑗
))

+ max (V
𝐴
(𝑥
𝑗
) , V
𝐵
(𝑥
𝑗
)))

+ max (𝜋
𝐴
(𝑥
𝑗
) , 𝜋
𝐵
(𝑥
𝑗
))))

−1

,

𝑆
14 (𝐴, 𝐵)

= (

𝑛

∑

𝑗=1

𝑤
𝑗
(𝑢
𝐴
(𝑥
𝑗
) ∗ 𝑢
𝐵
(𝑥
𝑗
) + V
𝐴
(𝑥
𝑗
) ∗ V
𝐵
(𝑥
𝑗
)

+ 𝜋
𝐴
(𝑥
𝑗
) ∗ 𝜋
𝐵
(𝑥
𝑗
)))

× (max(
𝑛

∑

𝑗=1

𝑤
𝑗
(𝑢
2

𝐴
(𝑥
𝑗
) + V2
𝐴
(𝑥
𝑗
) + 𝜋
2

𝐴
(𝑥
𝑗
)) ,

𝑛

∑

𝑗=1

𝑤
𝑗
(𝑢
2

𝐵
(𝑥
𝑗
) + V2
𝐵
(𝑥
𝑗
) + 𝜋
2

𝐵
(𝑥
𝑗
))))

−1

.

(44)

Example 11. Let 𝐴 = {𝑥, 0.5, 0.5}, 𝐵 = {𝑥, 0.3, 0.7}, and 𝐶 =

{𝑥, 0.3, 0.4} be three IFSs.
For IFSs 𝐴, 𝐵, and 𝐶, we have the following results using

the similarity measures 𝑆
11
, 𝑆
12
, 𝑆
13
, 𝑆
14
:

𝑆
11 (𝐴, 𝐵) = 0.8, 𝑆

11 (𝐴, 𝐶) = 0.735,

𝑆
12 (𝐴, 𝐵) = 0.804, 𝑆

12 (𝐴, 𝐶) = 0.698,

𝑆
12 (𝐴, 𝐵) = 0.804, 𝑆

12 (𝐴, 𝐶) = 0.698,

𝑆
14 (𝐴, 𝐵) = 0.862, 𝑆

14 (𝐴, 𝐶) = 0.7.

(45)
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It indicates that 𝐴 is more similar to 𝐵 than to 𝐶. As the
membership of 𝐵 and 𝐶 is the same, we only analyse the
change of the membership. Comparing 𝐴 with 𝐵, the change
degree of nonmembership is from0.5 to 0.7.While comparing
𝐶with𝐴, the change degree of nonmembership is from 0.4 to
0.5.Hence, intuitively,𝐴 ismore similar to𝐶 than to𝐵 and the
results of 𝑆

11
, 𝑆
12
, 𝑆
13
, 𝑆
14
are not reasonable.Nowwe calculate

the similarity measures 𝑆(𝐴, 𝐵) and 𝑆(𝐴, 𝐶) by formula (30).
Then 𝑆(𝐴, 𝐵) = 2/3 and 𝑆(𝐴, 𝐶) = 19/27, which indicated
that 𝐴 is more similar to 𝐶 than to 𝐵 and is consistent with
intuition.

Later, Xia and Xu [29] also proposed the following
similarity measures. Xu and Yager [27] named 𝛼

𝑟
= (𝑢
𝛼𝑟
, V
𝛼𝑟
)

an intuitionistic fuzzy value (IFV). Let 𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

and 𝛽 = (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) be two collections of IFVs and 𝜅, 𝜆 ∈

[0, 1], 𝑡
𝑎𝑗
= 𝑢
𝛼𝑗
− 𝑢
𝛽𝑗
, 𝑡
𝑏𝑗
= V
𝛼𝑗
− V
𝛽𝑗
, 𝑡
𝑐𝑗
= 𝜋
𝛼𝑗
− 𝜋
𝛽𝑗
= −𝑡
𝑎𝑗
−

𝑡
𝑏𝑗
, 𝑗 = (1, 2, . . . , 𝑛). Then the author defined the similarity

measures as

𝑆
𝜂

𝐷𝜅
(𝛼, 𝛽) = 1 − [

[

𝑛

∑

𝑗=1

𝑤
𝑗
(

(1 − 𝜅) 𝑡𝑎𝑗

− 𝜅𝑡
𝑏𝑗



𝜂

)]

]

1/𝜂

. (46)

For 𝜅 + 𝜆 ≤ 1,

𝑆
𝜂

𝐹𝜅,𝜆
(𝛼, 𝛽)

= 1 − [

[

1

2

𝑛

∑

𝑗=1

𝑤
𝑗
(

(1 − 𝜅) 𝑡𝑎𝑗

− 𝜅𝑡
𝑏𝑗



𝜂

+

(1 − 𝜆) 𝑡𝑎𝑗

− 𝜆𝑡
𝑏𝑗



𝜂

+

(1 − 𝜅 − 𝜆) (𝑡𝑎𝑗

+ 𝑡
𝑏𝑗
)


𝜂

)]

]

1/𝜂

,

𝑆
𝜂

𝐺𝜅,𝜆
(𝛼, 𝛽)

= 1 − [

[

1

2

𝑛

∑

𝑗=1

𝑤
𝑗
(

𝜅𝑡
𝑎𝑗



𝜂

+

𝜆𝑡
𝑏𝑗



𝜂

+

𝜅𝑡
𝑎𝑗
+ 𝜆𝑡
𝑏𝑗



𝜂

)]

]

1/𝜂

,

𝑆
𝜂

𝐻𝜅,𝜆
(𝛼, 𝛽)

= 1 − [

[

1

2

𝑛

∑

𝑗=1

𝑤
𝑗
(

𝜅𝑡
𝑎𝑗



𝜂

+

𝜆𝑡
𝑎𝑗
− (1 − 𝜆) 𝑡𝑏𝑗



𝜂

+

(𝜅 − 𝜆) 𝑡𝑎𝑗

+ (1 − 𝜆) 𝑡𝑏𝑗



𝜂

)]

]

1/𝜂

,

𝑆
𝜂

𝐻
∗

𝜅,𝜆

(𝛼, 𝛽)

= 1 − [

[

1

2

𝑛

∑

𝑗=1

𝑤
𝑗
(

𝜅𝑡
𝑎𝑗



𝜂

+

𝜅𝜆𝑡
𝑎𝑗
− (1 − 𝜆) 𝑡𝑏𝑗



𝜂

+

(1 − 𝜆) (𝜅𝑡𝑎𝑗

+ 𝑡
𝑏𝑗
)


𝜂

)]

]

1/𝜂

,

𝑆
𝜂

𝐽𝜅,𝜆
(𝛼, 𝛽)

= 1 − [

[

1

2

𝑛

∑

𝑗=1

𝑤
𝑗
(

(1 − 𝜅) 𝑡𝑎𝑗

− 𝜅𝑡
𝑏𝑗



𝜂

+

𝜆𝑡
𝑏𝑗



+

(1 − 𝜅) 𝑡𝑎𝑗

+ (𝜆 − 𝜅) 𝑡𝑏𝑗



𝜂

)]

]

1/𝜂

,

𝑆
𝜂

𝐽
∗

𝜅,𝜆

(𝛼, 𝛽)

= 1 − [

[

1

2

𝑛

∑

𝑗=1

𝑤
𝑗
(

(1 − 𝜅) 𝑡𝑎𝑗

− 𝜅𝜆𝑡
𝑏𝑗



𝜂

+

𝜆𝑡
𝑏𝑗



+

(1 − 𝜅) (𝑡𝑎𝑗

+ 𝜆𝑡
𝑏𝑗
)


𝜂

)]

]

1/𝜂

.

(47)

For 𝜅 + 𝜆 ≤ 1,

𝑆
𝜂

𝑃𝜅,𝜆
(𝛼, 𝛽)

= 1 − [

[

1

2

𝑛

∑

𝑗=1

𝑤
𝑗
(

max (𝜅, 𝑢

𝛼𝑗
) −max (𝜅, 𝑢

𝛽𝑗
)


𝜂

+

min (𝜆, V

𝛼𝑗
) −min (𝜆, V

𝛽𝑗
)


𝜂

+

max (𝜅, 𝑢

𝛼𝑗
) −max (𝜅, 𝑢

𝛽𝑗
)

+min (𝜆, V
𝛼𝑗
) −min (𝜆, V

𝛽𝑗
)


𝜂

)]

]

1/𝜂

.

(48)

For 𝜅 + 𝜆 ≤ 1,

𝑆
𝜂

𝑄𝜅,𝜆
(𝛼, 𝛽)

= 1 − [

[

1

2

𝑛

∑

𝑗=1

𝑤
𝑗
(

min (𝜅, 𝑢

𝛼𝑗
) −min (𝜅, 𝑢

𝛽𝑗
)


𝜂

+

max (𝜆, V

𝛼𝑗
) −max (𝜆, V

𝛽𝑗
)


𝜂

+

min (𝜅, 𝑢

𝛼𝑗
) −min (𝜅, 𝑢

𝛽𝑗
)

+max (𝜆, V
𝛼𝑗
) −max (𝜆, V

𝛽𝑗
)


𝜂

)]

]

1/𝜂

.

(49)

Example 12. Let 𝐴 = {𝑥, 0.3, 0.3}, 𝐵 = {𝑥, 0.4, 0.4}, and 𝐶 =

{𝑥, 0.4, 0.5} be three IFVs. It is clear to see that𝐴 ismuchmore
similar to 𝐵 than to 𝐶. However, using the similarity measure
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(46), we can get 𝑆5
𝐷0.2

(𝐴, 𝐵) = 0.94, 𝑆5
𝐷0.2

(𝐴, 𝐶) = 0.96. Hence,
𝑆
5

𝐷0.2
(𝐴, 𝐵) < 𝑆

5

𝐷0.2
(𝐴, 𝐶), which is not reasonable. If we use

the new similarity measure (30), we have 𝑆(𝐴, 𝐵) = 0.8571,
𝑆(𝐴, 𝐶) = 0.7857. Therefore, the new similarity measure is
illustrated to be more reasonable than 𝑆𝜂

𝐷𝜅
.

Example 13. Let 𝐴 = {𝑥, 0.5, 0.5}, 𝐵 = {𝑥, 0.2, 0.4}, and 𝐶 =

{𝑥, 0.2, 0.65} be three IFVs. We can get the following results
using formula (47). We adopt the values of 𝜂, 𝜅, 𝜆 from [31]

𝑆
5

𝐹0.2,0.1
(𝐴, 𝐵) = 0.7203, 𝑆

5

𝐹0.2,0.1
(𝐴, 𝐶) = 0.7219,

𝑆
5

𝐺0.7,0.8
(𝐴, 𝐵) = 0.7381, 𝑆

5

𝐺0.7,0.8
(𝐴, 𝐶) = 0.8145,

𝑆
5

𝐻0.8,0.3
(𝐴, 𝐵) = 0.7691, 𝑆

5

𝐻0.8,0.3
(𝐴, 𝐶) = 0.778,

𝑆
5

𝐻
∗

0.9,0.2

(𝐴, 𝐵) = 0.7158, 𝑆
5

𝐻
∗

0.9,0.2

(𝐴, 𝐶) = 0.7597,

𝑆
5

𝐽0.1,0.6
(𝐴, 𝐵) = 0.704, 𝑆

5

𝐽0.1,0.6
(𝐴, 𝐶) = 0.7447,

𝑆
5

𝐽
∗

0.2,0.7

(𝐴, 𝐵) = 0.7301, 𝑆
5

𝐽
∗

0.2,0.7

(𝐴, 𝐶) = 0.769.

(50)

For similarity measures (48)-(49), the results are varying
when the values of 𝜅, 𝜆 are different. For example, let 𝜅 = 0;
we can get the following:

𝑆
𝜂

𝑃𝜅,𝜆
(𝐴, 𝐵) ≤ 𝑆

𝜂

𝑃𝜅,𝜆
(𝐴, 𝐶) , if 𝜆 ≤ 0.6,

𝑆
𝜂

𝑃𝜅,𝜆
(𝐴, 𝐵) > 𝑆

𝜂

𝑃𝜅,𝜆
(𝐴, 𝐶) , if 𝜆 > 0.6,

𝑆
𝜂

𝑄𝜅,𝜆
(𝐴, 𝐵) ≥ 𝑆

𝜂

𝑄𝜅,𝜆
(𝐴, 𝐶) , if 𝜆 ≤ 0.65,

𝑆
𝜂

𝑄𝜅,𝜆
(𝐴, 𝐵) = 𝑆

𝜂

𝑄𝜅,𝜆
(𝐴, 𝐶) , if 𝜆 > 0.65.

(51)

If we use formula (30) proposed in this paper, we can get
𝑆(𝐴, 𝐵) = 0.7143 and 𝑆(𝐴, 𝐶) = 0.6642. Furthermore, the
change of the membership from 𝐴 to 𝐵 and 𝐴 to 𝐶 is the
same. But the change degree of nonmembership is different.
Comparing 𝐴 with 𝐵, the change is from 0.5 to 0.4 which
is smaller than that comparing 𝐴 with 𝐶. Accordingly, 𝐴 is
muchmore similar to 𝐵 than to𝐶 and our similarity measure
is more effective in some cases.

4. Application to Expert System

IVIFS is a very suitable tool to the expert system to process the
imperfect information. We apply the new similarity measure
defined by (30) to some applications.

4.1. Pattern Recognition

Step 1. Suppose that there exist 𝑚 patterns which are repre-
sented by IVIFSs for a pattern recognition problem

𝐴
𝑖
= {(𝑥

𝑗
, [𝑢
−

𝐴𝑖
(𝑥
𝑗
) , 𝑢
+

𝐴𝑖
(𝑥
𝑗
)] ,

[V−
𝐴𝑖
(𝑥
𝑗
) , V+
𝐴𝑖
(𝑥
𝑗
)]) | 𝑥

𝑗
∈ 𝑋} ,

(52)

for 𝑖 = 1, 2, . . . , 𝑚, in the feature space 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
},

and suppose that there is a sample to be recognized which is
represented by IVIFSs

𝐵 = {(𝑥
𝑗
, [𝑢
−

𝐵
(𝑥
𝑗
) , 𝑢
+

𝐵
(𝑥
𝑗
)] , [V−

𝐵
(𝑥
𝑗
) , V+
𝐵
(𝑥
𝑗
)]) | 𝑥

𝑗
∈ 𝑋} .

(53)

Step 2. Calculate the similarity degree 𝑆(𝐴
𝑖
, 𝐵) between 𝐴

𝑖

and 𝐵 by formula (30).

Step 3. Select the largest 𝑆(𝐴
𝑘
, 𝐵), from 𝑆(𝐴

𝑖
, 𝐵), 𝑖 =

1, 2, . . . , 𝑚. According to the principle ofmaximum similarity
degree between IVIFSs, the sample 𝐵 belongs to the pattern
𝐴
𝑘
.

Example 14 (see [32]). Assume that there are three patterns
denoted by IFSs in𝑋 = {𝑥

1
, 𝑥
2
, 𝑥
3
}

𝐴
1
= {(𝑥
1
, 0.1, 0.1) , (𝑥

2
, 0.5, 0.1) , (𝑥

3
, 0.1, 0.9)} ,

𝐴
2
= {(𝑥
1
, 0.5, 0.5) , (𝑥

2
, 0.7, 0.3) , (𝑥

3
, 0.0, 0.8)} ,

𝐴
3
= {(𝑥
1
, 0.7, 0.2) , (𝑥

2
, 0.1, 0.8) , (𝑥

3
, 0.4, 0.4)} .

(54)

Assume that a sample 𝐵 = {(𝑥
1
, 0.4, 0.4), (𝑥

2
, 0.6, 0.2),

(𝑥
3
, 0.0, 0.8)} is given and let the weight vector 𝑤 =

(1/3, 1/3, 1/3)
𝑇 and 𝑞 = 2. According to formula (30) and

the similarity measures 𝑆
9
, 𝑆
10

proposed by Chen [33], the
following results can be obtained:

𝑆 (𝐴
1
, 𝐵) = 0.7857, 𝑆 (𝐴

2
, 𝐵) = 0.8889,

𝑆 (𝐴
3
, 𝐵) = 0.5097,

𝑆
9
(𝐴
1
, 𝐵) = 1, 𝑆

9
(𝐴
2
, 𝐵) = 1,

𝑆
9
(𝐴
3
, 𝐵) = 0.6,

𝑆
10
(𝐴
1
, 𝐵) = 1, 𝑆

10
(𝐴
2
, 𝐵) = 1,

𝑆
10
(𝐴
3
, 𝐵) = 0.5817.

(55)

We can see that the similarity measures 𝑆
9
, 𝑆
10

cannot
recognize which pattern 𝐵 belongs to. Based on the principle
of maximumdegree of similarity, it is obvious that the sample
𝐵 belongs to 𝐴

2
using our similarity measure and the results

are the same with some other similarity measures [32].

Example 15 (see [34]). We discuss the medical diagnosis
problem. Let us consider a set of diagnoses 𝐴 =

{𝐴
1
(Viralfever), 𝐴

2
(Malaria), 𝐴

3
(Typhoid)} as well as a

set of symptoms 𝑋 = {𝑥
1
(Temprature), 𝑥

2
(Headache),

𝑥
3
(Cough)}. Assume that a patient can be represented as

follows:

𝐵 = {(𝑥
1
, [0.6, 0.8] , [0.1, 0.2]) , (𝑥2, [0.3, 0.7] , [0.2, 0.3]) ,

(𝑥
3
, [0.6, 0.8] , [0.1, 0.2])} .

(56)
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Let the weight vector𝑤 = (1/3, 1/3, 1/3)
𝑇 and each diagnosis

can be denoted by IVIFSs as follows:

𝐴
1
= {(𝑥
1
, [0.4, 0.5] , [0.3, 0.4]) , (𝑥2, [0.4, 0.6] , [0.2, 0.4]) ,

(𝑥
3
, [0.4, 0.8] , [0.1, 0.2])} ,

𝐴
2
= {(𝑥
1
, [0.3, 0.6] , [0.3, 0.4]) , (𝑥2, [0.5, 0.6] , [0.3, 0.4]) ,

(𝑥
3
, [0.4, 0.5] , [0.1, 0.3])} ,

𝐴
3
= {(𝑥
1
, [0.7, 0.8] , [0.1, 0.2]) , (𝑥2, [0.6, 0.7] , [0.1, 0.3]) ,

(𝑥
3
, [0.3, 0.4] , [0.1, 0.2])} .

(57)

Our goal is to categorize the patient 𝐵 in one of the classes
𝐴
1
, 𝐴
2
, 𝐴
3
. Then, we can have the following results based on

formula (30) and (10)–(13):

𝑆 (𝐴
1
, 𝐵) = 0.8366, 𝑆 (𝐴

2
, 𝐵) = 0.7586,

𝑆 (𝐴
3
, 𝐵) = 0.8577.

𝑆
2
(𝐴
1
, 𝐵) = 0.8834, 𝑆 (𝐴

2
, 𝐵) = 0.8334,

𝑆 (𝐴
3
, 𝐵) = 0.9.

𝑆
3
(𝐴
1
, 𝐵) = 0.517, 𝑆

3
(𝐴
2
, 𝐵) = 0.4084,

𝑆
3
(𝐴
3
, 𝐵) = 0.8292.

𝑆
4
(𝐴
1
, 𝐵) = 0.8, 𝑆

4
(𝐴
2
, 𝐵) = 0.7334,

𝑆
4
(𝐴
3
, 𝐵) = 0.7334.

𝑆
5
(𝐴
1
, 𝐵) = 0.784, 𝑆

5
(𝐴
2
, 𝐵) = 0.7292,

𝑆
5
(𝐴
3
, 𝐵) = 0.7056.

(58)

Based on the recognition principle of the maximum
similarity degree between the IVIFSs, we can get result that
the similarity degree between 𝐴

3
and 𝐵 is the largest using

formula (30), (10), and (11). Consider

𝑆 (𝐴
3
, 𝐵) = max (𝑆 (𝐴

1
, 𝐵) , 𝑆 (𝐴

2
, 𝐵) , 𝑆 (𝐴

3
, 𝐵)) ,

𝑆
2
(𝐴
3
, 𝐵) = max (𝑆

2
(𝐴
1
, 𝐵) , 𝑆

2
(𝐴
2
, 𝐵) , 𝑆

2
(𝐴
3
, 𝐵)) ,

𝑆
3
(𝐴
3
, 𝐵) = max (𝑆

3
(𝐴
1
, 𝐵) , 𝑆

3
(𝐴
2
, 𝐵) , 𝑆

3
(𝐴
3
, 𝐵)) .

(59)

It is the right answer that 𝐵 belongs to 𝐴
3
, which is the

same as in [34]. But the similarity measures 𝑆
4
, 𝑆
5
would

have the wrong answer. Thus, we can assign the patient to
diagnosis𝐴

3
according to the recognition of principle. So we

can diagnose that the illness of the patient is typhoid.
The application of pattern recognition in medical diag-

nosis problem can be very significant. We can take advantage
of the similarity measure to help us to diagnose the patient
based on the database of the symptoms of illnesses. So it can
help the patients much faster to know their illness, as well as
alleviating the burden of doctors.

Example 16 (see [24]). Assume that there
are four classes of building materials 𝐴 =

{𝐴
1
(poor), 𝐴

2
(average), 𝐴

3
(good), 𝐴

4
(excellent)}

that are written in the form of IVIFSs 𝐴
𝑖

=

{(𝑥
𝑗
, [𝑢
−

𝐴𝑖
(𝑥
𝑗
), 𝑢
+

𝐴𝑖
(𝑥
𝑗
)], [V−
𝐴𝑖
(𝑥
𝑗
), V+
𝐴𝑖
(𝑥
𝑗
)]) | 𝑥

𝑗
∈ 𝑋} (𝑖 =

1, 2, 3, 4) in the future space𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

12
} that denote

twelve different indicators. And the weight vector 𝑤 is as
follows:

𝑤 = (0.1, 0.05, 0.08, 0.06, 0.03, 0.07, 0.09,

0.12, 0.15, 0.07, 0.13, 0.05)
𝑇
.

(60)

And there are an unknown building material 𝐵 and
four classes of building materials represented by IVIFSs with
respect to all indicators as follows:

𝐴
1
= {(𝑥
1
, [0.1, 0.2] , [0.5, 0.6]) , (𝑥2, [0.1, 0.2] , [0.7, 0.8]) ,

(𝑥
3
, [0.5, 0.6] , [0.3, 0.4]) , (𝑥4, [0.8, 0.9] , [0.0, 0.1]) ,

(𝑥
5
, [0.4, 0.5] , [0.3, 0.4]) , (𝑥6, [0.0, 0.1] , [0.8, 0.9]) ,

(𝑥
7
, [0.3, 0.4] , [0.5, 0.6]) , (𝑥8, [1.0, 1.0] , [0.0, 0.0]) ,

(𝑥
9
, [0.2, 0.3] , [0.6, 0.7]) , (𝑥10, [0.4, 0.5] , [0.4, 0.5]) ,

(𝑥
11
, [0.7, 0.8] , [0.1, 0.2]) , (𝑥12, [0.4, 0.5] , [0.4, 0.5])} ,

𝐴
2
= {(𝑥
1
, [0.5, 0.6] , [0.3, 0.4]) , (𝑥2, [0.6, 0.7] , [0.1, 0.2]) ,

(𝑥
3
, [1.0, 1.0] , [0.0, 0.0]) , (𝑥4, [0.1, 0.2] , [0.6, 0.7]) ,

(𝑥
5
, [0.0, 0.1] , [0.8, 0.9]) , (𝑥6, [0.7, 0.8] , [0.1, 0.2]) ,

(𝑥
7
, [0.5, 0.6] , [0.3, 0.4]) , (𝑥8, [0.6, 0.7] , [0.2, 0.3]) ,

(𝑥
9
, [1.0, 1.0] , [0.0, 0.0]) , (𝑥10, [0.1, 0.2] , [0.7, 0.8]) ,

(𝑥
11
, [0.0, 0.1] , [0.8, 0.9]) , (𝑥12, [0.7, 0.8] , [0.1, 0.2])} ,

𝐴
3
= {(𝑥
1
, [0.4, 0.5] , [0.3, 0.4]) , (𝑥2, [0.6, 0.7] , [0.2, 0.3]) ,

(𝑥
3
, [0.9, 1.0] , [0.0, 0.0]) , (𝑥4, [0.0, 0.1] , [0.8, 0.9]) ,

(𝑥
5
, [0.0, 0.1] , [0.8, 0.9]) , (𝑥6, [0.6, 0.7] , [0.2, 0.3]) ,

(𝑥
7
, [0.1, 0.2] , [0.7, 0.8]) , (𝑥8, [0.2, 0.3] , [0.6, 0.7]) ,

(𝑥
9
, [0.5, 0.6] , [0.2, 0.4]) , (𝑥10, [1.0, 1.0] , [0.0, 0.0]) ,

(𝑥
11
, [0.3, 0.4] , [0.4, 0.5]) , (𝑥12, [0.0, 0.1] , [0.8, 0.9])} ,

𝐴
4
= {(𝑥
1
, [1.0, 1.0] , [0.0, 0.0]) , (𝑥2, [1.0, 1.0] , [0.0, 0.0]) ,

(𝑥
3
, [0.8, 0.9] , [0.0, 0.1]) , (𝑥4, [0.7, 0.8] , [0.1, 0.2]) ,

(𝑥
5
, [0.0, 0.1] , [0.7, 0.9]) , (𝑥6, [0.0, 0.1] , [0.8, 0.9]) ,

(𝑥
7
, [0.1, 0.2] , [0.7, 0.8]) , (𝑥8, [0.1, 0.2] , [0.7, 0.8]) ,

(𝑥
9
, [0.4, 0.5] , [0.3, 0.4]) , (𝑥10, [1.0, 1.0] , [0.0, 0.0]) ,

(𝑥
11
, [0.3, 0.4] , [0.4, 0.5]) , (𝑥12, [0.0, 0.1] [0.8, 0.9])} ,
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𝐵 = {(𝑥
1
, [0.9, 1.0] , [0.0, 0.0]) , (𝑥2, [0.9, 1.0] , [0.0, 0.0]) ,

(𝑥
3
, [0.7, 0.8] , [0.1, 0.2]) , (𝑥4, [0.6, 0.7] , [0.1, 0.2]) ,

(𝑥
5
, [0.0, 0.1] , [0.8, 0.9]) , (𝑥6, [0.1, 0.2] , [0.7, 0.8]) ,

(𝑥
7
, [0.1, 0.2] , [0.7, 0.8]) , (𝑥8, [0.1, 0.2] , [0.7, 0.8]) ,

(𝑥
9
, [0.4, 0.5] , [0.3, 0.4]) , (𝑥10, [1.0, 1.0] , [0.0, 0.0]) ,

(𝑥
11
, [0.3, 0.4] , [0.4, 0.5]) , (𝑥12, [0.0, 0.1] , [0.7, 0.9])} .

(61)

We have to recognize which class the unknown pattern
𝐵 belongs to. According to the recognition principle of max-
imum similarity degree between IVIFSs, the process of rec-
ognizing 𝐴

𝑗
to 𝐵 is derived based on 𝑗 = argmax{𝑆(𝐴

𝑖
, 𝐵)}.

Using the new similarity measure proposed in this paper and
𝑆
1
, we can obtain

𝑆 (𝐴
1
, 𝐵) = 0.454, 𝑆 (𝐴

2
, 𝐵) = 0.4157,

𝑆 (𝐴
3
, 𝐵) = 0.7456, 𝑆 (𝐴

4
, 𝐵) = 0.9594.

𝑆
1
(𝐴
1
, 𝐵) = 0.4811, 𝑆

1
(𝐴
2
, 𝐵) = 0.4272,

𝑆
1
(𝐴
3
, 𝐵) = 0.7616, 𝑆

1
(𝐴
4
, 𝐵) = 0.9563.

(62)

It is obvious that the similarity degrees 𝑆(𝐴
4
, 𝐵), 𝑆
1
(𝐴
4
, 𝐵)

are the largest one in the four different similaritymethods and
so 𝐵 belongs to 𝐴

4
. So we can know that the quality of the

building material is excellent. It can be very useful and easy
for us to detect the quality of building material with the help
of the similarity measure.

4.2. Multicriteria Group Decision Making. For a decision
making problem, let 𝐴 = {𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑚
} be a set of

alternatives, let 𝐶 = {𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
} be a set of criteria, let𝑊 =

{𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
} be a set of criteria weights, and let 𝐷𝑊 =

{𝑑𝑤
1
, 𝑑𝑤
2
, . . . , 𝑑𝑤

𝑙
} be a set of decision maker’s weights. We

also have the condition that ∑𝑛
𝑖=1

𝑤
𝑖
= 1, 𝑤

𝑖
∈ [0, 1] and

∑
𝑙

𝑖=1
𝑑𝑤
𝑖
= 1, 𝑑𝑤

𝑖
∈ [0, 1].

The decision making procedure designed to find the best
alternative is given by the following steps.

Step 1. The evaluation of the alternative 𝑎
𝑖
with respect to the

criterion 𝑐
𝑗
is an intuitionistic fuzzy number represented by

𝑎
𝑖𝑗
= ⟨𝑐
𝑗
, [𝑢
−

𝑖𝑗
, 𝑢
+

𝑖𝑗
], [V−
𝑖𝑗
, V+
𝑖𝑗
]⟩. In this case, the alternative 𝑎

𝑖
is

presented by the following IVIFS:

𝑎
𝑖
= {⟨𝑐
𝑗
, [𝑢
−

𝑖𝑗
, 𝑢
+

𝑖𝑗
] , [V−
𝑖𝑗
, V+
𝑖𝑗
]⟩ | 𝑐
𝑗
∈ 𝐶} , (63)

where 0 ≤ 𝑢
+

𝑖𝑗
+ V+
𝑖𝑗
≤ 1, 0 ≤ 𝑢

−

𝑖𝑗
≤ 𝑢
+

𝑖𝑗
≤ 1, 0 ≤ V−

𝑖𝑗
≤ V+
𝑖𝑗
≤ 1,

𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑚.

Step 2. Wedefine an ideal IVIFS for each criterion in the ideal
alternative 𝑎∗ as 𝑎

𝑖𝑗
= ⟨𝑐
𝑗
, [1, 1], [0, 0]⟩ for “excellence.” Then,

by considering criteria weights and applying formula (3), we
can gain the weighted similarity measure between the ideal

alternative 𝑎∗ and alternative 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑚) for each

decision maker:

𝑊𝑆
𝑘
(𝑎
𝑖
, 𝑎
∗
) =

𝑛

∑

𝑗=1

2 −min {𝜇−
𝑖
, V−
𝑖
} −min {𝜇+

𝑖
, V+
𝑖
}

2 +max {𝜇−
𝑖
, V−
𝑖
} +max {𝜇+

𝑖
, V+
𝑖
}
. (64)

Step 3. Calculate the last value of alternatives considering
each decision maker’s evaluation

𝑊𝑆 (𝑎
𝑖
, 𝑎
∗
) =

𝑙

∑

𝑘=1

𝑊𝑆
𝑘
(𝑎
𝑖
, 𝑎
∗
) . (65)

Step 4. Determine the order of alternatives. The larger the
value of𝑊𝑆(𝑎

𝑖
, 𝑎
∗
) is, the better the alternative is.

We compare it with the ideal point method [35] based on
interval-valued intuitionistic fuzzy sets used in the multicri-
teria group decision making. As the ideal point method [35]
fits multiperiod and one decision maker, we should improve
the method to solve our decision problem which is just one
period andmultidecisionmaker.The procedure of ideal point
method is as follows.

Step 1. Utilize the UDIFWAoperator: 𝑟
𝑖𝑗
= ([𝑢
−

𝑖𝑗
, 𝑢
+

𝑖𝑗
], [V−
𝑖𝑗
, V+
𝑖𝑗
],

[1 − 𝑢
+

𝑖𝑗
− V+
𝑖𝑗
, 1 − 𝑢

−

𝑖𝑗
− V−
𝑖𝑗
]).

Step 2. Define 𝑎+ and 𝑎− as the uncertain intuitionistic fuzzy
ideal solution and the uncertain intuitionistic fuzzy negative
ideal solution, respectively.

Step 3. Calculate the distance between the alternative 𝑎
𝑖
and

𝑎
+, 𝑎−:

𝑑 (𝑟
𝑖
, 𝑎
+
) =

𝑙

∑

𝑘=1

𝑑𝑤
𝑘

𝑚

∑

𝑗=1

𝑤
𝑗
𝑑 (𝑟
𝑖𝑗
, 𝑎
+
) ,

𝑑 (𝑟
𝑖
, 𝑎
−
) =

𝑙

∑

𝑘=1

𝑑𝑤
𝑘

𝑚

∑

𝑗=1

𝑤
𝑗
𝑑 (𝑟
𝑖𝑗
, 𝑎
−
) .

(66)

Step 4. Calculate the closeness coefficient of each alternative:

𝑐 (𝑎
𝑖
) =

𝑑 (𝑟
𝑖
, 𝑎
−
)

𝑑 (𝑟
𝑖
, 𝑎−) + 𝑑 (𝑟

𝑖
, 𝑎+)

. (67)

Step 5. Choose the alternative 𝑎
𝑖
which has the largest values

of closeness coefficient. The greater the value (𝑎
𝑖
), the better

the alternative 𝑎
𝑖
.

Example 17 (see [17]). We consider an investment company,
which wants to invest money in the best option. There is
a panel with four possible alternatives to invest the money:
(1) 𝑎
1
is a car company; (2) 𝑎

2
is a food company; (3) 𝑎

3

is a computer company; (4) 𝑎
4
is an arms company. The

investment company must consider the following three cri-
teria in order to make decision: (1) 𝑐

1
is the risk analysis;

(2) 𝑐
2
is the growth analysis; (3) 𝑐

3
is the environmental

impact analysis. The criteria are independent and the criteria
weights comprise a vector 𝑊 = [0.5, 0.3, 0.2]

. The four
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Table 1: The evaluation of the decision maker.

𝑐
1

𝑐
2

𝑐
3

𝑎
1

([0.4, 0.5], [0.3, 0.4]) ([0.4, 0.6], [0.2, 0.4]) ([0.1, 0.3], [0.5, 0.6])
𝑎
2

([0.6, 0.7], [0.2, 0.3]) ([0.6, 0.7], [0.2, 0.3]) ([0.4, 0.7], [0.1, 0.2])
𝑎
3

([0.3, 0.6], [0.3, 0.4]) ([0.5, 0.6], [0.3, 0.4]) ([0.5, 0.6], [0.1, 0.3])
𝑎
4

([0.7, 0.8], [0.1, 0.2]) ([0.6, 0.7], [0.1, 0.3]) ([0.3, 0.4], [0.1, 0.2])

possible alternatives 𝑎
𝑖
(𝑖 = 1, 2, 3, 4) are to be evaluated

using the interval-valued intuitionistic fuzzy information by
the decision maker under the three criteria (see Table 1).

Then we give the ideal IVIFS for each criterion in the
ideal alternative 𝑎

∗ as 𝑎
∗

= {(𝑐
1
, [1, 1], [0, 0]), (𝑐

2
, [1, 1],

[0, 0]), (𝑐
3
, [1, 1], [0, 0])}. With formula (30), we can get the

weighted similarity degree between the ideal alternative 𝑎∗
and alternative 𝑎

𝑖
(𝑖 = 1, 2, 3, 4) as follows:

𝑊𝑆 (𝑎
1
, 𝑎
∗
) = 0.4418, 𝑊𝑆 (𝑎

2
, 𝑎
∗
) = 0.6040,

𝑊𝑆 (𝑎
3
, 𝑎
∗
) = 0.4997, 𝑊𝑆 (𝑎

4
, 𝑎
∗
) = 0.6613.

(68)

Besides, 𝑘 = 1; that is, there is only one decision maker, so we
can see that

𝑊𝑆 (𝑎
4
, 𝑎
∗
) > 𝑊𝑆 (𝑎

2
, 𝑎
∗
) > 𝑊𝑆 (𝑎

3
, 𝑎
∗
) > 𝑊𝑆 (𝑎

1
, 𝑎
∗
) .

(69)

The order of the alternatives is 𝑎
4
> 𝑎
2
> 𝑎
3
> 𝑎
1
. So we can

get that the best alternative is 𝑎
4
.

Using the ideal point method, we can obtain

𝑟
1
= {([0.4, 0.5] , [0.3, 0.4] , [0.1, 0.3]) ,

([0.4, 0.6] , [0.2, 0.4] , [0, 0.4]) ,

([0.1, 0.3] , [0.5, 0.6] , [0.1, 0.4])} ,

𝑟
2
= {([0.6, 0.7] , [0.2, 0.3] , [0, 0.2]) ,

([0.6, 0.7] , [0.2, 0.3] , [0, 0.2]) ,

([0.4, 0.7] , [0.1, 0.2] , [0.1, 0.4])} ,

𝑟
3
= {([0.3, 0.6] , [0.3, 0.4] , [0, 0.4]) ,

([0.5, 0.6] , [0.3, 0.4] , [0, 0.2]) ,

([0.5, 0.6] , [0.1, 0.3] , [0.1, 0.4])} ,

𝑟
4
= {([0.7, 0.8] , [0.1, 0.2] , [0, 0.2]) ,

([0.6, 0.7] , [0.1, 0.3] , [0, 0.3]) ,

([0.3, 0.4] , [0.1, 0.2] , [0.4, 0.6])} ,

𝑎
+
= {([1, 1] , [0, 0] , [0, 0]) , ([1, 1] , [0, 0] , [0, 0]) ,

([1, 1] , [0, 0] , [0, 0])} ,

𝑎
−
= {([0, 0] , [1, 1] , [0, 0]) , ([0, 0] , [1, 1] , [0, 0]) ,

([0, 0] , [1, 1] , [0, 0])} .

(70)

Table 2: The results of ideal point method.

𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4

𝑑 (𝑟
𝑖
, 𝑎
−
) 0.625 0.745 0.68 0.835

𝑑 (𝑟
𝑖
, 𝑎
+
) 0.585 0.365 0.5 0.335

𝑐 (𝑎
1
) 0.517 0.671 0.576 0.714

The results of the ideal point method are shown in Table 2.
We can know that the results from the ideal point method are
also the same as our measures.

Example 18 (see [8]). In order to strengthen academic edu-
cation and promote the quality of teaching, the school of
management of a Chinese university wants to introduce
oversea outstanding professor. The panel of the decision
makers consist of the university president 𝑑𝑤

1
, dean of

the management school 𝑑𝑤
2
, and human resource officer

𝑑𝑤
3
. Besides, the weight of the decision maker is 𝐷𝑊 =

{0.5, 0.3, 0.2}. They make strict evaluation for five candidates
𝑎
𝑖
(𝑖 = 1, 2, 3, 4, 5) from four aspects, namely, morality 𝑐

1
,

research capability 𝑐
2
, teaching skills 𝑐

3
, and education back-

ground 𝑐
4
. The weights of the evaluation criteria comprise

a vector 𝑊 = [0.4, 0.3, 0.2, 0.1]
. The evaluations of each

decision maker to the candidates construct the following
interval-valued intuitionistic fuzzy information as present in
Tables 3, 4, and 5.

Step 1. In order to calculate the similarity degree between the
ideal alternative and the alternative 𝑎

𝑖
(𝑖 = 1, 2, 3, 4), we have

the ideal alternative 𝑎∗ as follows:

𝑎
∗
= {(𝑐
1
, [1, 1] , [0, 0]) , (𝑐2, [1, 1] , [0, 0]) ,

(𝑐
3
, [1, 1] , [0, 0]) , (𝑐4, [1, 1] , [0, 0])} .

(71)

It is done by formula (64). The result is shown in Table 6.

Step 2. The last value of each alternative can be calculated by
formula (65). Consider

𝑊𝑆 (𝑎
1
, 𝑎
∗
) = 0.5244, 𝑊𝑆 (𝑎

2
, 𝑎
∗
) = 0.5603,

𝑊𝑆 (𝑎
3
, 𝑎
∗
) = 0.4662, 𝑊𝑆 (𝑎

4
, 𝑎
∗
) = 0.5490,

𝑊𝑆 (𝑎
5
, 𝑎
∗
) = 0.5361.

(72)

Step 3. The ranking order of all alternatives is shown as
follows:

𝑎
2
> 𝑎
4
> 𝑎
5
> 𝑎
1
> 𝑎
3
. (73)

Thus, the best alternative is 𝑎
2
.
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Table 3: The evaluation of the university president.

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑎
1

([0.6, 0.8], [0.1, 0.2]) ([0.2, 0.4], [0.4, 0.5]) ([0.6, 0.7], [0.2, 0.3]) ([0.4, 0.5], [0.2, 0.4])
𝑎
2

([0.4, 0.7], [0.0, 0.1]) ([0.5, 0.7], [0.1, 0.2]) ([0.7, 0.8], [0.1, 0.2]) ([0.7, 0.8], [0.1, 0.2])
𝑎
3

([0.3, 0.7], [0.2, 0.3]) ([0.2, 0.4], [0.4, 0.5]) ([0.1, 0.4], [0.4, 0.5]) ([0.3, 0.4], [0.4, 0.6])
𝑎
4

([0.7, 0.8], [0.1, 0.2]) ([0.2, 0.3], [0.4, 0.6]) ([0.6, 0.8], [0.0, 0.2]) ([0.6, 0.8], [0.0, 0.2])
𝑎
5

([0.5, 0.6], [0.3, 0.4]) ([0.7, 0.8], [0.0, 0.1]) ([0.2, 0.4], [0.4, 0.5]) ([0.1, 0.3], [0.4, 0.6])

Table 4: The evaluation of the dean of the management school.

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑎
1

([0.2, 0.4], [0.4, 0.5]) ([0.6, 0.7], [0.1, 0.2]) ([0.5, 0.7], [0.1, 0.2]) ([0.5, 0.7], [0.1, 0.2])
𝑎
2

([0.6, 0.8], [0.0, 0.2]) ([0.2, 0.3], [0.4, 0.5]) ([0.7, 0.8], [0.1, 0.2]) ([0.2, 0.4], [0.4, 0.5])

𝑎
3

([0.1, 0.4], [0.4, 0.5]) ([0.8, 0.9], [0.0, 0.1]) ([0.1, 0.4], [0.2, 0.5]) ([0.4, 0.7], [0.2, 0.3])
𝑎
4

([0.6, 0.8], [0.0, 0.2]) ([0.3, 0.8], [0.0, 0.1]) ([0.2, 0.3], [0.4, 0.6]) ([0.6, 0.7], [0.2, 0.3])
𝑎
5

([0.2, 0.4], [0.5, 0.6]) ([0.6, 0.7], [0.2, 0.3]) ([0.6, 0.8], [0.0, 0.2]) ([0.1, 0.4], [0.3, 0.5])

Table 5: The evaluation of the human resource officer.

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑎
1

([0.2, 0.4], [0.4, 0.5]) ([0.2, 0.4], [0.4, 0.5]) ([0.4, 0.7], [0.0, 0.1]) ([0.7, 0.9], [0.0, 0.1])
𝑎
2

([0.2, 0.3], [0.4, 0.6]) ([0.2, 0.3], [0.4, 0.6]) ([0.6, 0.7], [0.2, 0.3]) ([0.5, 0.7], [0.1, 0.2])
𝑎
3

([0.8, 0.9], [0.0, 0.1]) ([0.3, 0.4], [0.4, 0.5]) ([0.1, 0.3], [0.3, 0.5]) ([0.2, 0.4], [0.4, 0.5])
𝑎
4

([0.3, 0.8], [0.1, 0.2]) ([0.1, 0.2], [0.4, 0.6]) ([0.2, 0.3], [0.4, 0.5]) ([0.3, 0.4], [0.4, 0.6])
𝑎
5

([0.7, 0.8], [0.0, 0.2]) ([0.3, 0.8], [0.0, 0.1]) ([0.4, 0.7], [0.2, 0.3]) ([0.6, 0.8], [0.1, 0.2])

Table 6: The similarity degree results.

𝑊𝑆
𝑘
(𝑎
1
, 𝑎
∗
) 𝑊𝑆

𝑘
(𝑎
2
, 𝑎
∗
) 𝑊𝑆

𝑘
(𝑎
3
, 𝑎
∗
) 𝑊𝑆

𝑘
(𝑎
4
, 𝑎
∗
) 𝑊𝑆

𝑘
(𝑎
5
, 𝑎
∗
)

𝑘 = 1 0.5448 0.6449 0.416 0.5844 0.5202
𝑘 = 2 0.5459 0.5416 0.5129 0.5752 0.4679
𝑘 = 3 0.4413 0.377 0.5217 0.4211 0.6779

In the same way, we can also get the result based on the
ideal point measure:

𝑎
+
= {([1, 1] , [0, 0] , [0, 0]) , ([1, 1] , [0, 0] , [0, 0]) ,

([1, 1] , [0, 0] , [0, 0]) , ([1, 1] , [0, 0] , [0, 0])} ,

𝑎
−
= {([0, 0] , [1, 1] , [0, 0]) , ([0, 0] , [1, 1] , [0, 0]) ,

([0, 0] , [1, 1] , [0, 0]) , ([0, 0] , [1, 1] , [0, 0])} .

(74)

Table 7 describes the results of the ideal point method. We
can get the same ranking order and the same best alternative
from the two methods. We can conclude that the ideal point
method and our similarity measure method have the same
effect used to solve the multicriteria group decision making
problem. The difference is that the method proposed in [35]
uses the distance measure and closeness coefficient measure
while our method takes advantage of the similarity measure.

5. Conclusion

In this paper, we have presented a new similarity measure for
interval-valued intuitionistic fuzzy sets with considering the

Table 7: The results of ideal point method.

𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5

𝑑 (𝑟
𝑖
, 𝑎
−
) 0.7435 0.824 0.705 0.7865 0.7545

𝑑 (𝑟
𝑖
, 𝑎
+
) 0.528 0.4805 0.597 0.4875 0.4905

𝑐 (𝑎
1
) 0.585 0.632 0.541 0.617 0.606

hesitancy degree and using the entropy measure of IVIFSs.
In fact, the entropy measure has been used in constructing
the similarity measure, such as Wei et al. [24]. However,
these similarity measures including many other definition
methods [16–18, 33] may make mistakes, especially when the
differences of membership and nonmembership between the
candidate fuzzy sets and the target one are close and the
difference of hesitancy degree among the candidate fuzzy
sets is large. In order to make up for the flaws, we take the
influence of the hesitancy degree into account and give a
new method to construct the similarity measure by entropy
measure, by which the proposed measure is demonstrated to
yield a similarity measure. Then, the efficiency of proposed
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similarity measure is demonstrated by the comparative anal-
ysis with the other existing similarity measures. Finally, we
also apply the new similarity measure to expert system to
solve the pattern recognition problem and the multicriteria
group decision making problem in which we compare our
method with the ideal point method [35]. Several examples
are given to illustrate the practicality and effectiveness of
the applications. Besides, the similarity measure between
interval-valued intuitionistic fuzzy sets can be applied to
many different fields.
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