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Attitude stability analysis and robust control algorithms for spacecrafts orbiting irregular asteroids are investigated in the presence
of model uncertainties and external disturbances. Rigid spacecraft nonlinear attitude models are considered and detailed attitude
stability analysis of spacecraft subjected to the gravity gradient torque in an irregular central gravity field is included in retrograde
orbits and direct orbits using linearized system model. The robust adaptive backstepping sliding mode control laws are designed
to make the attitude of the spacecrafts stabilized and responded accurately to the expectation in the presence of disturbances and
parametric uncertainties. Numerical simulations are included to illustrate the spacecraft performance obtained using the proposed
control laws.

1. Introduction

SMALL bodies including mainly asteroids and comets are
studied by scientists because of the insight they can give into
the history of the solar system. NASAmissions are as follows:
Galileo to Jupiter via asteroids Gaspra and Ida in 1989, Near
Earth Asteroid Rendezvous (NEAR) Shoemaker to asteroid
433 Eros in 1996 [1, 2], and NASA Flyby Mission Deep Space
1 to asteroid Braille in 1998, Genesis—NASA Discovery Solar
Wind Sample Return Mission in 2001. Hayabusa (Muses-C)
is the Japan Aerospace Exploration Agency Sample Return
Mission to Asteroid 25143 Itokawa [3, 4], and Rosetta is the
ESA Comet Mission, flew by asteroids Steins and Lutetia [5].

While there is an increasing interest in such missions, the
necessity and importance of orbital and attitude dynamics
analyses of the small solar systembodies as the critical success
factors of those missions are rising as well. The oblateness
torque effects can be ignored for studying the attitudemotion
of spacecrafts around planetary bodies, while asteroids and
comets usually have irregular shapes which lead to the
complicated orbital and attitude dynamics in comparison
with approximately spherical bodies such as the Earth. An
asteroid’s irregular shape, mass distribution, and the state of

its rotation (rapid or slow) have significant effects on the
evolution of spacecraft orbit and attitude motion. Scheeres
and his coworkers havemade a large number of contributions
to the study of orbital motion about asteroids [6–9]. These
effects especially may deteriorate the attitude performance
significantly, which lead to unstable attitude motion and
thereby failure of the space mission. Wang and Xu find that
the attitude stability domain is modified significantly due to
the significantly nonspherical shape and rapid rotation of the
asteroid, and attitude stability subjected to the disturbance of
the gravity gradient torque is generalized to a rigid spacecraft
on a stationary orbit around an asteroid [10, 11]. In order to
solve this problem, it is important to understand the attitude
motion of spacecrafts orbiting asteroids by deriving the stabil-
ity conditions and thereupon develop effective control laws to
neutralize the effects of asteroid shape andmass distributions.
Riverin and Misra have proposed the attitude motion of the
spacecraft depending heavily on the shape of the asteroid
and the rotational state [12]. Then Misra and Panchenko
have found the radius for which resonant pitch oscillations,
considering the general three-dimensional attitudemotion in
2006 [13]. Riverin and Misra have examined the spacecraft
pitch motion assuming the spacecraft is in an equatorial orbit
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Figure 1: Coordinate Frames.

but spacecraft attitude control algorithms have not been per-
fectly investigated. Kumar and Shah have set up the general
formulation of the spacecraft equations ofmotion in an equa-
torial eccentric orbit using Lagrangian method and made
some analysis about the stability. Then the control laws for
three-axis attitude control of spacecrafts have been developed
and a closed-form solution of the system has been derived in
[14]. Mahmut et al. have designed Lyapunov-based nonlinear
feedback laws to control the rotational and translational
motion of the spacecraft for an asteroid orbiting spacecraft
in [15]. However, in the above articles about orbiting attitude
motion, external perturbations acting on the spacecraft are
not taken into account and the control laws are not robust.

Backstepping is a systematic and recursive design meth-
odology for nonlinear feedback control. The idea is to select
recursively some appropriate functions of state variables as
pseudocontrol inputs for lower dimension subsystems of the
overall system. Each backstepping stage results in a new pseu-
docontrol design, expressed in terms of the pseudocontrol
designs from preceding design stages. When the procedure
terminates, a feedback design for the true control input is the
result which achieves the original design objective by virtue
of a final Lyapunov function, which is formed by summing
up the Lyapunov functions associated with each individual
design stage. Sliding mode control is a nonlinear robust
control and applicable to solve the tracking of nonlinear
system [16, 17].The adaptive algorithm is adopted to estimate
the external disturbances and uncertain parameters due to
the highly complex environment in real time [18]. Moreover,
owing to the robust control performance of adaptive back-
stepping control and sliding-mode control, many combined
adaptive backstepping and sliding mode control schemes
have appeared. Although good robust control strategies for
uncertain nonlinear system and tracking problems have been

proposed in [19, 20], adaptive backstepping sliding mode
control is also effective and easier for implementation in real
time. In this paper, the performance of spacecrafts orbiting
irregular asteroids with perturbations is overall analysed,
and attitude motion is influenced seriously. Moreover, the
robust adaptive backstepping sliding mode control laws are
proposed to compensate the uncertainties and perturbations
and make the attitude angles decay and reach the null state,
which ensure orbiting motion and space mission.

This paper is organized as follows. In Section 2, gravity
gradient torque of spacecraft orbiting irregular asteroids is
derived and three-dimensional attitude motion equations
of the rigid spacecraft are first examined considering the
perturbations, which is followed by deriving the linearized
system model. In Section 3, the stability analysis about the
spacecraft is presented in retrograde orbits and direct orbits
with the orbital radius. Then in Section 4, effective adaptive
backstepping sliding mode control schemes for a spacecraft
orbiting the asteroid Eros 433 are developed to stabilize the
system. Computer simulations are carried out to illustrate the
effectiveness of the control laws. Conclusions are presented in
Section 5.

2. System Equations of Motion

2.1. Coordinate Frames. At first, the following Coordinate
Frames are set up tomake the problem clear, which are shown
in Figure 1.

(1) Asteroid centered inertial frame ( ⃗𝐼, ⃗𝐽, �⃗�): the origin of
this frame is at the center of mass of the asteroid.

(2) Asteroid-fixed frame ( ⃗𝑖, ⃗𝑗, �⃗�): the origin of this frame
is at the center of mass of the asteroid, the vectors are
aligned along the three centroidal principal axis of the
smallest, the intermediate, and the largest moment
of inertia, respectively. The asteroid rotational state
relates the two frames, the unit vector �⃗� points in
the same direction as �⃗�. Asteroid-fixed frame ( ⃗𝑖, ⃗𝑗, �⃗�)
is assumed to rotate with constant angular velocity
Ω⃗ = Ω ⋅ �⃗�.

(3) The spacecraft orbital frame ( ⃗𝑜
1
, ⃗𝑜
2
, ⃗𝑜
3
): the origin of

this frame is at the center of mass of the spacecraft,
⃗𝑜
3
points towards the center of mass of the asteroid,
⃗𝑜
1
points towards the transverse direction in the

orbital plane, and ⃗𝑜
2
satisfied the right hand rule. For

equatorial orbits, the orbital frame is obtained from
the inertial frame ( ⃗𝐼, ⃗𝐽, �⃗�) by a single rotation through
an angle equal to the true anomaly 𝜂.

(4) The spacecraft-fixed frame (�⃗�
1
, �⃗�
2
, �⃗�
3
): alignedwith the

principal axes of the spacecraft, their orientation with
respect to the orbital frame can be defined in terms of
the attitude angles (roll, pitch, and yaw).

The sequence of rotations used here is yaw (𝜆) around �⃗�
1

axis, followed by pitch (𝜃) around �⃗�
2
axis, and then followed

by roll (𝛾) around �⃗�
3
axis.
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2.2. Attitude Kinematics Model. The following assumptions
are made in deriving the equations of motion firstly.

(1) The spacecraft is rigid.
(2) The gravitational attraction of the asteroid is themain

disturbance force acting on the spacecraft, and the
solar radiation and solar gravitation are considered
perturbation force.

(3) The rotation rate of the asteroid is constant.
(4) The orbital motion of the spacecraft is not affected by

attitude dynamics.
(5) Moment of inertias is affected by the irregular gravi-

tational force of small bodies.
(6) Orbital motion of the spacecraft is fully described as

a closed, planar, and periodic orbit.
(7) The asteroid is assumed to be a rotating triaxial

ellipsoid.

In view of the first assumption, the attitudemotion can be
described by Euler’s equations of motion for a rigid body:

𝐼
1
�̇�
1
− (𝐼
2
− 𝐼
3
) 𝜔
2
𝜔
3
= 𝑀
𝑦
+𝑀
1
+𝑀
Δ1
,

𝐼
2
�̇�
2
− (𝐼
3
− 𝐼
1
) 𝜔
3
𝜔
1
= 𝑀
𝑝
+𝑀
2
+𝑀
Δ2
,

𝐼
3
�̇�
3
− (𝐼
1
− 𝐼
2
) 𝜔
1
𝜔
2
= 𝑀
𝑟
+𝑀
3
+𝑀
Δ3
,

(1a)

�̇� = 𝜔
𝑏1
+ tan 𝜃 (𝜔

𝑏2
sin 𝜆 + 𝜔

𝑏3
cos 𝜆) ,

̇𝜃 = 𝜔
𝑏2
cos 𝜆 − 𝜔

𝑏3
sin 𝜆,

̇𝛾 =
1

cos 𝜃
(𝜔
𝑏2
sin 𝜆 + 𝜔

𝑏3
cos 𝜆) ,

(1b)

where 𝐼
1
, 𝐼
2
, 𝐼
3
are the principal moments of inertia of the

spacecraft, 𝜔
1
, 𝜔
2
, 𝜔
3
are the components of the angular

velocity along the principal axes in the spacecraft-fixed frame,
𝜔
𝑏1
, 𝜔
𝑏2
, 𝜔
𝑏3
are the relative angular velocity of the spacecraft

with respect to the orbital frame ( ⃗𝑜
1
, ⃗𝑜
2
, ⃗𝑜
3
) expressed in the

spacecraft-fixed frame, and 𝜔
𝑏1
, 𝜔
𝑏2
, 𝜔
𝑏3
can be calculated by

the coordinate transformation matrix𝑀
𝐵𝑂

from the orbital
frame to the spacecraft-fixed frame:

[𝜔𝑏1 𝜔𝑏2 𝜔𝑏3]
𝑇

= [𝜔1 𝜔2 𝜔3]
𝑇

−𝑀
𝐵𝑂
[0 ̇𝜂 0]

𝑇

. (2a)

𝑀
𝐵𝑂
= [

[

1 0 0

0 cos 𝜆 sin 𝜆
0 − sin 𝜆 cos 𝜆

]

]

[

[

cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃
]

]

× [

[

cos 𝛾 sin 𝛾 0
− sin 𝛾 cos 𝛾 0
0 0 1

]

]

.

(2b)

And𝑀
𝑦
,𝑀
𝑝
, and𝑀

𝑟
are the components of the external

control moment, 𝑀
1
,𝑀
2
,𝑀
3
are the components of the

gravitational field of the asteroid, 𝑀
Δ1
,𝑀
Δ2
,𝑀
Δ3

are the
components of the perturbation force, and ̇𝜂 is the instanta-
neous orbital rate. Therefore, the full nonlinear equations of
the attitudemotion have been obtained by (1a), (1b), (2a), and
(2b).

In view of the fifth assumption, the gravitational field of
the asteroid is the primary and complex effect term which
needs to be discussed in detail.

2.3. Gravity Gradient Torque. The gravitational potential of
any arbitrary primary can be written in spherical harmonic
series [21, 22]:

𝑈 =
𝐺𝑀

𝑅
{1 +

∞

∑
𝑙=2

[𝐶
𝑛0
(
𝑅
𝑒

𝑅
)
𝑙

𝑃
𝑙
(sin𝜑)

+

𝑙

∑
𝑚=1

((
𝑅
𝑒

𝑅
)
𝑙

𝑃
𝑙𝑚
(sin𝜑)

× (𝐶
𝑙𝑚
cos𝑚𝛿

+𝑆
𝑙𝑚
sin𝑚𝛿))]} ,

(3)

where 𝑅 is the distance of an orbiting particle from the center
of mass of the primary and 𝑅

𝑒
is the characteristic length of

the primary, while 𝜑 and 𝛿 are, respectively, the latitude and
longitude of the orbiting particle measured in an asteroid-
fixed frame. The terms 𝑃

𝑙
(sin𝜑) are Legendre polynomials

of degree 𝑙 and order 0, and terms 𝑃
𝑙𝑚
(sin𝜑) are associated

Legendre polynomials of degree 𝑙 and order𝑚.The two kinds
of terms are given as

𝑃
𝑙
(sin𝜑) = 1

2𝑙𝑙

𝑑
𝑙

𝑑(sin𝜑)𝑙
{[(sin𝜑)2 − 1]

𝑙

}

𝑃
𝑙𝑚
(sin𝜑) = [(sin𝜑)2 − 1]

𝑚/2 𝑑𝑚𝑃
𝑙
(sin𝜑)

𝑑(sin𝜑)𝑚
.

(4)

The corresponding 𝐶
𝑙𝑚

and 𝑆
𝑙𝑚

are known as harmonic
coefficients. When 𝑚 = 𝑙 ̸= 0, they are called sectorial
harmonic coefficients, and 𝑃

𝑙𝑚
(sin𝜑) = 𝑃

𝑙
(sin𝜑); the cor-

responding 𝐶
𝑙0
are known as zonal harmonic coefficients of

order 0.The coefficients𝐶
𝑙0
specify the oblateness of the aster-

oidwhile𝐶
𝑙𝑚
characterize the ellipticity of the asteroid’s equa-

tor. For the Earth, 𝐶
20

is 𝑂(10−3) and the other coefficients
are𝑂(10−6). However, for some familiar asteroids these coef-
ficients can be as high as 𝑂(10−2). Thus, the irregular shape
of an asteroid can have a much stronger effect on attitude
dynamics. We approximate the small body is a homogeneous
triaxial ellipsoid with axes 𝑎, 𝑏, and 𝑐 in order to simplify the
problem. We can calculate the coefficients as follows.
𝑆
𝑙𝑚
= 0 for all 𝑙 or𝑚,𝐶

𝑙𝑚
= 0 for 𝑙 or𝑚 are odd and while

other conditions

𝐶
𝑙𝑚
=
3

𝑅
𝑒

𝑙

(𝑙/2)! (𝑙 − 𝑚)!

2𝑚 (𝑙 + 3) (𝑙 + 1)!
(2 − 𝛿

0𝑚
)

×

int((𝑙−𝑚)/4)
∑
𝑖=0

((𝑎
2
− 𝑏
2
)
((𝑚+4𝑖)/2)
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× [𝑐
2
− (
1

2
) (𝑎
2
+ 𝑏
2
)]
((𝑙−𝑚−4𝑖)/2)

)

× (16
𝑖
(
𝑙 − 𝑚 − 4𝑖

2
)! (
𝑚 + 2𝑖

2
)!𝑖!)

−1

(5)

𝛿
0𝑚

is Kronecker symbol, and the value is

𝛿
0𝑚
= {
0, 𝑚 = 0

1, 𝑚 = 1.
(6)

For our purposes we have stopped the expansion of (3) to the
second order, so we get the following coefficient:

𝐶
20
=
2𝑐2 − (𝑎2 − 𝑏2)

10𝑅2
0

, 𝐶
22
=
𝑎2 − 𝑏2

20𝑅2
0

. (7)

The gravitational force acting on a particle of mass 𝑑𝑚 at
a distance 𝑅 from the asteroid center of mass, having latitude
𝜑 and longitude 𝛿, is given by

𝑑
⇀
𝐹 = [

𝜕𝑈

𝜕𝑅

⇀
𝑒
𝑅
+

1

𝑅 cos𝜑
𝜕𝑈

𝜕𝛿

⇀
𝑒
𝛿
+
1

2

𝜕𝑈

𝜕𝜑

⇀
𝑒
𝜑
] 𝑑𝑚, (8)

where 𝑈 is given in (3), while ⇀𝑒
𝑅
,
⇀
𝑒
𝜑
,
⇀
𝑒
𝛿
are unit vectors

associated with the spherical coordinate system 𝑅, 𝜑, 𝛿 as
shown in Figure 1. The position vector 𝑅 of the element can
be expressed as

⇀
𝑅 =
⇀
𝑅
𝑐
+
⇀
𝑟 , (9)

where ⇀𝑅
𝑐
is the position vector of the center of mass of the

spacecraft relative to the asteroid center of mass, while⇀𝑟 is
the position vector of the element in the spacecraft frame.We
assume that 𝑅 and 𝑅

𝑐
are much greater than 𝑟. Clearly

𝑅 =


⇀
𝑅
𝑐
+
⇀
𝑟

,

⇀
𝑒
𝑅
=

⇀
𝑅
𝑐
+
⇀
𝑟



⇀
𝑅
𝑐
+
⇀
𝑟


,
⇀
𝑒
𝛿
=
⇀
𝑒
𝑅
×
⇀
𝑒
𝜑
.

(10)

In conclusion, the gravity gradient torque on the space-
craft can then be determined from

𝑑
⇀
𝐹 = 𝑑

⇀
𝐹
𝑅
+ 𝑑
⇀
𝐹
𝛿
+ 𝑑
⇀
𝐹
𝜑
, (11)

𝑀
𝑔
= ∫ 𝑟 × 𝑑𝑓. (12)

Evaluation of this torque involves expansion of the
various powers of |⇀𝑅

𝑐
+
⇀
𝑟 | using the binomial theorem

and neglecting terms involving third and higher powers of
|𝑟|/|𝑅

𝑐
|.

Let 𝑀
𝑔
= [𝑀1 𝑀2 𝑀3] denote the gravity gradient

torque in the spacecraft-fixed frame (�⃗�
1
, �⃗�
2
, �⃗�
3
) and let 𝐼

denote the inertia matrix for the spacecraft, which is given
as

𝐼 = [

[

𝐼
1

𝐼
2

𝐼
3

]

]

. (13)

The unit vectors ⇀𝑒
𝑅
,
⇀
𝑒
𝜑
,
⇀
𝑒
𝛿
appearing in (8), (10), and

(11) can now be expressed in terms of the yaw, pitch, and roll.
The gravity-gradient torque components 𝑀

𝑖
(𝑖 = 1, 2, 3) in

the spacecraft-fixed frame (�⃗�
1
, �⃗�
2
, �⃗�
3
) can be written as follows

after some algebra:

𝑀
1
=
𝐺𝑀

𝑅3
𝑐

[ (3 + 5𝛼) (𝐼
3
− 𝐼
2
) cos 𝜆cos2𝜃 sin 𝜆

+ 5𝛽 (−
2

5
𝐼
1
cos 𝜆 sin 𝛾

+ (𝐼
1
− 𝐼
2
+ 𝐼
3
) sin 𝜆cos2𝜃 cos 𝛾)] ,

(14)

𝑀
2
=
𝐺𝑀

𝑅3
𝑐

[ (3 + 5𝛼) (𝐼
3
− 𝐼
1
) cos 𝜆 cos 𝜃 sin 𝜃

+ 5𝛽 (−
2

5
𝐼
2
(sin 𝜆 sin 𝜃 sin 𝛾 − cos 𝜆 cos 𝛾)

+ (𝐼
2
− 𝐼
1
+ 𝐼
3
)

× (sin 𝜆 sin 𝜃 sin 𝛾

+sin2𝜃 cos 𝜆 cos 𝛾)

+ (𝐼
2
− 𝐼
3
+ 𝐼
1
) cos2𝜃 cos 𝜆 cos 𝛾)] ,

(15)

𝑀
3
=
𝐺𝑀

𝑅3
𝑐

[ (3 + 5𝛼) (𝐼
1
− 𝐼
2
) sin 𝜆 cos 𝜃 sin 𝜃

+ 5𝛽 (
2

5
𝐼
3
(sin 𝜆 cos 𝛾 − cos 𝜆 sin 𝜃 sin 𝛾)

+ (𝐼
2
− 𝐼
1
+ 𝐼
3
)

× (cos 𝜆 sin 𝜆 sin 𝛾

−sin2𝜃 sin 𝜆 cos 𝛾)

− (𝐼
1
− 𝐼
2
+ 𝐼
3
)

× cos2𝜃 sin 𝜆 cos 𝛾) ] ,
(16)

where 𝛼, 𝛽 are defined as follows, respectively:

𝛼 = [−
3

2
𝐶
20
+ 9𝐶
22
cos (2𝛿

𝑐
)] (
𝑅
𝑒

𝑅
𝑐

)

2

, (17)

𝛽 = [6𝐶
22
sin (2𝛿

𝑐
)] (
𝑅
𝑒

𝑅
𝑐

)

2

. (18)
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2.4. Three-Dimensional Motion for Equatorial Orbits. Three-
dimensional motion of a spacecraft in an equatorial orbit is
considered, and the attitude motion is small. It is assumed
that the asteroid is rotating with a constant angular velocity
Ω⋅
⇀
𝐾. Assuming the rotating orbit of the spacecraft is circular

orbits, ̇𝜂 = 𝑛, where 𝑛 is constant and stands for the orbital
angular velocity of the spacecraft. Therefore, the longitude of
the center of mass of the spacecraft is then given by

𝛿
𝑐
= (𝑛 ± Ω) 𝑡, (19)

where the plus and minus signs apply for retrograde and
direct orbits, respectively.

Furthermore, for small motion, the angular velocity
components given in (1a), (1b), (2a), and (2b) become

[

[

𝜔
1

𝜔
2

𝜔
3

]

]

= [

[

�̇� − ̇𝜂𝛾
̇𝜃 − ̇𝜂

̇𝛾 + ̇𝜂𝜆

]

]

. (20)

Therefore, a set of linearized equations for small motion
of spacecraft are obtained in (21)–(23) by introducing (14)–
(19) into (1a) and (1b):

�̈� + ̇𝜂 (𝑘
1
− 1) ̇𝛾 + [

𝐺𝑀

𝑅3
𝑐

(3 + 5𝛼) + ̇𝜂
2
] 𝑘
1
𝜆

− [
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 + 5𝑘
1
) + ̈𝜂
2
] 𝛾 = 𝑢

𝜆
+ Δ
𝜆

(21)

̈𝜃 − ̈𝜂 +
𝐺𝑀

𝑅3
𝑐

(3 + 5𝛼) 𝑘
2
𝜃 −
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 + 5𝑘
2
) = 𝑢
𝜃
+ Δ
𝜃

(22)

̈𝛾 + ̇𝜂 (1 − 𝑘
3
) �̇� + 𝑘

3
̇𝜂
2
𝛾

− [ ̈𝜂 +
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 − 5𝑘
3
)] 𝜆 = 𝑢

𝛾
+ Δ
𝛾
,

(23)

where 𝑘
1
= (𝐼
2
− 𝐼
3
)/𝐼
1
, 𝑘
2
= (𝐼
1
− 𝐼
3
)/𝐼
2
, 𝑘
3
= (𝐼
2
− 𝐼
1
)/𝐼
3
,

𝑢
𝜆
, 𝑢
𝜃
, 𝑢
𝛾
are control accelerations in three directions, and

Δ
𝜆
, Δ
𝜃
, Δ
𝛾
are perturbation force accelerations consisting of

gravitation higher order terms and solar radiation pressure,
and so forth.Note that the pitchmotion is decoupled from the
roll and yaw motions, and this fact is similar to the case of a
spacecraft orbiting symmetrically mass distributed planetary
bodies.

3. Analysis of Motion for
Orbiting Circular Orbits

3.1. Regular Resonance Analysis andNumerical Results of Pitch
Motion. For circular orbits, ̇𝜂 = 𝑛, ̈𝜂 = 0, 𝐺𝑀/𝑅3

𝑐
= 𝑛2. For

the understanding of the pitch behavior, let us consider small
motion. Equation (22) then reduces to

̈𝜃 + 𝑛
2
(3 + 5𝛼) 𝑘

2
𝜃 −
1

2
𝑛
2
𝛽 (3 + 5𝑘

2
) = 0. (24)

One can cast (24)which represents a harmonically excited
system with periodic stiffness. If 𝑘

2
is negative, the pitch

Table 1: Simulation parameters.

Simulation parameters Simulation value
Characteristic length of the asteroid 𝑅

𝑒

(km) 9.933

Harmonic coefficients 𝐶
20

−0.0878
Harmonic coefficients 𝐶

22
0.0439

Spacecraft mass distribution
parameters 𝑘

1
, 𝑘
2
, 𝑘
3

1/3, 1/3, 1/3

Asteroid’s gravitational constant
parameter 𝜇 (km3/s2) 876171

Asteroid’s spin rate Ω (rad/s) (2 ∗ 3.14)/(5.27 ∗ 3600)

motion is normally unstable; hence, the case of positive is
considered in this paper.

Since 𝑘
2
< 1, |𝐶

20
| < 0.1, choosing the minus sign

in (19), parametric resonance occurs when the spacecraft is
in a retrograde orbit when the asteroid and orbital angular
velocities are related [14] approximately by

𝑅
𝑐
= (
𝐺𝑀

Ω2
)
1/3

[
𝑗 ∓ (3𝑘

2
)
1/2

𝑗
]

2/3

, 𝑗 = 1, 2, 3, . . . . (25)

Regular resonance takes place when 𝑗 = 2; that is,

𝑅
𝑐
= (
𝐺𝑀

Ω2
)
1/3

[1 ∓
√3𝑘
2

2
]

2/3

. (26)

3.2. Results for the Three-Dimensional Case. Equations (21)–
(23) are quite complex and must be solved numerically with
the initial conditions of roll, pitch, and yaw 𝜆(0) = 0.1 rad,
�̇�(0) = 0; 𝜃(0) = 0.1 rad, ̇𝜃(0) = 0; 𝛾(0) = 0.1 rad, ̇𝛾(0) = 0.

Table 1 gives simulation parameters for three-dimen-
sional motion about Eros 433. Figures 2, 3, 4, 5, 6, 7, 8, 9,
and 10 give the three-dimensional motions of a spacecraft
orbiting Eros in equatorial circular retrograde orbits at
𝑅
𝑐
= 48 km, 31 km, 15 km, respectively, without taking into

account perturbation torque.
The pitchmotion is quite regular with amplitude of 0.1 rad

at 𝑅
𝑐
= 48 km with the above initial conditions, and ampli-

tudes of the roll and yawmotions are all steady. When orbital
radius is decrease the three-dimensional motions especially
pitch are irregular, and the irregularity is becoming apparent
when the spacecraft is nearer to the asteroid. Similarly Figures
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, and 22 give the
three-dimensional motions of a spacecraft orbiting Eros in
equatorial circular direct orbits at 𝑅

𝑐
= 50 km, 35 km, 27 km,

26 km, respectively, without taking into account perturbation
torques. The three-dimensional motion has the same trend
with retrograde orbits when the orbital radius are decrease,
but the roll and raw motions become instable when 𝑅

𝑐
=

26 km.
It is observed that irregularities of attitude angles are

more obvious when the spacecraft is nearer to the small
body, which make the vibration amplitude and frequency
of the spacecrafts more strong. We can draw the conclusion
from the simulation results that the irregular gravity-gradient
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Figure 3: Pitch 𝑅
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= 48 km, 𝑘
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= 1/3.

torque of the asteroid has the primary and complex effect on
the spacecraft orbiting motion. The spacecraft may get out
of the orbit if external perturbations such as solar radiation
pressure are taken into account. So it is essential to design
the robust control algorithms to compensate the uncertainties
and perturbations and stabilize the attitude angles.

4. Controller Design

In this section, we present adaptive slidingmode control laws
based on backstepping which achieves three-axes stabilized
nadir-pointing attitude. In other words, the control objective
is to align the spacecraft-fixed axes with the orbital reference
axes. The desired attitude angles yaw (𝜆), pitch (𝜃), and roll
(𝛾) are zero.

4.1. Backstepping Control. The basic idea of backstepping
method is decomposition of a complicated nonlinear system,
then designing Lyapunov function and suppositional control
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for the decomposed system. The final control laws are
designed after backing to the overall system.

Regardless of perturbation, suppose (21), (22), and (23)
are

�̇�
1
= 𝑥
2
, �̇�

2
= 𝑓 (𝑥

1
, 𝑥
2
) + 𝑏𝑢

𝑥
1
= [𝜆, 𝜃, 𝛾] , 𝑥

2
= [�̇�, ̇𝜃, ̇𝛾]

𝑓 (𝑥
1
, 𝑥
2
)

= [ ̇𝜂 (𝑘
1
− 1) ̇𝛾 + [

𝐺𝑀

𝑅3
𝑐

(3 + 5𝛼) + ̇𝜂
2
] 𝑘
1
𝜆

− [
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 + 5𝑘
1
) + ̈𝜂
2
] 𝛾 − ̈𝜂 +

𝐺𝑀

𝑅3
𝑐

(3 + 5𝛼) 𝑘
2
𝜃

−
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 + 5𝑘
2
) ̇𝜂 (1 − 𝑘

3
) �̇� + 𝑘

3
̇𝜂
2
𝛾

−[ ̈𝜂 +
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 − 5𝑘
3
)] 𝜆] , 𝑏 = [

[

1

1

1

]

]

.

(27)

Define position error 𝑧
1
= 𝑥
1
− 𝑧
𝑑
; 𝑧
𝑑
is the expected

trajectory �̇�
1
= �̇�
1
− �̇�
𝑑
= 𝑥
2
− �̇�
𝑑
.

Assume the virtual control in

𝛼
1
= −𝑐
1
𝑧
1
+ �̇�
𝑑
(𝑐
1
> 0) . (28)

Define 𝑧
2
= 𝑥
2
− 𝛼
1
and Lyapunov function 𝑉

1
= (1/2)𝑧2

1
, so

(29) is obtained:

�̇�
1
= 𝑧
1
�̇�
1
= 𝑧
1
(𝑥
2
− �̇�
𝑑
) = 𝑧
1
(𝑧
2
+ 𝛼
1
− �̇�
𝑑
) . (29)

Introducing (28) into (29), �̇�
1
= −𝑐
1
𝑧2
1
+ 𝑧
1
𝑧
2
is obtained.

If 𝑧
2
= 0, then �̇�

1
≤ 0.
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Define Lyapunov function 𝑉
2
= 𝑉
1
+ (1/2)𝑧2

2
; then

�̇�
2
= �̇�
1
+ 𝑧
2
�̇�
2

= −𝑐
1
𝑧
2

1
+ 𝑧
1
𝑧
2
+ 𝑧
2
[𝑓 (𝑥
1
, 𝑥
2
) + 𝑏𝑢 + 𝑐

1
�̇�
1
− �̈�
𝑑
] .

(30)

The following control laws are obtained in

𝑢 =
1

𝑏
[−𝑓 (𝑥

1
, 𝑥
2
) − 𝑐
2
𝑧
2
− 𝑧
1
− 𝑐
1
�̇�
1
+ �̈�
𝑑
] (𝑐
2
> 0) . (31)

Thus, �̇�
2
= −𝑐
1
𝑧2
1
− 𝑐
2
𝑧2
2
≤ 0.

Spacecraft attitude angles pitch, roll, and yaw angles can
reach regular resonance based on control law (31) with the
initial conditions of roll, pitch, and yaw 𝜆(0) = 0.1 rad,
�̇�(0) = 0 rad; 𝜃(0) = 0.1 rad, ̇𝜃(0) = 0 rad; 𝛾(0) = 0.1 rad,
̇𝛾(0) = 0 rad. In the case of the simulation parameters

described as Table 1, the desired attitude motion of the
spacecraft can be specified by periodic functions with the
desired amplitudes. The corresponding attitude motions are
determined numerically in Figures 23, 24, and 25. Figures 26,
27, and 28 give the control accelerations of three-dimensional
motions. Backstepping control laws can make roll, pitch, and
yaw track the desired periodic trajectory without external
disturbances when the spacecraft in circular retrograde or
direct orbits. The desired attitude angles of spacecraft are
adopted periodic function as 𝑧𝑑1 = 0.1 ∗ cos(0.0002 ∗ 𝑡) in
the experiments.

From the experimental results in Figures 23, 24, and
25, backstepping control law (31) can guarantee the output
signals stable, tracking the desired attitude of spacecraft
globally and asymptotically without external perturbances.

4.2. Adaptive Backstepping SlidingMode Control. With exter-
nal disturbances and uncertain parameters, adaptive back-
stepping sliding mode control schemes are developed, which
have been applied in uncertain systems [23]. It introduces the
sliding mode control in backstepping design to modify the
last step of backstepping algorithm and simplify the design of
controller.
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Figure 24: Pitch response.

Without loss of generality, suppose (21), (22), and (23) are

�̇�
1
= 𝑥
2
, �̇�

2
= 𝑓 (𝑥

1
, 𝑥
2
) + 𝑏𝑢 + 𝐹,

𝑦 = 𝑥
1
,

𝑥
1
= [𝜆, 𝜃, 𝛾] , 𝑥

2
= [�̇�, ̇𝜃, ̇𝛾] ,

𝑓 (𝑥
1
, 𝑥
2
)

= [ ̇𝜂 (𝑘
1
− 1) ̇𝛾 + [

𝐺𝑀

𝑅3
𝑐

(3 + 5𝛼) + ̇𝜂
2
] 𝑘
1
𝜆

− [
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 + 5𝑘
1
) + ̈𝜂
2
] 𝛾 − ̈𝜂 +

𝐺𝑀

𝑅3
𝑐

(3 + 5𝛼) 𝑘
2
𝜃

−
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 + 5𝑘
2
) ̇𝜂 (1 − 𝑘

3
) �̇� + 𝑘

3
̇𝜂
2
𝛾

− [ ̈𝜂 +
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 − 5𝑘
3
)] 𝜆] , 𝑏 = [

[

1

1

1

]

]

.

(32)

|𝐹| ≤ 𝐹 is the whole external disturbances and uncertain
parameters, and we suppose it changes slowly; that is �̇� = 0.

To begin with, define the position error 𝑧
1
= 𝑦 − 𝑦

𝑑
; 𝑦
𝑑
is

the expected position:

�̇�
1
= ̇𝑦 − ̇𝑦

𝑑
= 𝑥
2
− ̇𝑦
𝑑
. (33)

The stability term is 𝛼
1
= 𝑐
1
𝑧
1
, and 𝑐

1
is positive constant.

Define Lyapunov function to be 𝑉
1
= (1/2)𝑧2

1
and 𝑧

2
=

�̇�
1
+ 𝛼
1
= 𝑥
2
− ̇𝑦
𝑑
+ 𝛼
1

�̇�
1
= 𝑧
1
�̇�
1
= 𝑧
1
(𝑥
2
− ̇𝑦
𝑑
) = 𝑧
1
(𝑧
2
− 𝛼
1
) = 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1
. (34)

Then, �̇�
2
= �̇�
2
− ̈𝑦
𝑑
+ �̇�
1
= 𝑓(𝑥

1
, 𝑥
2
) + 𝑏𝑢 + 𝐹 − ̈𝑦

𝑑
+ �̇�
1
.

Define Lyapunov function 𝑉
2
= 𝑉
1
+ (1/2)𝜎2; 𝜎 = 𝑘

1
𝑧
1
+

𝑧
2
(𝑘
1
> 0) is the switching function.
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Figure 25: Yaw response.
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Figure 26: Roll control input.
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Figure 27: Pitch control input.
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Figure 28: Yaw control input.

Taking the derivative of 𝑉
2
(35) is obtained:

�̇�
2
= �̇�
1
+ 𝜎�̇� = 𝑧

1
𝑧
2
− 𝑐
1
𝑧
2

1
+ 𝜎�̇�

= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1
+ 𝜎 (𝑘

1
�̇�
1
+ �̇�
2
)

= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1

+ 𝜎 [𝑘
1
(𝑧
2
− 𝑐
1
𝑧
1
) + 𝑓 (𝑥

1
, 𝑥
2
) + 𝑏𝑢 + 𝐹 − ̈𝑦

𝑑
+ �̇�
1
] .

(35)

The control laws are deduced as follows supposing 𝐹 is
known:

𝑢 = 𝑏
−1
[−𝑘
1
(𝑧
2
− 𝑐
1
𝑧
1
) − 𝑓 (𝑥

1
, 𝑥
2
) − 𝐹 sgn (𝜎)

+ ̈𝑦
𝑑
− �̇�
1
− ℎ (𝜎 + 𝛽 sgn (𝜎)) ] .

(36)

Here ℎ and 𝛽 are all positive constants.
It is not easy to obtain the boundary of external distur-

bances and uncertain parameters due to the highly complex
space environment. The adaptive algorithm is adopted to
estimate the external disturbances and uncertainties 𝐹 in
order to retain from the boundary.

Define Lyapunov function as𝑉
3
= 𝑉
2
+(1/2𝛾)𝐹2; the error

is 𝐹 = 𝐹∗ −𝐹, and 𝐹 is the estimated value of 𝐹; 𝛾 is a positive
constant. Substituting 𝑉

2
into Equation 𝑉

3
as

�̇�
3
= �̇�
2
−
1

𝛾
𝐹
̇̂
𝐹

= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1
+ 𝜎 [𝑘

1
(𝑧
2
− 𝑐
1
𝑧
1
) + 𝑓 (𝑥

1
, 𝑥
2
)

+𝑏𝑢 + 𝐹 − ̈𝑦
𝑑
+ �̇�
1
] −
1

𝛾
𝐹
̇̂
𝐹
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= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1
+ 𝜎 [𝑘

1
(𝑧
2
− 𝑐
1
𝑧
1
) + 𝑓 (𝑥

1
, 𝑥
2
)

+𝑏𝑢 + 𝐹 − ̈𝑦
𝑑
+ �̇�
1
] −
1

𝛾
𝐹 (
̇̂
𝐹 − 𝛾𝜎) .

(37)

The adaptive controller laws are obtained as

𝑢 = 𝑏
−1
[ − 𝑘
1
(𝑧
2
− 𝑐
1
𝑧
1
) − 𝑓 (𝑥

1
, 𝑥
2
)

−𝐹 + ̈𝑦
𝑑
− �̇�
1
− ℎ (𝜎 + 𝛽 sgn (𝜎))] ,

̇̂
𝐹 = 𝛾𝜎.

(38)

The stability of the controller is proved as follows.
Substituting (38) into (37),

�̇�
3
= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1
ℎ𝜎
2
− ℎ𝛽 |𝜎| . (39)

Take

𝑄 =
[
[

[

𝑐
1
+ ℎ𝑘2
1
ℎ𝑘
1
−
1

2

ℎ𝑘
1
−
1

2
ℎ

]
]

]

,

𝑧
𝑇
𝑄𝑧 = [𝑧1 𝑧2]

[
[

[

𝑐
1
+ ℎ𝑘2
1
ℎ𝑘
1
−
1

2

ℎ𝑘
1
−
1

2
ℎ

]
]

]

[𝑧1 𝑧2]
𝑇

= 𝑐
1
𝑧
1

2
+ ℎ𝑘
2

1
𝑧
2

1
+ 2ℎ𝑘

1
𝑧
1
𝑧
2
− 𝑧
1
𝑧
2
+ ℎ𝑧
2

2

= 𝑐
1
𝑧
2

1
− 𝑧
1
𝑧
2
+ ℎ𝜎
2
.

(40)

Rewriting (39) to

�̇�
3
= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1
− ℎ𝜎
2
− ℎ𝛽 |𝜎| = −𝑧

𝑇
𝑄𝑧 − ℎ𝛽 |𝜎| ≤ 0 (41)

𝑄 is ensured to be a positive definite matrix while ℎ, 𝑐
1
, 𝑘
1
are

appropriate values.
The desired attitude of spacecraft is adopted exponential

function as

𝑧𝑑1 = (0.1 + 0.15 ∗ 𝑛 ∗ 𝑡) ∗ exp (−1.5 ∗ 𝑛 ∗ 𝑡) . (42)

The higher order terms of gravitational potential are
regarded as uncertainties and solar radiation pressures are
regarded as disturbances which are assumed as the following
equation:

𝐹 (𝑡, 𝑥
1
, 𝑥
2
) = [

[

0.02 sin (𝜔𝑡) ⋅ 𝑉
𝑙𝑥

0.02 sin (𝜔𝑡) ⋅ 𝑉
𝑙𝑦

0.02 cos (𝜔𝑡) ⋅ 𝑉
𝑙𝑧

]

]

. (43)

To verify and visualize the efficacy of the developed
control scheme, numerical simulations under external distur-
bances and uncertainties are conducted using (21)-(23) and
control law (38). Parameters related to operating conditions
are also given about Eros 433 in Table 1.
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Figure 30: Pitch response.

Some experimental results are provided to demonstrate
the effectiveness of the proposed adaptive backstepping
sliding mode control laws. Figures 29, 30, and 31 give
the spacecraft pitch, roll, and yaw attitude angles response
motion around Eros 433. We also can obtain the pitch
controller response as Figure 32. Compared with the attitude
stability analysis in references [10–13], closed-loop controllers
are proposed to make the spacecraft attitude angles tracking
the desired attitude as (42) and reach the null state as time
increases. Moreover, from simulation results one can obtain
the control law neutralizing the effects of asteroid shape and
mass distributions and orbital eccentricity as well as external
disturbances and uncertainties described as (43). The robust
control performance of the proposed adaptive backstepping
sliding-mode control system is obvious than references [14,
15], which ensure stable orbiting motion and space mission.
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5. Conclusions

This paper has focused on the attitude dynamics and effect
control algorithms for spacecraft orbiting rotating asteroids.
Firstly, three-dimensional attitude motion of the spacecraft
is examined considering the perturbation force. Then sta-
bility analysis is presented in retrograde orbits and direct
orbits using linearized system model. It appears that the
nonspherical shape and the rotational state of asteroids can
have important effects on the attitude motion. The adaptive
backstepping slidingmode control laws are designed tomake
the attitude angles decay and reach the null state. Computer
simulations are carried out for the asteroid Eros 433 to
illustrate the effectiveness of the control laws.

Nomenclature

𝑎, 𝑏, 𝑐: Major semiaxes of the asteroid
considered as triaxial ellipsoid

( ⃗𝐼, ⃗𝐽, �⃗�): Asteroid centered inertial frame
( ⃗𝑖, ⃗𝑗, �⃗�): Asteroid-fixed frame
( ⃗𝑜
1
, ⃗𝑜
2
, ⃗𝑜
3
): Spacecraft orbital frame

(�⃗�
1
, �⃗�
2
, �⃗�
3
): Spacecraft-fixed frame

𝐼
1
, 𝐼
2
, 𝐼
3
: Principal moments of inertia of the

spacecraft
𝜔
1
, 𝜔
2
, 𝜔
3
: Components of the angular velocity

along the principal axes in the
spacecraft-fixed frame

𝜔
𝑏1
, 𝜔
𝑏2
, 𝜔
𝑏3
: Relative angular velocity of the

spacecraft with respect to the orbital
frame

𝑀
𝐵𝑂
: Coordinate transformation matrix

from the orbital frame to the
spacecraft-fixed frame

𝑀
𝑦
,𝑀
𝑝
,𝑀
𝑟
: Components of the external control

moment
𝑀
1
,𝑀
2
,𝑀
3
: Components of the gravitational field

of the asteroid
𝑀
Δ1
,𝑀
Δ2
,𝑀
Δ3
: Components of the perturbation
force

̇𝜂: Instantaneous orbital rate
𝑅
𝑒
: Characteristic length of the primary
𝜑, 𝛿: Latitude and longitude of the orbiting

particle measured in an
asteroid-fixed frame

𝑃
𝑙𝑚
(sin𝜑): Legendre polynomials of degree 𝑙 and

order𝑚
𝐶
𝑙𝑚
, 𝑆
𝑙𝑚
: Harmonic coefficients

𝑚: Spacecraft mass
𝑀: Asteroid mass
𝑅
𝑐
: Orbital radius
𝑅: The distance of an orbiting particle

from the center of mass of the
primary

𝜆, 𝜃, 𝛾: Spacecraft yaw, pitch, and roll angles
Ω: Asteroid’s spin rate
𝜌: Density of the asteroid
𝑧𝑑1: Desired attitude angle of spacecraft

𝜇: Asteroid’s gravitational constant
parameter.
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