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Internet worms exploiting zero-day vulnerabilities have drawn significant attention owing to their enormous threats to Internet
in the real world. To begin with, a worm propagation model with time delay in vaccination is formulated. Through theoretical
analysis, it is proved that the worm propagation system is stable when the time delay is less than the threshold 7, and Hopf
bifurcation appears when time delay is equal to or greater than 7,. Then, a worm propagation model with constant quarantine
strategy is proposed. Through quantitative analysis, it is found that constant quarantine strategy has some inhibition effect but does
not eliminate bifurcation. Considering all the above, we put forward impulsive quarantine strategy to eliminate worms. Theoretical
results imply that the novel proposed strategy can eliminate bifurcation and control the stability of worm propagation. Finally,

simulation results match numerical experiments well, which fully supports our analysis.

1. Introduction

With the rapid growth of information technologies and net-
work applications, severe challenges, in form of requirement
of a suitable defense system, have been posed to make
sure of the safety of the valuable information stored on
system and in transit. For example, worms that exploit zero-
day vulnerabilities have brought severe threats to Internet
security in the real world. To date, none of the patches
could effectively and reliably immunize the hosts thoroughly
against being attacked by those worms. It may take a period
of time for users to immunize their computers if they are in
infected state. In addition, the failure of some vaccination
measures or worm-variants may also lead to high risks
that the hosts being immunized would be infected again.
On the other hand, the propagation of worms in a system
of interacting computers could be compared to contagious
diseases in human population. In computer science field,
computers are like individuals in an ecological system and
thus the same mechanism of birth and death should be
considered. Being infected by network worms or quarantined
by IDS (intrusion detection systems), hosts will become

dangerous and their owners will have to reinstall the system.
Another factor to consider is that when new computers are
brought, most of them have preinstalled operating systems
but without newest safety patches while old computers are
discarded and recycled. Consequently, in order to imitate the
real world, birth and death rates should be introduced to
worm propagations model.

Considering all the above, we firstly construct a worm
propagation model with time delay in vaccination based on
the classical epidemic Kermack-Mckendrick model [1] to
describe the current situation. Through theoretical analysis,
it is proved that Hopf bifurcation appears when time delay
is equal to or greater than the threshold 7,, which leads
the number of infected hosts to be unpredictable and the
propagation of worms to be out of control. In order to
make up the deficiency of vaccination strategy and eliminate
the negative impact of time delay, quarantine strategies are
proposed to improve vaccination effect and eliminate bifur-
cation. The current quarantine strategy generally depends
on the intrusion detection system, which can be classified
into two categories: misuse and anomaly intrusion detection.
Misuse intrusion detection system can accurately detect
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FIGURE 1: State transition diagram of delayed model.

known worms. Based on misuse intrusion detection system,
we propose constant quarantine strategy. Although it does
improve vaccination effect, the system is still out of control
and Hopf bifurcation is not eliminated either. Furthermore,
the system fails to detect unknown worms and worm-
variants. Anomaly intrusion detection system is of help
in detecting these kinds of worm. However, it is always
accompanied by high false-positive rate.

Consequently, this paper proposes a worm propagation
model with impulsive quarantine strategy based on a hybrid
intrusion detection system that combines both misuse and
anomaly intrusion detection to make up for the gaps existing
in the two systems. After adoption impulsive quarantine
strategy, it is clearly proved that Hopf bifurcation is elimi-
nated thoroughly so that the system is stable.

The rest of the paper is organized as follows. In the next
section, related work on time delay and quarantine strategy
is introduced. Section 3 provides a worm propagation model
with time delay in vaccination. In Section 4, we construct a
delayed worm propagation model with constant quarantine
and analyze it in detail. Then, in Section 5, a delayed worm
propagation model using impulsive quarantine strategy is
proposed, and its analysis is performed. Section 6 presents
numerical analyses and simulation experiments based on
Slammer worm. Simulation results match well with numer-
ical ones. Finally, Section 7 gives the conclusions.

2. Related Work

With the similarity between Internet worms and biological
diseases, epidemiological models have been widely used in
modeling the propagation of worms [2-6]. To make the
worm transmission in computer network work as in the real
word, the research within the data-driven framework has
been done [7-9]. Although some human factors are included,
these models cannot restrain worms effectively. Thus, a
variety of containment strategies have been applied to worm
propagation models. As far as we know, the use of quarantine
strategies has produced a great effect on controlling disease.
People use quarantine strategies widely in worm containment
enlightened by this [10-16]. In addition, some scholars have
done research on time delay [17-19].

However, previous studies have failed to consider the
appropriate quarantine strategy to eliminate the negative
effect of time delay. For instance, the pulse quarantine
strategy that Yao has proposed [12] does lead to worm
elimination with a relatively low value, but time delay is
not considered, which leads to Hopf bifurcation so that the
worm propagation system will be unstable and out of control.
In this paper, constant quarantine and impulsive quarantine

strategies are proposed to constrain the worms spreading and
even eliminate Hopf bifurcation.

3. Worm Propagation Model with
Time Delay in Vaccination

With regard to worms exploiting zero-day vulnerabilities,
none of the patches could effectively and reliably immunize
the hosts. After the hosts are being infected, some measures,
such as cutting off the network connection, running manual
antivirus, or setting firewall, are taken to remove the worms.
With these measures being carried out, the hosts cannot
further infect other susceptible hosts, but they are in fact
not vaccinated completely. Namely, detecting and cleaning
worms take a period of time. Therefore, time delay should
be considered in actual conditions. Since time delay exists,
infected hosts go through a temporary state (delayed) after
vaccination. Consequently, on the basis of KM model, we give
a worm propagation model with time delay in vaccination.
We assume all hosts are in one of four states: susceptible state
(S), infected state (I), delayed state (D), and vaccinated state
(V). The state transition diagram of the delayed model is
given in Figure 1.

Let S(t) denote the number of susceptible hosts at time ¢,
I(t) denote the number of infected hosts at time ¢, D(t) denote
the number of delayed hosts at time ¢, and V(¢) denote the
number of vaccinated hosts at time ¢. 3 is the infection rate at
which susceptible hosts are infected by infected hosts and y
is the rate of removal of infected from circulation. As worms
and worm-variants exist, ¢ is the rate that vaccinated hosts
back to susceptible hosts. The newborn hosts enter the system
with the same rate v, of which a portion 1 — p is recovered by
installing patches at birth. Time delay is denoted by 7.

In order to show it clearly, we list in Notations section
some frequently used notations in this paper.

3.1 Description of Delayed Model. From the above definitions
in the paper, we write down the complete differential equa-
tions of the delayed model:

das(t)
dr
i)
dt
dD(t)_ B o
T—Vl(t) yI(t—1)—vD(t),

dth(f) = (1= p)WIN+yL(t—7) 4V (1) =WV ().

PIN = BS(H) T (£) = vS () + uV (1),

BSI(t) = yI(t) = VI (1),
@




Mathematical Problems in Engineering

As mentioned above, the population size is set N, which is set
to unity:

S +I()+D(t)+V(t)=N. (2)

3.2. Stability of the Positive Equilibrium and
Bifurcation Analysis

Theorem 1. The system has a unique positive equilibrium
E*(S*,I", D", V™) when it satisfies the following condition:

(H) (BN =y =»)(u +v)/BQA = p)yN > 1, where S* =
(y+2)/B, D" =0, V" =@I"+ (1 - p)yN)/(p + ).

Proof. For system (1), if all the derivatives on the left of equal
sign of the system are set to 0, which implies that the system
becomes stable, we can derive

y+v
3 ,
D=0, (3)

S =

" +(1-
v r(-p)N
u+v

Substituting the value of each variable in (3) for each of (2),
then we can derive

I* +(1-p)WN
oY +(1-p)v

S+ = N. (4)
p+v

Obviously, if (H,) is satisfied, (4) has one unique pos-
itive root I* and there is one unique positive equilibrium
E*(S*,I",D*, V") of system (1). The proof is completed. [

Accordingto (2), V() = N-S(t)-1(t)-D(t); thus, system
(1) can be simplified to

% = pyN+u(N-S®t) - I1(t)- D (1))

~BSMOI(t) S (1),

©)
% =BSEI(E) -yl () -vI(t),

dD (1)
dt

=yI(t)-yI(t—-1)—-vD(t).
The Jacobi matrix of (5) about E*(S*, 1", D") is given by
) =PI =y —u=fpS —u
J(E¥) = BI BS —y—-v 0 |]. (6)
0 y—ye ™ —v
The characteristic equation of that matrix can be obtained by

PA)+QW) e =0. (7)

Let
po=u+ Pl +3v- S +y,
p=Bv—u+y)I" =S (u+2v)-281"S"
+y(2v+y)+v(3v2+2y),
po=PBI" (vy+v2+p¢y—w)—vﬁs* (p+v)
—20B°S* T + vy + 7 (u+y +),
4o = —BuyI’.
Then P(A) = A* + p,A* + pyA + pp, QA) = qp.

Theorem 2. The positive equilibrium E* is locally asymptoti-
cally stable without time delay, if the following holds:

(H,) pr >0, p1py — (Po + q0) > 0, py + o > 0.
Proof. If T = 0, (7) reduces to

A3+p2A2+p1A+(p0+q0) =0. 9)

According to Routh-Hurwitz criterion, all the roots of (9)
have negative real parts. Therefore, it can be deduced that
the positive equilibrium E* is locally asymptotically stable
without time delay. The proof is completed.

Obviously, A = iw (w > 0) is aroot of (7). After separating
the real and imaginary parts, it can be written as

—py” + Py + Gy cos (wT) = 0, (10)
—w + p1w — g sin (wt) = 0, (11)
which implies
@’ + Dyw* + Dyw” + D, =0, (12)
where
Dy = p; - 2py,
D, = py = 2p, pos (13)
D, = po — qp-

Let z = w?; (12) can be written as
h(z) = 2° + D32° + Doz + D,. (14)

A is defined as A = D3 — 3D,. Hence, we can get a solution
z* = (VA - D;)/3 of h(z).

Lemma 3. Suppose that (H,) p, > 0, pip, — (po + q4o) > 0;
Po + qo > 0is satisfied.

(1) If one of the following holds: (a) A > 0, z" < 0; (b)
A>0,z">0;and h(z") > 0, then all roots of (7) have
negative real parts when T € [0, 1) and 1, is a certain
positive constant.



(2) If the conditions (a) and (b) are not satisfied, then all
roots of (7) have negative real parts for all T > 0.

Proof. When 7 = 0, (7) can be reduced to
A+ pyA* + pi A+ (py + go) = 0. (15)

By the Routh-Hurwitz criterion, all roots of (9) have
negative real parts and only if
Po+qo > 0. (16)

P2>0, pipy—(po+qo) >0,

Considering (14), it is easy to see from the characters of
cubic algebraic equation that h(z) is a strictly monotonically
increasing function if A < 0.IfA > 0,z" < Oor A > 0,
z" > 0and h(z") > 0, then h(z) has no positive root. Hence,
(7) has no purely imaginary roots for any r > 0, which implies
that the positive equilibrium E*(S*,I*,D*,V*) of system
(1) is absolutely stable. Therefore, the following theorem on
the stability of positive equilibrium E*(S*, ", D*, V™) can be
easily obtained. O

Theorem 4. Assume that (H,) and (H,) are satisfied, and
A > 02z" < 0orA > 0,2z > 0. and h(z") > 0,
then the positive equilibrium E*(S*,I", D", V™) of system (1) is
absolutely stable. Namely, E*(S*,I*, D*, V") is asymptotically
stable for any time delay T > 0.

Assume that the coefficients in h(z) satisfy the condition
as follows:

(Hy) A>0,z" >0,h(z") <0.

According to lemma, it is proved that (14) has at least a
positive root wy, namely, the characteristic equation (7) has a
pair of purely imaginary roots +icw.

In view of the fact that (7) has a pair of purely imaginary
roots *iw,, the corresponding 7, > 0 is given by eliminating
sin(wt) in (10) and (11):

Pz“-’é — Do

1
T) = —arccos [—]
W 90

2km
+ —_—

W

(k=0,1,2,...).
(17)

Let A(t) = v(7) + iw(7) be the root of (7), so that v(1;) = 0
and w(7;) = w, are satisfied when 7 = 7;.

Lemma 5. Suppose h'(z,) #0. If T = 7, then +iw, is a pair of
purely imaginary roots of (7). In addition, if the conditions in
Lemma 3 are satisfied, then

d(Re))
dr

> 0. (18)

T=Ty

This signifies that there exists at least one eigenvalue with
positive real part for T > 1. Differentiating both sides of (7)
with respect to T, it can be written as

At
19)

AA\"! (3)L2 +2p)A + pl) —qyTe”
<E> - qore™
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Therefore,

S n[dRe/\] = sgn Re<@>_1
¥ dr T=T % dr A=iw,

2
Yo 4 2
= sgn A (3w0 +2D,w; + Dl)

(20)
W2
_ 0 ! 2
=sgn —- {h (a)o)}
i (42).
where A = qowp; then it follows the hypothesis (Hs) that
W (w}) #0.
Hence,
d(Re L)
0.
e > (21)

The root of characteristic equation (7) crosses from left to
right on the imaginary axis as T continuously varies from a
value less than T, to one greater than 1, according to Routh’s
theorem. Therefore, according to the Hopf bifurcation theorem
[20] for functional differential equations, the transverse condi-
tion holds and the conditions for Hopf bifurcation are satisfied
at T = 1. Then the following result can be obtained.

Theorem 6. Suppose that the conditions (H,) and (H,) are
satisfied.

(1) The equilibrium E*(S*, 1%, D*, V™) is locally asymptot-
ically stable when T € [0, 1), but unstable when t > 1,.

(2) If condition (H;) is satisfied, the system will
undergo Hopf bifurcation at the positive equilibrium
E* (S, I",D",V*)whent =1, (k=0,1,2,...), where
T, is defined by (17).

This implies that when time delay T < T, the system will
stabilize at its infection equilibrium point, which is beneficial
to implement a containment strategy; when T > 1, the system
will be unstable and worms cannot be effectively controlled.

4. A Delayed Worm Propagation Model with
Constant Quarantine

Enlightened by the methods in disease control, quarantine
is selected as an effective way to diminish the speed of
worm propagation. The current quarantine strategy generally
depends on the intrusion detection system, which can be
classified into two categories: misuse and anomaly intrusion
detection [12]. As the delayed model cannot make sure of
the system stable and controlled, quarantine strategies should
be taken into consideration to further control the worm
propagation.

4.1. Using Constant Quarantine Strategy to Model a Delayed
Worm  Propagation. Misuse intrusion detection system
builds a database with the feature of known attack behaviors.
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FIGURE 2: State transition diagram of constant quarantine model.

The system can recognize the invaders once their behaviors
agree with one of the databases and accurately detect known
worms [12]. By applying misuse intrusion detection system
for its relatively high accuracy, we add a new state called
quarantine state (Q) [9], but only infected hosts will be
quarantined. Q(f) denote the number of quarantined hosts
at time f. Unlike the quarantine strategy against epidemics,
the implementation of constant quarantine strategy depends
on the misuse intrusion detection system. Infected hosts will
be quarantined at rate a which depends on the performance
of intrusion detection system and network devices. When
infected hosts are quarantined, they will get rid of worms
and get patched at rate §. The state transition diagram of
constant quarantine model is given in Figure 2.

4.2. Description of Constant Quarantine Model. According to
the definitions above in the paper, the differential equations
of constant quarantine model are given as follows:

_dil D = N = SO0+ ¥ (1) -5 (0),
d;](f) =BSWHIM)-I@#)—al(t)—2I(1),
an(t) _ oo
- VO -yt -D(®),
d?i(f) = al (t) - 8Q (1) ~ Q (1),
t
d‘c/it(t) =yt =7) +0Q(O) ~uV () + (1= p) IN =WV (1).
(22)
Similarly,
SOH+IM+DO+QW+VH=N.  (23)

4.3. Stability of the Positive Equilibrium and
Bifurcation Analysis

Theorem 7. The system has a unique positive equilibrium
E*(S*,I",D*,Q", V") when it satisfies the following condition:

(H) BN(u + pv)/u(u + v)(y + « + v) > 1, where S*
(y+a+v)/B D" =0,Q" = (af/(§+ V)", V" =
(y+a+/w@/B+I) - pvN/p.

Proof. For system (22), if all the derivatives on the left of equal
sign of the system are set to 0, which implies that the system
becomes stable, we can get

y+ta+v
S="——,
B
D=0,
24
_ (24)
S+
V:w(z”*)_ﬂ_
[z B [z

Substituting the value of each variable in (24) for each of
(23), then we can get

S*+LI*+I*+w<Z+I*>—M=N
S+v U B U

(25)

Obviously, if (H,) is satisfied, (25) has one unique pos-
itive root I*, and there is one unique positive equilibrium
E*(S*,I",D*,Q"*, V™) of system (22). The proof is com-
pleted. O

According to (23), V(t) = N = S(t) — I(t) — D(t) — Q(¢t);
thus, system (22) can be simplified to

diif) = pIN+u(N-S@t)-1(t)-D(t)-Q(t)
—-BSWI(t)-»S(t),
% =BS)I(t)—yI(t)—al(t)—vI(t), (26)
dD(t) _ B )
= yI(t) = yI(t—1)—vD(t),
d?zt(t) =al () =6Q(t) —»Q(t).

The Jacobi matrix of (26) about E*(S*,I*, D*,Q") is given by

-pI *ﬁ—v—u 55 B -u —u —p

o I f-y-—a-v 0 0

J(E") = 0 y—ye -y 0
0 « 0 -0-p

(27)
The characteristic equation of that matrix can be obtained by

PA)+QW e =o. (28)



Let

ps=a+b+c+,

p,=ab+cv+(a+b)(v+c)+ plid,

pr=ab@+c)+vc(a+b)+pI  (dv+c)+u(a+y)),

Po = abev + BI7 (cdv + apv + cuy),
q = -uyBl’,
qo = —Pucyl’”,
(29)
where
a=pI" +v+u,
b=y+a+u-pS,,
(30)
c=0+,
d=BS"+u
then
P = A"+ pA* + p,A° + pid+ py, (1)
31

QM) =g A+ qp-

Theorem 8. The positive equilibrium E* is locally asymptoti-
cally stable without time delay, if the following holds:

(H,) p3 > 0,d, >0,d, >0, (p; +q,)d, — p;°d, > 0,
where
dy = pspr = (pr+ 1)
dy = po + go-
Proof. If T = 0, (28) reduces to

(32)

At 173/\3 + Pz/\z +(pr+q1) A+ (po + o) = 0. (33)

According to Routh-Hurwitz criterion, all the roots of
(33) have negative real parts. Therefore, it can be deduced that
the positive equilibrium E* is locally asymptotically stable
without time delay. The proof is completed. O

Obviously, A = iw(w > 0) is a root of (28). After
separating the real and imaginary parts, it can be written as

w* = pyw’ + py + gywsin (wr) + g cos (wr) = 0,

_p3w3 + pw + qyw cos (wT) — g, sin (wt) = 0, ey
which implies
@’ + Dyw* + Dyw” + D, =0, (35)
where
Ds = p; -2ps,
Dy = p; +2py = 2p1 P, (36)

D, = p} -4} - 2p,ps.
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Let z = w?, and (35) can be written as
h(z) =2+ D3z2 + D,z + D;. (37)

Ais defined as A = D? - 3D,. Hence, we can get a solution

z* = (VA - D;)/3 of h(z).

Lemma 9. Suppose that (H,)p; > 0,d, > 0, and d, > 0;
(py +q)d, — ps’d, > 0 is satisfied.

(1) If one of the following holds: (a) A > 0, z* < 0; (b)

A >0,z > 0and h(z") > 0. Then all roots of (28)

have negative real parts when T € [0, 7)), T, is a certain
positive constant.

(2) If the conditions (a) and (b) are not satisfied, then all
roots of (28) have negative real parts for all T > 0.

Proof. when 7 = 0, (28) can be reduced to

At P3/\3 + Pz/\2 +(pr+q1) A+ (po +qo) = 0. (38)

By the Routh-Hurwitz criterion, all roots of (33) have
negative real parts and only if
d, >0, (pr+a)d, - P32d2 > 0.
(39)

ps >0, d, >0,

Considering (37), it is easy to see from the characters of
cubic algebraic equation that h(z) is a strictly monotonically
increasing function if A < 0.IfA > 0,z2" < 0orA>0,2" >0
and h(z") > 0, then h(z) has no positive root. Hence, (28) has
no purely imaginary roots for any 7 > 0, which implies that
the positive equilibrium E*(S*, 1", D*, Q*, V™) of system (22)
is absolutely stable. Therefore, the following theorem on the
stability of positive equilibrium E*(S*,I*, D*,Q", V™) can be
easily obtained. O

Theorem 10. Assume that (H,) and (H,) are satisfied, and
A>0,z" <00rA>0,z" >0 andh(z") > 0, then the positive
equilibrium E*(S*, ", D*,Q", V™) of system (22) is absolutely
stable. Namely, E*(S*, 1", D", Q", V™) is asymptotically stable
for any time delay T > 0.

Assume that the coefficients in h(z) satisfy the condition as
follows:

(Hy) A>0,z" >0,h(z") < 0.

According to lemma, it is proved that (37) has at least a
positive root w,, namely, the characteristic equation (28) has a
pair of purely imaginary roots tiw,.

In view of the fact that (28) has a pair of purely imaginary
roots tiw,, the corresponding T, > 0 is given by eliminating
sin(wt) in (34):

Tk
9o (Pz“’g - “"g - Po) + 1w (Pa“’g - Pl“’o)
= — arccos 5
) q1% *+ 9
2k
M k=0,1,2,..).
Wy

(40)
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Let M(1) = v(1) + iw(T) be the root of (28), so that v(1) = 0
and w(ty.) = w, are satisfied when T = ;.

Lemma 11. Suppose h'(z,) #0. If T = 1, then +iw,, is a pair of
purely imaginary roots of (28). In addition, if the conditions in
Lemma 9 are satisfied, then
d(Re)
dr =1}

> 0. (41)

This signifies that there exists at least one eigenvalue with
positive real part for T > ;. Differentiating both sides of (28)
with respect to T, it can be written as

()

(4/\3 +3p A2 +2pyA + pl) + g - (A +q)Te™
B (@A + o) e
(42)
Therefore
son [ dRe ) ]
& dr J—,
i\
= sgn [Re <—> ]
dr A=iw,
(43)

2
w,
=sgn ?0 (4wg + 3D3w3 + 2D2wé + Dl)

2
- o {1 ()}

i (o3).
where T = g,%w,* + qyw,’; then it follows the hypothesis (H,)

that W' (woz) +0.
Hence,

d(Re))
dr

The root of characteristic equation (28) crosses from left to
right on the imaginary axis as T continuously varies from a
value less than T, to one greater than T, according to Routh's
theorem. Therefore, according to the Hopf bifurcation theorem
for functional differential equations, the transverse condition
holds and the conditions for Hopf bifurcation are satisfied at
T = 1. Then the following result can be obtained.

> 0. (44)

=T}

Theorem 12. Suppose that the conditions (H,) and (H,) are
satisfied.
(1) Equilibrium E*(S*,1*,D*,Q*, V™) is locally asymp-
totically stable when T € [0,1,), but unstable when
T> 1
(2) If condition (H;) is satisfied, the system will
undergo Hopf bifurcation at the positive equilibrium
E*(S*,I",D*,Q*,V*) whent = 1. (k = 0,1,2,...),
where T, is defined by (40).

This implies that when time delay T < 1, the system will
be stable at its infection equilibrium point so that it is easy to

control and eliminate worms; when T > T, the system will be
unstable but the threshold 1, is greater than delayed model,
which illustrates the model with constant quarantine strategy
gets stable easier and the users have more time to remove
worms.

5. A Delayed Worm Propagation Model with
Impulsive Quarantine

5.1 Using Impulsive Quarantine Strategy to Model a Delayed
Worm Propagation. Although constant quarantine strategy
based on misuse intrusion detection does improve vaccina-
tion effect, the system is out of control and bifurcation is
still not eliminated. In addition, the system fails to detect
unknown worms and worm-variants. Anomaly intrusion
detection system is of help in detecting these kinds of worm.
However, the system is accompanied by high false-positive
rate. To solve the problem of constant quarantine strategy
and anomaly intrusion detection system, we proposed a
novel quarantine strategy called impulsive quarantine based
on a hybrid intrusion detection system, which can make
up for the gaps existing in the two systems. Impulsive
quarantine is implemented as follows: constant quarantine of
infected hosts found by the misuse detection is performed,
while susceptible and infected hosts detected by anomaly
detection are quarantined in an impulsive way every T units
of time. The advantages of this strategy lie in both avoiding
a high false-positive rate caused by anomaly detection and
making up for the insufficiency of the misuse detection
in detecting unknown worms [12]. Impulsive quarantine
strategy adds two transitions as a result of the influence of
the anomaly detection method. The susceptible and infected
hosts detected by anomaly detection method are quarantined
at rate 0, and 0,, respectively. Other settings are identical to
those of constant quarantine model.

The state transition diagram of impulsive quarantine
model is given in Figure 3.

5.2. Description of Impulsive Quarantine Model. The com-
plete differential equations of the impulsive quarantine model
are showed as follows:

% = pIN = BS(O) T (t) —¥S (£) + 4V (8),
% = BS(OT(t) ~vI (6) ~ yI (t) - I (8),
dD (1) =yI(t)-yI(t-1)-vD(1),
dt
O 1~ +5Q0) - W ) - oV () + (1 - )N,
d?lt(t) = al () - 8Q(£) - ¥Q(b),

t+nT,
S(nT") =S(nT")-6,S(nT"),

I(nT") =1(nT")-6,I(nT"),
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FIGURE 3: State transition diagram of impulsive quarantine model.

D(nT") =D (nT"),
Q(nT") =Q(nT™) +6,S(nT") + 6,1 (nT"),
V(nT") =V (nT"),

t = nT,
(45)

where n = 0,1,2,..., the impulsive strategy is applied at a
discrete time t = nT, and T is the interval time of impulsive
quarantine. nT" is the moment at which we apply the nth
impulsive quarantine measure, whereas nT"~ is the time just
before the nth impulsive quarantine measure is applied.

5.3. Global Attractivity of Infection-Free Periodic Solution. We
have

SH+IX)+D{)+Q@)+V (t)=N. (46)

Since Q(t) = N - S(t) — I(t) — D(t) — V(t), then system (45)
can be rewritten as

% = pyN =S I () - vS(t) + uV (1),

% = BSM () = vI () =yl () ol (1),

% =) -yl (t—1)-¥D (1),

% =y (t-1)+8(N=S{t) -I1(t)-D(t) -V ()
— UV (£) =W (t) + (1 - p)WN,

% =al (t) - 8Q (1) - Q (1),

t#nT,
S(nT") =S (nT")-6,S(nT"),

I(nT") =1(nT") - 6,I(nT"),
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D(nT+) = D(nT_),
Q(nT")=Q((nT™) +6,S(nT") + 6,1 (nT"),

V(nT") =V (nT"),

(47)

We may see that the first four equations in (47) are
independent of the fourth equation. Therefore, the fourth
equation can be omitted without loss of generality [21].
Hence, model (47) can be rewritten as

dili_t) = pyN = BS(OI(t) —vS (1) + uV (1),

d;it) = BS(t) I (t) —vI(t) —yI (t) — &l (1),

o oo

7_);I(t) yI(t—7)—vD(t),

T -0 +8N =50~ 1)~ DO -V ()

—uv () -» (£)+(1-p)WN,

t#nT,
S(nT") =S (nT") - 0,8 (nT"),
I(nT") =I(nT")-0,I(nT"),
D(nT*) =D (nT"),
V(nT") =V (nT"),
t = n.
(48)

In the following, we introduce some notations and definitions
in subsequent sections.
Let

R, =[0,00),
) \ (49)
Ri={ZeR':Z>0}.

Denote f = (f,, fo» f3» f1)7> the map defined by the right
hand of the four equations of system (48).

Let C be the space of continuous functions on [-w, 0] with
uniform norm. The initial conditions for (48) are

(610,60, ©). ¢4 @) € C, = C([-w, 0], R}),

¢;(0)>0, i=1,2,3,4.
(50)
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Definition 13. System (48) is said to be permanent if there
exists a compact region Q) € int Q such that every solution of
system (48) with initial conditions (50) will eventually enter
and remain in region €.

The solution of system (48) is a piecewise continuous
function Z : R, — Ri, Z(t) is continuous on [nT, (n + 1)T],
k € Z,, and Z(nT") = lim,_, +Z(t) exists. Obviously
the smooth properties of f guarantee the global existence
and uniqueness of solutions of system (48) for detail on
fundamental properties of impulsive systems [22, 23]. The
following lemma is obtained.

Lemma 14. Suppose Z(t) is a solution of system (48) with
initial conditions (50), then Z(t) > 0 for all t > 0.
Denote

Q={S,I,D,V)eR*|S20,120,D20,V20}. (51

It is easy to show that Q) is positively invariant with respect to
(48) with initial conditions (48).

Lemma 15 (see [21, 22]). Consider the following equation:
x(t)=a;x(t—w)—ax(t), (52)

where a;, a,,w > 0; x(t) > 0 for —w <t < 0.
We have

(i) ifa, < a,, thenlim,_,  x(t) = 0,
(i) ifa, > a, then lim, _,  x(t) = +co.

The proofs of case (i) and case (ii) are given in Theorems 2.1
[24] and 2.2 [25], respectively.

We first demonstrate the existence of the infection-free
periodic solution, in which infected individuals are entirely
absent from the population permanently, that is, I(t) = 0 for
allt > 0. Under this condition, the S, D, and V must satisfy

%:va—ﬁS(t)I(t)—vS(t)+yV(t),
dD(t)_ B o

7—)’10) yL(t—71)—vD (1),
#:yI(t—T)+6(N—S(t)—I(t)—D(t)—V(t))

—uv (@) -2 (t)+(1-p)WN,

t#nT,
S(nT") =S(nT") - 6,S(nT"),
D(nT") =D (nT"),
V(nT") =V (nT"),
t =nT.
(53)

First we show below that the susceptible population S
oscillates with period T, in synchronization with the periodic

pulse vaccination. From the first and fourth equations of system
(53), we have that

S =pN+(S*=pN)e "™ uT'<t<(m+1)T
(54)

is globally asymptotically stable, where

. pPN(1-6,)(1-¢"7)

(1-(-8)e ) >

From the second and fifth equations of system (53), we have
lim, ,  D(t) = 0. Further, it follows from the third and sixth
equations of system (53) that lim, _, .V (t) = ([((1-p)v+S]N—
8S(1))/ (8 + v + ).

Therefore (S(t),0,0, ([(1- p)v+S8IN-85(t))/(S+v+pu)) is
the infection-free periodic solution of system (48). In the rest
of this section, we establish the global attractivity condition
for the infection-free periodic solution.

Theorem 16. The infection-free periodic solution (S(t),0,
0,([(1 —p)v+5]N—8§(t))/(6+v+y)) of system (48) is globally
attractive provided that R* < 1, where

- BpN (1-6,)(1-¢"T)

= (V+V+‘x)(1—(1—61)e*#T)' (56)

Proof. Since R* < 1, we can choose ¢, > 0 sufficiently small
such that

(pN(l -6,)(1-¢7")
(1-(1-6)eT)

+so)<v+y+oc. (57)

It follows from the first equation of (48) that
S(t) < pyN =S (t) + uV (t). (58)

Thus we consider the comparison impulsive differential
system
x ()= pyN—-vx(t), t+nT
(59)
x(nT)=(1-6,)x(nT"), t=nT.
According to [26], we obtain that the periodic solution of
system (59)

%(t) =S(t) = pN + (8" - pN) e,

(60)
nf'<t<mn+1)T
is globally asymptotically stable, where
N(1-6,)(1-¢""
x*:S*:p ( 1)( ) (61)

1-(1-6,)eT

Let (S(t), I(t), D(t), V(t)) be the solution of system (48)
with initial values (50) and let S(0*) = S, > 0,x(t) be
the solution of system (59) with initial value x(0*) = S,.
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In view of the comparison theorem in impulsive differential

equations [18, 19], there exists an integer n; > 0 such that
Sty <x({t)<x(t)+e, nT<t<(n+1)T, (62)

that is,

N (1 —61)(1 —e_”T) X
(-(-6)e) 050 (g
nT<t<m+1)T,

S(t)<S(t)+g < P

n>ny,

where S(t) is defined (55). Further, from the second equation
of system (48), we know that (63) implies

T@)<BSyIt)—(v+y+a)I(t),

Consider the following comparison differential system:

t>nT, n>n,. (64)

t>nT, n>n,.
(65)

y() = BSyy ) —(v+y+a)y(t),

From (57), we have f3S,, < v+ y + . According to Lemma 15
we have tlim y(t) =0.
— 00

Let (S(t), I(t), D(t), V(t)) be the solution of system (48)
with initial values (50) and I(0") = I, > 0; let y(¢) be the
solution of system (65) with initial value y(0*) = I,. Consider
the second and the sixth equations of system (48); according
to Lemma 15, we have limsup, _,  I(t) < limsup,_,  y(t) =
0. Incorporating into the positivity of I(¢), we know that

Jim I(#) = 0. (66)

Therefore, for any €, > 0 (sufficiently small), there exists an
integer n, > n, such that I(t) < ¢, forallt > n,T.
For the third equation of system (48), we have

D(t) < ye, —vD(t) fort>mn,T. (67)
Consider comparison differential equation, for t > n,T,

z(t) =y —vz(t). (68)

Itis easyto see thatz(¢) = ye, /v. According to the comparison
theorem, there is a n; > n, such that, for all t > n,T,

D(t) < V—jl +e,. (69)

Therefore, in view of the positivity of D(t) and sufficiently
small ¢, it follows from (69) that

tli}ng()D (t) =0. (70)
Moreover, for the first equation of system (48), we have
S(t) > pyN - (v+Be)S(t) forn>nT. (71
Consider the following equations, for t > nT and n > n5:
i (t) = pyN — (v+ e ult),
u(nT ) =(1-6,)u(nT"),

t +nT,
(72)
t =nT.
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According to [27], we know that the periodic solution of
system (72)

20 = pYN N <u* _ PN )e—(wﬁsl)(t—nT)’
v+ Pe v+ e, (73)
nT <t<(n+1)T
is globally asymptotically stable, where
x PVN (1 - 91) (1 - e_(WﬁSI)T) (74)

T v+ Bey (1-(1-6,)e 0Ty

According to the comparison theorem in impulsive differen-
tial equations, there exists an integer n, > n, such that

Si)>u(t)—¢, nT<t<(m+1), n>n, (75)

Since that ¢, is arbitrarily small, consider (63) and (75); we
have that

_ 0, (1-¢"7
e (s ) o)
1-(1-6,)e™ (76)
nT<t<(m+1)T

is globally attractive, that is,
tlin(‘)lo St =S@). (77)
For the fourth equation of system (48), we have

V) <[+ (1-p)v]N=8St) -8V () —uV (t) =WV (t)
(78)

fort > n,T.
It is easy to obtain that there is a 15 > n, such that

[6+(1-p)v]N-8S(t)
+
S+v+u

V(t) < g fort>nT. (79)

In a similar way, there is a ng > ns :

[6+(1-p)v] N-8S(t)
S+v+p -

V() > g fort>nT. (80)

Since that ¢, is arbitrarily small, consider (79) and (80); we
have

Jim v
= < [6+(1-p)v]N
(91 (1 - ein)) e—v(t—nT)) )

(1-(1-6)e7)

(81)

—6pN<1 -

X (8+v+p) .

It follows from (66), (70), (77), and (81) that the infection-free
periodic solution (S(¢), 0, 0, ([(1-p)v+8IN—-8S(t)) /(6 +v+u))
is globally attractive. The proof of Theorem 16 is complete.

O
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FIGURE 4: Worm propagation trend of model with time delay when
T < T,
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FIGURE 5: Worm propagation trend of model with time delay when
T>T,.

6. Numerical and Simulation Experiments

In order to simulate the worm propagation in the real world,
the parameters in the experiments are practical values. The
Slammer worm is selected for experiments [10]. 750,000 hosts
are picked as the population size, and the worm’s average
scan rate is 3300 per second. The worm infection rate can be
calculated as a = #N/2** = 0.5763, which means that average
0.5763 hosts of all the hosts can be scanned by one host. The
infection rate is 8 = 3300/2°* = 0.00000077, the recovery rate
of infectious hosts is y = 0.19, the quarantine rate is & = 0.15,
and the removal rate of quarantined hosts is § = 0.04. The
rest of the parameters are p = 0.9, y = 0.031, and v = 0.026.

1

x10°
2.5

1.5+

Number of hosts

0 200 400 600 800 1000

Time

T=5 = T7=45
—— 7=90

FIGURE 6: Number of infected hosts when 7 is changed.

At the beginning, there are 50 infected hosts, while others are
susceptible. The following numerical analyses are supplement
for the above results.

6.1. Numerical Experiments of Worm Propagation Model
with Time Delay in Vaccination. According to the above
parameters, as shown in Figure 4, the curves of three kinds
of host in system (1) are presented when 7 = 5 < 7,,. All of the
three kinds of host get stable quickly, which illustrates that E*
is asymptotically stable. It implies that the number of infected
hosts stays very low and can be predicted. Further strategies
can be developed and utilized to eliminate worms.

However, when time delay 7 gets increased and then reach
the threshold 7, E* will lose its stability and a bifurcation
will occur. Figure 5 shows the susceptible, infected, and
vaccinated hosts in system (1) when 7 = 100 > 7,. In this
figure, we can clearly see that the number of infected hosts
will outburst after a short period of peace and repeat again
and again but not in the same period, which means that it is
hard to predict the number of infected hosts and to develop
further strategies to eliminate worms.

In order to see the influence of time delay, 7 is set to a
different value each time with other parameters remaining
the same. Figure 6 shows the number of infected hosts in the
same coordinate with time delays v = 5, 7 = 15, T = 45, and
7 = 90. Initially, the four curves are overlapped, which means
that time delay has little effect in the initial stage of worm
propagation. With time delay increasing, the curve begins
to oscillate. When time delay passes through the threshold
7,, the infecting process gets unstable. Meanwhile, it can be
discovered that the amplitude and period of the number of
infected hosts get increased.

In Figure 7, the projection of the phase portrait of system
(1) in (S, I, V)-space is presented when 7 = 35 and 7 = 45. In
Figure 8, when 7 = 35, it is clear that the curve converges
to a fixed point which suggests that the system is stable.
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(b) T =45

FIGURE 7: The projection of the phase portrait of system (1) in (S, I, V)-space.
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F1GURE 8: The phase portrait of susceptible hosts s(t) and infected hosts I(t).

When 7 =45, the curve converges to a limit circle which
implies that the system is unstable. Figure 9 shows bifurcation
diagram with 7 from 1 to 100; Hopf bifurcation will occur
when 7 = 7, = 38.

6.2. Numerical Experiments of Worm Propagation Model with
Constant Quarantine Strategy. In order to show the impact of

constant quarantine strategy, we analyze the numerical results
after adopting the constant quarantine strategy. Further, we
compare them with the worm propagation model with time
delay.

Figure 10 shows the curves of three kinds of host in system
(22) when 7 = 5 < 7. All of the three kinds of host get stable
quickly, which illustrates that E* is asymptotically stable.
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When time delay 7 gets increased and then reach the
threshold 7,, E* will lose its stability and a bifurcation
will occur. Figure 11 shows the susceptible, infected, and
vaccinated hosts in system (22) when 7 = 100 > 7. In this
figure, we can clearly see that the number of infected hosts
will outburst after a short period of peace and repeat again
and again but the range is much less than delayed models. It
implies that the constant quarantine strategy can’t eliminate
the Hopf bifurcation, but it can reduce the max number of
infected hosts.

In Figure 12, when 7 = 100 > 1, it is clear that
the maximum of infected hosts is diminished sharply from
220,000 to 38,000, which illustrates that constant quaran-
tine strategy has much better inhibition impact than single
vaccination. However, constant quarantine strategy cannot
eliminate the Hopf bifurcation; the system is still unstable and
out of control.

Figure 13 shows the projection of the phase portrait of
system (22) in (S, I, V)-space when 7 = 40 and 7 = 55. In
Figure 14, when 7 = 40, it is clear that the curve converges to
a fixed point which suggests that the system is stable. When
T = 55, the curve converges to a limit circle which implies that
the system is unstable. Figure 15 shows bifurcation diagram
with 7 from 1 to 90; we find that Hopf bifurcation will occur
when 7 = 7, = 46. The threshold is greater than delayed
model’s, which illustrates the model gets stable easier and the
users have more time to remove worms.

6.3. Numerical Experiments of Worm Propagation Model
with Impulsive Quarantine Strategy. The paper performs
the numerical experiments and compares the results with
constant quarantine model after using impulsive quarantine
strategy. The interval time of impulsive quarantine is set
T = 10. The susceptible and infected hosts detected by the
anomaly intrusion detection method are quarantined at rate
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FIGURE 14: The phase portrait of susceptible hosts S(t) and infected hosts I(¢).

0, = 0.00002315 and 6, = 0.6, respectively. Other parameters
are the same as constant quarantine model.

Figure 16 shows the curves of four kinds of host when 7 =
5 < 1. All of the four kinds of host get stable more quickly,
which illustrates that E*is asymptotically stable. After using
impulsive quarantine strategy, Figure 17 shows the curves of
three kinds of hosts when 7 = 100 > 7,. All kinds of hosts
get stable within 4 hours, which implies that Hopf bifurcation
has been eliminated thoroughly. In Figure 18, the number of
infected hosts has been shown without quarantine, adopt-
ing quarantine strategy, and impulsive quarantine strategy,
respectively. It is clear that the number of infected hosts is

almost 0 after using the impulsive quarantine strategy, which
is even much less than model using constant quarantine
strategy. The result means that the impulsive quarantine
strategy works well. Thus, the system will be stable and
controlled so that the worm will not break out again.

6.4. Simulation Experiments. The discrete-time simulation is
an expanded version of Zou’s program [8] simulating Code
Red worm propagation. The system in our simulation exper-
iment consists of 750,000 hosts that can reach each other
directly, which is consistent with the numerical experiments,



Mathematical Problems in Engineering

x10*

I(t)

Hopf bifurcation

0 10 20 30 40 50 60 70 80 90
T

FIGURE 15: Bifurcation diagram of system (22) with 7 from 1 to 90.

x10°

a3
v
o
<
S
S
3
£ 3
2 L
2L
Ir W
LA
0 100 200 300 400
Time

—v— Susceptible hosts
—— Infected hosts

—— Quarantined hosts
Vaccinated hosts

FIGURE 16: Worm propagation trend of model with impulsive
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and there is no topology issue in our simulation. At the
beginning of simulation, 50 hosts are randomly chosen to be
infected and the others are all susceptible. In the simulation
experiments, the implement of transition rates of the model
is based on probability. Under the propagation parameters
of the Slammer worm, some simulation experiments are
performed. Figure 19 shows that numerical and simulation
curve of infected hosts match well when using the constant
quarantine strategy and Figure 20 shows that numerical and
simulation curve of infected hosts match well after using the
impulsive quarantine strategy, whatever the value of 7 is.

7. Conclusions

By considering that time delay leads to Hopf bifurcation
so that the worm propagation system will be out of con-
trol, this paper proposes two quarantine strategies: constant
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FIGURE 18: Comparison of infected hosts without quarantine,
adopting constant quarantine strategy and impulsive quarantine
strategy, respectively, when 7 > 7.

quarantine and impulsive quarantine strategy to control the
stability of worm propagation. Through theoretical analysis
and simulation experiments, the following conclusions can be
derived.

(1) In order to accord with actual facts in the real
world, a worm propagation model with time delay
in vaccination is constructed. The critical time delay
7, where Hopf bifurcation appears is obtained. When
time delay T < T7,, the worm propagation system
will stabilize at its infection equilibrium point, which
is beneficial to implement a containment strategy to
eliminate the worm completely. When time delay 7 >
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FIGURE 20: Comparison of numerical and simulation curve of the infected hosts of impulsive quarantine model.

7,, Hopf bifurcation appears, implying that the system
will be unstable and the worm cannot be effectively
controlled.

(2) Constant quarantine strategy based on misuse IDS
has only some inhibition impact. Through theoretical
analysis, the threshold 7, is greater than delayed
model’s so that the users have more time to clean
worms. Nevertheless, constant quarantine strategy
cannot eliminate bifurcation.

(3) Impulsive quarantine strategy is proposed, which can
both make up for the gaps existing in the misuse

and anomaly IDS and eliminate bifurcation. Through
theoretical analysis and numerical experiments, the
numerical results match theoretical ones well, which
tully support our analysis.

Furthermore, various factors can affect worm propaga-
tion. The paper focuses on analyzing the influence of time
delay. Other impact factors to worm propagation will be a
major emphasis of our future research.
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Notations

N:  Total number of hosts in the network

S(t): Number of susceptible hosts at time ¢

I(t): Number of infected hosts at time ¢

D(t): Number of delayed hosts at time ¢

Q(t): Number of quarantined hosts at time ¢

V(t): Number of vaccinated hosts at time ¢

pB:  Infection rate

y:  Removal rate of infected hosts

y:  Rate from vaccinated to susceptible hosts

y:  Birth and death rates

p:  Birth ratio of susceptible hosts

o Quarantine rate

8:  Removal rate of quarantined hosts

T:  'The interval time of impulsive quarantine

0,: Quarantine rate of susceptible hosts using
impulsive quarantine

0,: Quarantine rate of infected hosts using
impulsive quarantine

7:  Time delay of detecting and removing

worms.
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