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This paper studies the fusion estimation problem of a class of multisensor multirate systems with observation multiplicative noises.
The dynamic system is sampled uniformly. Sampling period of each sensor is uniform and the integer multiple of the state update
period. Moreover, different sensors have the different sampling rates and observations of sensors are subject to the stochastic
uncertainties of multiplicative noises. At first, local filters at the observation sampling points are obtained based on the observations
of each sensor. Further, local estimators at the state update points are obtained by predictions of local filters at the observation
sampling points. They have the reduced computational cost and a good real-time property. Then, the cross-covariance matrices
between any two local estimators are derived at the state update points. At last, using thematrix weighted optimal fusion estimation
algorithm in the linear minimum variance sense, the distributed optimal fusion estimator is obtained based on the local estimators
and the cross-covariance matrices. An example shows the effectiveness of the proposed algorithms.

1. Introduction

In networked systems or sensor networks, there often exist
various uncertainties during the transmission process of sig-
nals due to the imperfection of the communication channels.
It makes impossible to use linear model to describe some sys-
tems.The uncertainties can be approximated mathematically
by an additive noise or a multiplicative noise [1–6]. These
systems are widely used in petroleum seismic exploration,
target detection, speech processing, and other areas; thus,
the research on systems with multiplicative noise has the
important practical significance. In the early references [1],
the optimal linear filters have been proposed for systems with
uncertain observations described by the multiplicative noise.
Formore general casewith stochastic parameters, the optimal
linear estimation is designed in [2]. References [3–5] study
the polynomial filters; however, the proposed nonlinear filters
have expensive computational cost. For networked systems
with multiplicative noises and packet dropouts, optimal
linear estimators including filter, predictor, and smoother
have been proposed in [6]. However, the above-mentioned

literatures are all concerned with single sensor case but do
not take multiple sensors into account.

As the sensor technology is widely used in military, civil-
ian, scientific research, and many other fields, single sensor
has failed to meet the performance requirements in many
aspects. Moreover, as the development of electronics tech-
nologies, various sensors have been developed and applied to
many practical fields such as target tracking since they can
provide more information than any single sensor. Therefore,
multisensor information fusion has received considerable
research attention in recent years [7]. For systems with a
single sampling rate, the optimal state weighted fusion filter
in the linear minimum variance sense [8] and the self-tuning
fusion filter with unknown noise variances [9] have been
presented. Recently, the multirate multisensor asynchronous
fusion algorithms have been studied in [10–12]. References
[13, 14] adopt the state augmentation approach to give the
estimators with the expensive computational cost. Though
[15, 16] adopt the nonaugmented approach to design the
filters, a modeling error is made by ignoring the process
noise. Therefore, there is the accuracy loss. By considering
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Figure 1: Sampling case of sensors.

the process noise to eliminate the modeling error, an optimal
filter is presented to improve the estimation accuracy [17].
Furthermore, the missing measurements are also taken into
account in [16, 18]. In [19], amultiratemultisensor distributed
fusion estimator is proposed for two-sensor systems with
one-step cross-covariance noises. However, most of the
above-mentioned literatures do not take the multiplicative
noises into account. In sensor networks, there often exist
various sensors with different sampling rates and stochastic
uncertainty of multiplicative noises. It is significant to use
the nonaugmented approach to deal with the multirate
multisensor systems. This motivates our work.

This paper studies the fusion estimation problem of a
class of multisensor multirate systems with observation mul-
tiplicative noises. State is sampled uniformly at the finest rate.
Different sensors have different sampling periods that are
integer multiples of the state update period. Local estimators
at the state sampling points are obtained based on the local
filters at the observation sampling points by the filtering
and prediction. By using the distributed optimal weighted
fusion estimation algorithm in the linear minimum variance
sense [8], a distributed optimal fusion estimator is obtained.
It avoids the state and observation augmentation. It has a
good reliability since it has the distributed parallel structure.
Moreover, the estimation error cross-covariance matrices
between any two local estimators are derived according to the
different sampling cases.

2. Problem Formulation

Consider the following multisensor multirate system with
observation multiplicative noises:

𝑥 (𝑡 + 1) = Φ𝑥 (𝑡) + Γ𝑤 (𝑡) , (1)

𝑦
𝑖
(𝑙
𝑖
𝑡) = (𝐻

0𝑖
+ 𝜉
𝑖
(𝑙
𝑖
𝑡)𝐻
1𝑖
) 𝑥 (𝑙
𝑖
𝑡) + V
𝑖
(𝑙
𝑖
𝑡) ,

𝑖 = 1, 2, . . . 𝐿,

(2)

where 𝑥(𝑡) is the system state at time 𝑡𝑇 and 𝑇 is the state
update period.Φ, Γ,𝐻

0𝑖
, and𝐻

1𝑖
are constantmatrices.𝑦

𝑖
(𝑙
𝑖
𝑡)

is the observation of the 𝑖th sensor at time 𝑙
𝑖
𝑡𝑇; 𝑙
𝑖
is the

ratio of the observation sampling period and the state update
period. 𝐿 is the number of sensors. 𝑤(𝑡) and V

𝑖
(𝑙
𝑖
𝑡) are white

noises with zeromean and variances𝑄
𝑤
and𝑄V𝑖 , respectively.

The observation multiplicative noise 𝜉
𝑖
(𝑙
𝑖
𝑡) is scalar white

noise with zero mean and variance 𝑄
𝜉𝑖
. 𝑤(𝑡), V

𝑖
(𝑙
𝑖
𝑡), and

𝜉
𝑖
(𝑙
𝑖
𝑡) are uncorrelated with each other. The initial state 𝑥(0)

is independent of 𝑤(𝑡), V
𝑖
(𝑙
𝑖
𝑡), and 𝜉

𝑖
(𝑙
𝑖
𝑡) and satisfies that

𝐸{𝑥(0)} = 𝜇
0
and 𝐸{[𝑥(0) − 𝜇

0
][𝑥(0) − 𝜇

0
]
𝑇
} = 𝑃

0
, where

the symbol 𝐸 is the mathematical expectation.

Remark 1. The sampling case of multisensor multirate sys-
tems can be described by Figure 1.Thehorizontal axis denotes
time while the vertical axis denotes different sensors. Three
sensors are shown in Figure 1. Black circle solid points repre-
sent the sampling time of different sensors.The sampling rate
goes from the highest (sensor 1) to the lowest (sensor 3). As
shown in Figure 1, the three sensors all sample uniformly.The
first sensor has the same sampling rate as the state update rate;
that is, the sampling period is 𝑇. The sampling period of the
second sensor is 2𝑇 and the third is 3𝑇. It is clear that the least
common multiple of three sample periods is 6𝑇. This means
that the samplings of different sensors are asynchronous in
each data block of the length 6𝑇.

The objective of this paper is to find the distributed
optimal fusion estimator 𝑥

𝑜
(𝑡) of 𝑥(𝑡) based on the local

estimators 𝑥
𝑖
(𝑡) from different sensors.

To obtain the distributed fusion estimator by using the
optimal weighted fusion estimation algorithm in the linear
minimum variance sense [8], we need to compute the local
estimators and variance matrices from each sensor and the
cross-covariance matrices between any two local estimators.
In the latter text, we will give the computation of local
estimators and cross-covariance matrices.

3. Local Filters at the Observation
Sampling Points

At first, we give the filter at the observation sampling points
of each sensor.

From the iteration of (1), we have

𝑥 (𝑙
𝑖
𝑡 + 𝑙
𝑖
) = Φ

𝑙𝑖
𝑥 (𝑙
𝑖
𝑡)

+

𝑙𝑖−1

∑

𝑚=0

Φ
𝑚
Γ𝑤 (𝑙
𝑖
𝑡 + 𝑙
𝑖
− 𝑚 − 1) .

(3)
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LetΦ
𝑖
= Φ
𝑙𝑖 and𝑤

𝑖
(𝑙
𝑖
𝑡) = ∑

𝑙𝑖−1

𝑚=0
Φ
𝑚
Γ𝑤(𝑙
𝑖
𝑡 + 𝑙
𝑖
−𝑚−1); we

have the state spacemodel at the observation sampling points
for the 𝑖th sensor as follows:

𝑥 (𝑙
𝑖
𝑡 + 𝑙
𝑖
) = Φ

𝑖
𝑥 (𝑙
𝑖
𝑡) + 𝑤

𝑖
(𝑙
𝑖
𝑡) ,

𝑦
𝑖
(𝑙
𝑖
𝑡) = (𝐻

0𝑖
+ 𝜉
𝑖
(𝑙
𝑖
𝑡)𝐻
1𝑖
) 𝑥 (𝑙
𝑖
𝑡) + V
𝑖
(𝑙
𝑖
𝑡) ,

𝑖 = 1, 2, . . . , 𝐿

(4)

with the noise statistical information 𝑄
𝑤𝑖

= 𝐸{𝑤
𝑖
(𝑙
𝑖
𝑡)

𝑤
𝑖
(𝑙
𝑖
𝑡)
𝑇
}=∑𝑙𝑖−1
𝑚=0
Φ
𝑚
Γ𝑄
𝑤
Γ
𝑇
(Φ
𝑚
)
𝑇.

Then,we have the filter at the observation sampling points
of each sensor based on the above model.

Lemma 2 (see [6]). For system (4), the local filters at the
observation sampling points of the 𝑖th sensor are computed by

𝑥
𝑖
(𝑙
𝑖
𝑡 | 𝑙
𝑖
𝑡) = 𝑥

𝑖
(𝑙
𝑖
𝑡 | 𝑙
𝑖
𝑡 − 𝑙
𝑖
) + 𝐾
𝑖
(𝑙
𝑖
𝑡) 𝜀
𝑖
(𝑙
𝑖
𝑡) ,

𝑥
𝑖
(𝑙
𝑖
𝑡 + 𝑙
𝑖
| 𝑙
𝑖
𝑡) = Φ

𝑖
𝑥
𝑖
(𝑙
𝑖
𝑡 | 𝑙
𝑖
𝑡) ,

𝜀
𝑖
(𝑙
𝑖
𝑡) = 𝑦

𝑖
(𝑙
𝑖
𝑡) − 𝐻

0𝑖
𝑥
𝑖
(𝑙
𝑖
𝑡 | 𝑙
𝑖
𝑡 − 𝑙
𝑖
) ,

𝐾
𝑖
(𝑙
𝑖
𝑡) = 𝑃

𝑖
(𝑙
𝑖
𝑡 | 𝑙
𝑖
𝑡 − 𝑙
𝑖
)𝐻
𝑇

0𝑖
𝑄
𝜀𝑖

−1
(𝑙
𝑖
𝑡) ,

𝑄
𝜀𝑖
(𝑙
𝑖
𝑡) = 𝐻

0𝑖
𝑃
𝑖
(𝑙
𝑖
𝑡 | 𝑙
𝑖
𝑡 − 𝑙
𝑖
)𝐻
𝑇

0𝑖

+ 𝐻
1𝑖
𝑄
𝜉𝑖
𝑞
𝑖
(𝑙
𝑖
𝑡)𝐻
𝑇

1𝑖
+ 𝑄V𝑖 ,

𝑃
𝑖
(𝑙
𝑖
𝑡 | 𝑙
𝑖
𝑡) = (𝐼

𝑛
− 𝐾
𝑖
(𝑙
𝑖
𝑡)𝐻
0𝑖
) 𝑃
𝑖
(𝑙
𝑖
𝑡 | 𝑙
𝑖
𝑡 − 𝑙
𝑖
) ,

𝑃
𝑖
(𝑙
𝑖
𝑡 + 𝑙
𝑖
| 𝑙
𝑖
𝑡) = Φ

𝑖
𝑃
𝑖
(𝑙
𝑖
𝑡 | 𝑙
𝑖
𝑡)Φ
𝑇

𝑖
+ 𝑄
𝑤𝑖
,

𝑞
𝑖
(𝑙
𝑖
𝑡) = Φ

𝑖
𝑞
𝑖
(𝑙
𝑖
𝑡 − 𝑙
𝑖
)Φ
𝑇

𝑖
+ 𝑄
𝑤𝑖
,

(5)

where 𝑥
𝑖
(𝑙
𝑖
𝑡 | 𝑙
𝑖
𝑡) and 𝑥

𝑖
(𝑙
𝑖
𝑡 | 𝑙
𝑖
𝑡 − 𝑙
𝑖
) are the filter and predictor

at the observation sampling points, respectively. 𝑃
𝑖
(𝑙
𝑖
𝑡 | 𝑙
𝑖
𝑡) and

𝑃
𝑖
(𝑙
𝑖
𝑡 | 𝑙
𝑖
𝑡− 𝑙
𝑖
) are the corresponding covariance matrices. 𝜀

𝑖
(𝑙
𝑖
𝑡)

is the innovation sequence with the covariance matrix 𝑄
𝜀𝑖
(𝑙
𝑖
𝑡).

𝐾
𝑖
(𝑙
𝑖
𝑡) is the filtering gain matrix. 𝑞

𝑖
(𝑙
𝑖
𝑡) is the state second-

order moment. The initial values are 𝑥
𝑖
(0 | 0) = 𝜇

0
, 𝑃
𝑖
(0 | 0) =

𝑃
0
, and 𝑞

𝑖
(0) = 𝜇

0
𝜇
𝑇

0
+ 𝑃
0
.

4. Local Estimators at the State Update Points

Based on the filters at the observation sampling points in
Lemma 2, we have the following state estimation algorithms
at the state update points.

Theorem 3. For system (1)-(2), the local estimators at the state
update points of the 𝑖th sensor are computed by

𝑥
𝑖 (
𝑡) = {

𝑥
𝑖
(𝑙
𝑖
𝑙 | 𝑙
𝑖
𝑙) , 𝑡 = 𝑙

𝑖
𝑙, 𝑙 = 0, 1, 2, . . .

Φ
𝑝
𝑥
𝑖
(𝑙
𝑖
𝑙 | 𝑙
𝑖
𝑙) , 𝑡 = 𝑙

𝑖
𝑙 + 𝑝, 𝑝 = 1, 2, . . . , 𝑙

𝑖
− 1.

(6)

The estimation error covariance matrices are computed by

𝑃
𝑖
(𝑡)

=

{
{
{
{
{

{
{
{
{
{

{

𝑃
𝑖
(𝑙
𝑖
𝑙 | 𝑙
𝑖
𝑙) , 𝑡 = 𝑙

𝑖
𝑙, 𝑙 = 0, 1, 2, . . .

Φ
𝑝
𝑃
𝑖
(𝑙
𝑖
𝑙 | 𝑙
𝑖
𝑙) (Φ
𝑝
)
𝑇

+

𝑝−1

∑

𝑚=0

Φ
𝑚
Γ𝑄
𝑤
Γ
𝑇
(Φ
𝑚
)
𝑇

, 𝑡 = 𝑙
𝑖
𝑙 + 𝑝, 𝑝 = 1, 2, . . . , 𝑙

𝑖
− 1,

(7)

where 𝑥
𝑖
(𝑙
𝑖
𝑙 | 𝑙
𝑖
𝑙) and 𝑃

𝑖
(𝑙
𝑖
𝑙 | 𝑙
𝑖
𝑙) are computed by Lemma 2.

Proof. When 𝑡 = 𝑙
𝑖
𝑙, 𝑙 = 0, 1, 2, . . ., we have the filters 𝑥

𝑖
(𝑡) =

𝑥
𝑖
(𝑙
𝑖
𝑙 | 𝑙
𝑖
𝑙). When 𝑡 = 𝑙

𝑖
𝑙 + 𝑝, 𝑝 = 1, 2, . . . , 𝑙

𝑖
− 1, we have the

predictors 𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑙
𝑖
𝑙 + 𝑝 | 𝑙

𝑖
𝑙). Then from the iteration of

(1), we have

𝑥 (𝑙
𝑖
𝑙 + 𝑝) = Φ

𝑝
𝑥 (𝑙
𝑖
𝑙)

+

𝑝−1

∑

𝑚=0

Φ
𝑚
Γ𝑤 (𝑙
𝑖
𝑙 + 𝑝 − 𝑚 − 1) ,

𝑝 = 1, 2, . . . 𝑙
𝑖
− 1.

(8)

Taking projection of both sides of (8) onto the linear space
{𝑦
𝑖
(0), 𝑦
𝑖
(𝑙
𝑖
), . . . , 𝑦

𝑖
(𝑙
𝑖
𝑙)}, we have the second equation of (6).

From (6) and (8), we easily obtain the estimation error
equations:

𝑥
𝑖 (
𝑡)

=

{
{
{
{
{

{
{
{
{
{

{

𝑥
𝑖
(𝑙
𝑖
𝑙 | 𝑙
𝑖
𝑙) , 𝑡 = 𝑙

𝑖
𝑙, 𝑙 = 0, 1, 2, . . .

Φ
𝑝
𝑥
𝑖
(𝑙
𝑖
𝑙 | 𝑙
𝑖
𝑙)

+

𝑝−1

∑

𝑚=0

Φ
𝑚
Γ𝑤 (𝑙
𝑖
𝑙 + 𝑝 − 𝑚 − 1) , 𝑡 = 𝑙

𝑖
𝑙 + 𝑝, 𝑝 = 1, 2, . . . , 𝑙

𝑖
− 1,

(9)

where the estimation error is 𝑥
𝑖
(𝑡) = 𝑥(𝑡)−𝑥

𝑖
(𝑡). Substituting

(9) into 𝑃
𝑖
(𝑡) = 𝐸[𝑥

𝑖
(𝑡)𝑥
𝑇

𝑖
(𝑡)], we have (7). This proof is

completed.

Remark 4. The local estimators at the state update points have
been obtained by filtering and prediction based on the filter
at the observation sampling points. State augmentation is
avoided.They are simple and have a good real-time property.

Now, we have obtained the local estimators at the state
update points based on the observations of each sensor. Next,
we compute the cross-covariance matrices between any two
local estimators.

5. Computation of Cross-Covariance Matrix

Theorem 5. The estimation error cross-covariance matrices
between any two local estimators can be computed in the
following three cases.
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(i) If the 𝑖th sensor and the 𝑗th sensor both have observa-
tions at time 𝑡𝑇, the estimation error cross-covariance
matrix is given as

𝑃
𝑖𝑗 (
𝑡) = Φ𝑃𝑖𝑗 (

𝑡 − 1)Φ
𝑇
+ Γ𝑄
𝑤
Γ
𝑇

+ 𝐾
𝑖 (
𝑡)𝐻0𝑖

(Φ𝑃
𝑖𝑗 (
𝑡 − 1)Φ

𝑇
+ Γ𝑄
𝑤
Γ
𝑇
)𝐻
𝑇

0𝑗
𝐾
𝑇

𝑗
(𝑡)

− Φ𝑃
𝑖𝑗 (
𝑡 − 1)Φ

𝑇
𝐻
𝑇

0𝑗
𝐾
𝑇

𝑗
(𝑡) − Γ𝑄𝑤

Γ
𝑇
𝐻
𝑇

0𝑗
𝐾
𝑇

𝑗
(𝑡)

− 𝐾
𝑖 (
𝑡)𝐻0𝑖

Φ𝑃
𝑖𝑗 (
𝑡 − 1)Φ

𝑇
− 𝐾
𝑖 (
𝑡)𝐻0𝑖

Γ𝑄
𝑤
Γ
𝑇
.

(10)

(ii) If the 𝑖th sensor has an observation and the 𝑗th
sensor does not have any observation at time 𝑡𝑇, the
estimation error cross-covariance matrix is given as

𝑃
𝑖𝑗 (
𝑡) = Φ𝑃𝑖𝑗 (

𝑡 − 1)Φ
𝑇
+ Γ𝑄
𝑤
Γ
𝑇

− 𝐾
𝑖 (
𝑡)𝐻0𝑖

Φ𝑃
𝑖𝑗 (
𝑡 − 1)Φ

𝑇
− 𝐾
𝑖 (
𝑡)𝐻0𝑖

Γ𝑄
𝑤
Γ
𝑇
.

(11)

(iii) If both the 𝑖th sensor and the 𝑗th sensor do not have ob-
servations at time 𝑡𝑇, the estimation error cross-cova-
riance matrix is given as

𝑃
𝑖𝑗 (
𝑡) = Φ𝑃𝑖𝑗 (

𝑡 − 1)Φ
𝑇
+ Γ𝑄
𝑤
Γ
𝑇
. (12)

The initial value is 𝑃
𝑖𝑗
(0) = 𝑃

0
.

Proof. (i) If the 𝑖th sensor and the 𝑗th sensor both have
observations at time 𝑡𝑇, we have local filters as

𝑥
𝑖 (
𝑡) = 𝑥𝑖 (

𝑡 | 𝑡 − 1) + 𝐾𝑖 (
𝑡) 𝜀𝑖 (

𝑡)

= Φ𝑥
𝑖 (
𝑡 − 1) + 𝐾𝑖 (

𝑡) 𝜀𝑖 (
𝑡) ,

𝑥
𝑗 (
𝑡) = 𝑥𝑗 (

𝑡 | 𝑡 − 1) + 𝐾𝑗 (
𝑡) 𝜀𝑗 (

𝑡)

= Φ𝑥
𝑗 (
𝑡 − 1) + 𝐾𝑗 (

𝑡) 𝜀𝑗 (
𝑡) ,

(13)

where

𝑥
𝑖 (
𝑡 − 1) = 𝑥𝑖

(𝑡 − 1 | 𝑡 − 𝑙
𝑖
) ,

𝑥
𝑗 (
𝑡 − 1) = 𝑥𝑗

(𝑡 − 1 | 𝑡 − 𝑙
𝑗
) .

(14)

Then we obtain the estimation error equation as

𝑥
𝑖 (
𝑡) = Φ𝑥𝑖

(𝑡 − 1 | 𝑡 − 𝑙
𝑖
)

+ Γ𝑤 (𝑡 − 1) − 𝐾𝑖 (
𝑡) 𝜀𝑖 (

𝑡) ,

𝑥
𝑗 (
𝑡) = Φ𝑥𝑗

(𝑡 − 1 | 𝑡 − 𝑙
𝑗
)

+ Γ𝑤 (𝑡 − 1) − 𝐾𝑗 (
𝑡) 𝜀𝑗 (

𝑡) .

(15)

The cross-covariance matrix can be computed by

𝑃
𝑖𝑗 (
𝑡) = 𝐸 [𝑥𝑖 (

𝑡 | 𝑡) 𝑥
𝑇

𝑗
(𝑡 | 𝑡)]

= Φ𝑃
𝑖𝑗 (
𝑡 − 1)Φ

𝑇
+ Γ𝑄
𝑤
Γ
𝑇

+ 𝐾
𝑖 (
𝑡) 𝐸 {𝜀𝑖 (

𝑡) 𝜀
𝑇

𝑗
(𝑡)}𝐾

𝑇

𝑗
(𝑡)

− Φ𝐸 {𝑥
𝑖
(𝑡 − 1 | 𝑡 − 𝑙

𝑗
) 𝜀
𝑇

𝑗
(𝑡)}𝐾

𝑇

𝑗
(𝑡)

− Γ𝐸 {𝑤 (𝑡 − 1) 𝜀
𝑇

𝑗
(𝑡)}𝐾

𝑇

𝑗
(𝑡)

− 𝐾
𝑖 (
𝑡) 𝐸 {𝜀𝑖 (

𝑡) 𝑥
𝑇

𝑗
(𝑡 − 1 | 𝑡 − 𝑙

𝑗
)}Φ
𝑇

− 𝐾
𝑖 (
𝑡) 𝐸 {𝜀𝑖 (

𝑡) 𝑤
𝑇
(𝑡 − 1)} Γ

𝑇
,

(16)

where

𝐸 {𝜀
𝑖 (
𝑡) 𝜀
𝑇

𝑗
(𝑡)}

= 𝐻
0𝑖
(Φ𝑃
𝑖𝑗
(𝑡 − 1 | 𝑡 − 𝑙

𝑖
, 𝑡 − 𝑙
𝑗
)Φ
𝑇
+ Γ𝑄
𝑤
Γ
𝑇
)𝐻
𝑇

0𝑗
,

𝐸 {𝑤 (𝑡 − 1) 𝜀
𝑇

𝑗
(𝑡)} = 𝑄𝑤

Γ
𝑇
𝐻
𝑇

0𝑗
,

𝐸 {𝜀
𝑖 (
𝑡) 𝑥
𝑇

𝑗
(𝑡 − 1 | 𝑡 − 𝑙

𝑗
)}

= 𝐻
0𝑖
Φ𝑃
𝑖𝑗
(𝑡 − 1 | 𝑡 − 𝑙

𝑖
, 𝑡 − 𝑙
𝑗
) .

(17)

Substituting (17) into (24) and noting that 𝑃
𝑖𝑗
(𝑡 − 1) =

𝑃
𝑖𝑗
(𝑡 − 1 | 𝑡 − 𝑙

𝑖
, 𝑡 − 𝑙
𝑗
), (10) is obtained.

(ii) If the 𝑖th sensor has an observation and the 𝑗th sensor
does not have any observation at time 𝑡𝑇, we have local
estimators as

𝑥
𝑖 (
𝑡) = 𝑥𝑖 (

𝑡 | 𝑡 − 1) + 𝐾𝑖 (
𝑡) 𝜀𝑖 (

𝑡)

= Φ𝑥
𝑖 (
𝑡 − 1) + 𝐾𝑖 (

𝑡) 𝜀𝑖 (
𝑡) ,

𝑥
𝑗 (
𝑡) = 𝑥𝑗 (

𝑡 | 𝑡 − 1) = Φ𝑥𝑗 (
𝑡 − 1) .

(18)

Then, we have the estimation error equation as

𝑥
𝑖 (
𝑡) = Φ𝑥𝑖

(𝑡 − 1 | 𝑡 − 𝑙
𝑖
)

+ Γ𝑤 (𝑡 − 1) − 𝐾𝑖 (
𝑡) 𝜀𝑖 (

𝑡) ,

𝑥
𝑗 (
𝑡) = 𝑥𝑗 (

𝑡 | 𝑡 − 1)

= Φ𝑥
𝑗
(𝑡 − 1 | 𝑡 − 𝑙

𝑗
) + Γ𝑤 (𝑡 − 1) .

(19)

Similarly to the derivation of the case (i), (11) can be
obtained by computing 𝑃

𝑖𝑗
(𝑡) = 𝐸[𝑥

𝑖
(𝑡)𝑥
𝑇

𝑗
(𝑡)].

(iii) If both the 𝑖th sensor and the 𝑗th sensor do not have
observations at time 𝑡𝑇, we have local estimators as

𝑥
𝑖 (
𝑡) = 𝑥𝑖 (

𝑡 | 𝑡 − 1)

= Φ𝑥
𝑖 (
𝑡 − 1) = Φ𝑥𝑖

(𝑡 − 1 | 𝑡 − 𝑙
𝑖
) ,

𝑥
𝑗 (
𝑡) = 𝑥𝑗 (

𝑡 | 𝑡 − 1)

= Φ𝑥
𝑗 (
𝑡 − 1) = Φ𝑥𝑗

(𝑡 − 1 | 𝑡 − 𝑙
𝑗
) .

(20)
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(c) The third state component

Figure 2: Distributed fusion filter.

We have the estimation error equation as

𝑥
𝑖 (
𝑡) = 𝑥𝑖 (

𝑡 | 𝑡 − 1)

= Φ𝑥
𝑖
(𝑡 − 1 | 𝑡 − 𝑙

𝑖
) + Γ𝑤 (𝑡 − 1) ,

𝑥
𝑗 (
𝑡) = 𝑥𝑗 (

𝑡 | 𝑡 − 1)

= Φ𝑥
𝑗
(𝑡 − 1 | 𝑡 − 𝑙

𝑖
) + Γ𝑤 (𝑡 − 1) .

(21)

Then (12) is obtained by computing𝑃
𝑖𝑗
(𝑡) = 𝐸[𝑥

𝑖
(𝑡)𝑥
𝑇

𝑗
(𝑡)].

This proof is completed.

6. Distributed Fusion Estimator

In the preceding sections, we have obtained the local estima-
tors at the state update points and their covariance matrices.
Applying the distributed matrix weighted optimal fusion
estimation algorithm in the linear minimum variance sense
[8], we can obtain the distributed fusion estimator as follows:

𝑥
𝑜 (
𝑡) =

𝐿

∑

𝑖=1

𝐴
𝑖 (
𝑡) 𝑥𝑖 (

𝑡) . (22)

The optimal weighted matrices are computed by

[𝐴
1 (
𝑡) , . . . , 𝐴𝐿 (

𝑡)] = (𝑒
𝑇
𝑃
−1
(𝑡) 𝑒)

−1

𝑒
𝑇
𝑃
−1
(𝑡) , (23)
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Figure 3: Comparison of variances of distributed fusion filter and local filters.

where 𝑃(𝑡) = (𝑃
𝑖𝑗
(𝑡)) is an 𝑛𝐿 × 𝑛𝐿 matrix whose (𝑖, 𝑗) block

is 𝑃
𝑖𝑗
(𝑡) and 𝑒 = [𝐼

𝑛
, . . . , 𝐼

𝑛
]
𝑇 is an 𝑛𝐿 × 𝑛 matrix. Then, the

optimal fusion estimation error variance matrix is computed
by

𝑃
𝑜 (
𝑡) = (𝑒

𝑇
𝑃
−1
(𝑡) 𝑒)

−1

. (24)

Furthermore, we have 𝑃
𝑜
(𝑡) ≤ 𝑃

𝑖
(𝑡).

Remark 6. Compared to the centralized fusion estimator, the
distributed fusion estimator has the flexibility, fault tolerance,
and reliability since it has the distributed parallel structure
[8].

7. Simulation

An uninterruptible power system (UPS) with three sensors
subject to the multiplicative noises is taken as an example
to demonstrate the effectiveness and applicability of the
proposed method. We consider the UPS with 1KVA. The
discrete-time model (1) can be obtained with sampling time
10ms at half-load operating point as follows [20]:

𝑥 (𝑡 + 1)

= (

0.9226 −0.6330 0

1 0 0

0 1 0

)𝑥 (𝑡) + (

0.5

0

0.2

)𝑤 (𝑡)
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Figure 4: Comparison of variances of centralized and distributed fusion filters.

𝑦
𝑖
(𝑙
𝑖
𝑡) = ((23.738 20.287 0) + 𝜉

𝑖
(𝑙
𝑖
𝑡)𝐻
1𝑖
) 𝑥
𝑖
(𝑙
𝑖
𝑡) + V
𝑖
(𝑙
𝑖
𝑡) ,

𝑖 = 1, 2, 3,

(25)
where 𝑤(𝑡), V

𝑖
(𝑙
𝑖
𝑡), and 𝜉

𝑖
(𝑙
𝑖
𝑡) are uncorrelated white noises

with zeromean and variances𝑄
𝑤
,𝑄V𝑖 , and𝑄𝜉𝑖 . In simulation,

we take 𝑄
𝑤
= 0.64, 𝑄

𝜉1
= 1.2, 𝑄

𝜉2
= 0.7, 𝑄

𝜉3
= 0.3,

𝑄V1 = 3, 𝑄V2 = 2, 𝑄V3 = 1, 𝑙1 = 1, 𝑙2 = 2, 𝑙3 = 3, 𝐻11 =
[8 12 6], 𝐻

12
= [10 8 5], 𝐻

13
= [8 6 10], the initial

values 𝑥(0) = 0, and 𝑃
0
= 0.1𝐼

3
. The sampling case is shown

in Figure 1. Figure 2 gives the distributed fusion estimator.
We see that the fusion estimator has the effective estimation
performance. Figure 3 gives the comparison of variances of
the distributed fusion estimator and local estimators. We see

that the proposed fusion estimator outperforms the local
estimators. Figure 4 gives the comparison of variances of the
distributed fusion estimator and centralized fusion estimator.
We see that the distributed fusion estimator has the small
accuracy loss. However, it is significant that the distributed
fusion estimator has better reliability than the centralized
fusion estimator since it is convenient to detect and isolate
the faults of sensors from distributed structure.

8. Conclusion

A distributed fusion estimator has been designed for systems
with multiple sensors of different sampling rates and obser-
vation multiplicative noises. Compared with the centralized
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fusion estimator, it has the small accuracy loss and better
reliability. Sampling period of each sensor is uniform and the
integer multiple of the state update period. By establishing
the state space model at the observation sampling points, the
local filters at the observation sampling points are obtained.
Further, the local estimators at the state update points are
obtained by the filtering and prediction approach. They
avoid the state augmentation and have a good real-time
property. The cross-covariance matrices between any two
local estimators are derived.The distributed fusion estimator
is obtained by well-known weighted fusion estimation algo-
rithm in linear minimum variance sense.
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