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In this work an anaerobic digester is controlled using input-output linearization and Lyapunov-like functionmethods. It is assumed
thatmodel parameters are unknown, time-varying, and bounded, and upper or lower bounds are also unknown. To tackle the effect
of input saturation, a state observer is designed.The tracking and observer errors are defined in terms of the noisy measured output
instead of ideal output, given by the mathematical model. The design of the observer mechanism and the update laws is based on
the Lyapunov-like function technique, whereas the design of the control law is based on the input-output linearization method.
In this paper two important properties of the controlled system are proven. First, the observer error converges asymptotically
to a residual set whose size is user-defined, and such convergence is not disrupted, neither by the input saturation nor by the
parameter uncertainties. Second, when the control input is nonsaturated the tracking error converges to a residual set whose size
is user-defined. The model parameter uncertainties are included to prove the convergence of errors. Finally, a numerical example
to validate the developed control is presented.

1. Introduction

Nonlinear control techniques have been widely developed
in the last years. The adaptive control is perhaps one of
the most important techniques to control systems, mainly
due to its ability to compensate for the parametric model
uncertainties. In [1–5], an adaptive fuzzy tracking control is
designed to control a class of stochastic nonlinear systems. In
[1, 2] it is proven that the closed loop signals are bounded in
probability, and the tracking error eventually converges to a
residual set whose size is not known a priori or predefined
by the user. In [3–5], a fuzzy state observer is included, and
the convergence of the output and the tracking error are
guarantee to residual sets whose sizes cannot be predefined
by the user.

High gain observer is effective in estimating system
states and output derivatives and in rejecting modelling
disturbances in absence of noise [6–9]. Nevertheless, state

estimation is degraded in the presence of measurement noise
and gets worse for large observer gain [8, 9]. In [7, 8], non-
linear plant models in state-space form and in controllable
form are considered, respectively. Both plant models involve
known constant coefficients. The real output is defined as the
first state and is measured, whereas the other states are not.
The output measurement is expressed as the sum of the real
output plus a bounded of the noisy parameter measurement.
The observer depends on the difference between the noisy
output measurement and the output estimate. The stability
analysis indicates that the state estimation error converges to
a residual set whose size is not known a priori; evenmore, the
coefficients of the plant model are required to be known.

Interval observers provide an upper and a lower bound
(intervals) for each unmeasured state variable. Upper and
lower bounds of some plant parameters are introduced in
the observer mechanism, leading to two observer equations
and two estimated states for each unmeasured state. Such
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estimated states constitute intervals for each unmeasured
state and can be used to develop a robust controller [10–12].

Nevertheless, interval observers have the following fea-
tures: (i) several upper and lower bounds of the plant model
parameters are required to be known; (ii) overestimated
values of the unmeasured states can result if uncertainty on
the feed concentrations is broad; and (iii) upper or lower
bounds of the noise model parameters are required to be
known in the case of some schemes as that in [11].

In the robust controller presented in [13], a plant in
parametric pure feedback form is considered. It is assumed
that each measurement of the plant states is corrupted by
noise and is expressed as the real value of the state variable
with additive and multiplicative noise parameters. The noise
parameters are unknown, time-varying, bounded, and their
time derivatives are unknown and bounded. Therefore, if
such noise model is differentiated, the time derivative of the
state measurement is the time derivative of the real state
variable with additive and multiplicative parameters. The
states resulting from the backstepping state transformation
are defined in terms of the noisy measurements instead of
the real states. Hence, the differentiation of each quadratic
function involves the differentiation of each noise model.
Thus, the control law formulation is based on the noisy
measurement instead of the real states. As the stability anal-
ysis indicates, the measured and real states remain bounded
but do not converge to the expected residual set. Therefore,
the convergence of the tracking error to a residual set of
user-defined size is not achieved. The approach of [13] for
considering the noise model will be used in this work.

In the present paper it is assumed that model parameters
are unknown, time-varying, and bounded, and upper or
lower bounds are also unknown. Constant upper bounds
are established for the biological concentrations and reaction
rate terms and are valid for the case of nonnegative dilution
rate and time-varying but bounded model parameters. These
bounds are used in the control design and in proving the
boundedness and convergence of the closed loop signals.
The tracking and observer errors are defined in terms of the
noisy measured output instead of the real output. In fact, the
observer error is defined as the difference between the mea-
sured and the estimated output. A state observer allows us to
tackle the effect of input saturation.Thedesign of the observer
mechanism and the update laws is based on the Lyapunov-
like function technique, whereas the design of the control law
is based on the input-output linearization method. The main
difference between Lyapunov functions and Lyapunov-like
functions is the condition to be zero.The Lyapunov functions
must be zero only in the origin of the state space and greater
than zero outside the origin; the Lyapunov-like functions
must be zero in the origin of the state space as well as in
a predefined region, and it must be positive outside of this
region. Other conditions such as continuity, differentiability,
and being semidefinite derivative must be satisfied by the
Lyapunov-like functions. The following benefits are achieved
with the proposed controller:

Bf 1.1 the exact values of the plant and noise model param-
eters are not required to be known, and although

a nominal value of the influent concentration is
required to be known, other upper or lower bounds
of model parameters are not required to be known;

Bf 1.2 the parameter uncertainty is taken into account in
the stability analysis, such that the convergence and
boundedness properties are not disrupted by such
uncertainty;

Bf 1.3 the observer error converges asymptotically to a
residual set whose size is user-defined, and such
convergence is not disrupted, neither by the input
saturation nor the parameter uncertainty;

Bf 1.4 discontinuous signals are avoided in the control and
update laws;

Bf 1.5 the updated parameters are bounded, so that param-
eter drifting is absent, despite input saturation;

Bf 1.6 when the control input is not saturated, it is guaran-
teed that the tracking error converges to a residual set
whose size is user-defined.

Themajor contributions with respect to closely related works
are the benefits Bf 1.1, Bf 1.2, and Bf 1.3, which are significant
contributions with respect to the aforementioned control
schemes that tackle the effect of measurement noise, for
instance [7, 8, 11, 13].

This paper is organized as follows. Section 2 shows
characteristics, assumptions, and model of the plant, the goal
of the control design, and the bounded nature of the model
concentrations and reaction rate terms. Section 3 presents the
control design, including the formulation of the control law,
the update law, and the state observer. Section 4 presents the
proof for (i) the bounded nature of the closed loop signals
despite input saturation, (ii) the convergence of the observer
error to a residual set of user-defined size despite input
saturation, and (iii) the convergence of the tracking error to a
residual set of user-defined size, when the control input is not
saturated. Section 5 shows a simulation example and finally
Section 6 shows the discussion and conclusions.

2. The Plant Model and Control Goal

2.1. Plant Model. The upflow anaerobic fixed bed reactor of
[14] is considered, whose mass-balance model is
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demand, and volatile fatty acids (VFA);𝐷 is the dilution rate;
𝛼 is the proportion of biomass not attached to the reactor;
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are kinetic
parameters. As in [15], the concentration 𝑆

2
and the dilution

rate 𝐷 are chosen as the output to be controlled and the
control input. The characteristics of model parameters, state
variables, influent concentrations, and dilution rate have been
depicted in literature on anaerobic digestion and bioreactors
and are considered in this work.

Characteristic 1. The value of 𝐷 is available online [12, 16],
whereas 𝑆

1
, 𝑋
1
, and 𝑋

2
are unknown. This is in agreement

with [12, 15–17].

Characteristic 2. The concentrations 𝑋
1
, 𝑋
2
, 𝑆
1
, and 𝑆

2
are

nonnegative [16, 18, 19].

Characteristic 3. The inflow substrate concentration 𝑆in
1
, the

yield coefficients, the proportion 𝛼, and the kinetic parame-
ters are unknown, varying, and bounded, and upper bounds
of their values are unknown [12, 20, 21]. In this work we
consider the following notation: 0 < 𝑘

1min ≤ 𝑘1, 𝑘2 ≤ 𝑘2max,
0 < 𝑘

3min ≤ 𝑘

3
≤ 𝑘

3max, 0 < 𝑘

6min ≤ 𝑘

6
≤ 𝑘

6max,
𝑆

in
1
≤ 𝑆

1𝑖max, 𝑆
in
2
≤ 𝑆

2𝑖max, 𝛼 ≥ 𝛼min, 𝜇2max ≤ 𝜇2max, 𝐾𝑆2 ≥
𝐾

𝑆
2
min, ≤ 𝐾𝐼

2
min ≤ 𝐾𝐼

2
max, where 𝑘1min, 𝑘2max, 𝑘3min, 𝑘3max,

𝑘

6min, 𝑆1𝑖max, 𝑆2𝑖max,𝑘6max, 𝛼min, 𝜇2max, 𝐾𝑆2min, and 𝐾𝐼
2
min

are unknown positive constants, whereas 𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
6
, 𝑆in
1
,

𝛼, 𝜇
2max, 𝐾𝑆

2

, and𝐾
𝐼
2

are unknown, varying and bounded.

Characteristic 4. The dilution rate 𝐷 is constrained between
known bounds 𝑢min and 𝑢max: 0 ≤ 𝑢min ≤ 𝐷 ≤ 𝑢max ∀𝑡 ≥ 𝑡𝑜,
where 𝑢min is a nonnegative constant, and 𝑢max is a positive
constant [15, 22].
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The following assumption is made.
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2.2. Control Goal. Let
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positive constants defined by the user.The goal of the control
design is to formulate a control law, an update law, and an
observer mechanism for the plant model (1) to (4), subject
to Characteristics 1 to 6 and Assumption 1, such that (CGi)
the observer error converges to a residual predefined size
set despite the input saturation, (CGii) the tracking error
𝑒(𝑡) converges asymptotically to the residual set Ω
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when

the control input is not saturated, (CGiii) the controller does
not involve discontinuous signals, (CGiv) the control law, the
updating mechanism, and the observer mechanism provide
bounded values of the control input, updated parameter
vector, and output estimate.
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2.3. Boundedness of the Anaerobic Digester States under Non-
Negative Dilution Rate. The bounded nature of the digester
states and reaction rate terms are commonly used in control
design and stability analysis as can be noticed in [16, 24–26].
In the present work, upper constant bounds are established
for the digester states and reaction rate terms, in order to
allow the controller design and the stability analysis.

Lemma 4. Consider the plants (1) to (4), subject to Character-
istics 1 to 6 and Assumption 1. The plant model concentrations
and reaction rate terms exhibit the following characteristics:
(i) the concentration of acidogenic biomass and COD, that is,
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The proof is presented in Appendix A. In the control
design and stability analysis, the above lemma will be used
to tackle the lack of knowledge on the term 𝑎
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signals and to prove the asymptotic convergence of the
observer error.

3. Control Design

In this section, the state observer, the control law, and the
update law are formulated considering the plants (1) to (4),
subject to Characteristics 1 to 6, Assumption 1, and goals
(CGi) to (CGiv). Discontinuous signals are avoided in the
control design, because such signals lead to discontinuous
vectorial field and undesired effects in the closed loop system,
that is, (i) trajectory unicity may be lost [27], (ii) the state
trajectories may undergo sliding motion and consequently
state chattering along the discontinuity surface [27, 28], and
(iii) input chatteringmay occur [22]. Input chattering consists
of a commutation component in the control input with
large commutation rate [22]. It may result in high power
consumption and wear of mechanical components [29, 30].

As mentioned in [22, 31], the input saturationmay lead to
“integrator windup” phenomenon. In this case, the integral
term may exhibit an excessive increase when the input gets
saturated, what leads to slow convergence, overshoot, and
large steady state of the tracking error [22]. This can be
remedied by means of state observers. In the controllers
presented in [16, 22, 32] the observer error convergence is
not affected by input saturation. In [32], the convergence of
the tracking error is guaranteed when the input does not get
saturated but is not guaranteed on the contrary case.

In view of the above discussion, a state observer is
considered in the present work and discontinuous signals
are avoided in the controller mechanism. The state observer
allows us to handle the effect of control input saturation
and avoid excessive increases of updating parameters when

the input gets saturated. The lack of knowledge of the
unknown varying but bounded parameters of the plant
and noise models, and constant upper bounds of the plant
and noise model parameters, is tackled by means of an
updated parameter vector, which is provided by an update
law. The Lyapunov-like function method is used instead of
the classical direct Lyapunov method, in order to design a
controller that does not involve discontinuous signals and
leads to adequate boundedness and convergence properties
(see [28, 32–34]). When a state observer is used, the state
dependent quadratic form is defined in terms of the observer
error instead of the tracking error (see [35]). A truncation is
introduced in the definition of the quadratic form, in order
to avoid discontinuous signals in the observer mechanism,
update law, and control law and avoid the aforementioned
state and input chattering phenomena.The time derivative of
the quadratic form is rewritten in terms of unknown constant
upper bounds, and such bounds are expressed in terms of
updated parameters, in order to handle the uncertainty on
plant model parameters, noise model parameters, and upper
bounds. The Lyapunov-like function depends on the closed
loop states, that is, the observer error and the parameter
updating error. The formulation of the observer and the
updating law expressions is such that the time derivative of
the Lyapunov-like function is upper-bounded by a function
that exhibits certain properties, which in turn lead to the
required boundedness of the closed loop signals and conver-
gence of the observer error.The formulation of the control law
is such that the estimated output converges asymptotically
to the desired output, for the time lapses during which the
control input does not get saturated. As a result of the control
design and stability analysis, the tracking error 𝑒 converges
asymptotically to the residual set Ω

𝑒
for such time lapses.

The constant upper bounds established in Section 2.3 are
used in the control design and in proving the boundedness
and convergence properties of the closed loop signals. As
a result, the following facts are guaranteed: (i) the observer
error converges asymptotically to a residual set whose size
is user-defined, (ii) the updated parameters are bounded, so
that parameter drifting is avoided, (iii) the control law, the
output estimate, and the closed loop signals are bounded in
closed loop, and (iv) the tracking error converges towards
a residual set whose size is user-defined, when the input is
not saturated. In summary, the benefits Bf 1.1 to Bf 1.6 are
achieved.

The steps for the formulation of the observer, the update
law, and the control law are summarized as follows: (i) define
the observer error and differentiate it with respect to time;
(ii) formulate a quadratic-like function that depends on the
observer error, and differentiate such function with respect
to time; (iii) express the unknown varying coefficients of
the plant model and measurement model in terms of an
updated parameter vector and an updating error vector;
(iv) define the observer, such that the time derivative of
the quadratic function involves terms that contribute to the
required stability properties; (v) formulate the Lyapunov-
like function and differentiate it with respect to time; (vi)
formulate the updating law; and (vii) formulate the control
law. The above steps are developed as the following.
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3.1. Step 1. In this step, the observer error is defined and
differentiated with respect to time. Let
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− 𝑦, (12)
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3.2. Step 2. In this step, a quadratic function that depends
on the observer error is formulated and differentiated with
respect to time.The truncated function, appearing in [28, 32–
34], allows us to obtain (i) adequate time derivative of the
Lyapunov-like function, (ii) adequate stability properties, and
(iii) continuous controller. The Lyapunov-like function is
defined as in [28, 32–34]:

𝑉

𝑧
(𝑧) =

{

{

{

{

{

{

{

{

{

(

1

2

) (𝑧 − 𝐶

𝑏𝑧
)

2 if 𝑧 ≥ 𝐶
𝑏𝑧

0 if 𝑧 ∈ (−𝐶
𝑏𝑧
, 𝐶

𝑏𝑧
)

(

1

2

) (𝑧 + 𝐶

𝑏𝑧
)

2 if 𝑧 ≤ −𝐶
𝑏𝑧
,

(18)

where 𝐶
𝑏𝑧

is a positive constant whose value will be defined
later, and 𝑧 is defined in (12). Expression (18) is based on the
distance of the observer error 𝑧 to the boundary layer with
𝐶

𝑏𝑧
in width, as stated in [28]. The function 𝑉

𝑧
(18) presents

the three properties mentioned above. From (18) it follows
that

(i) 𝑉

𝑧
≥ 0, (19)

(ii) |𝑧| ≤ 𝐶𝑏𝑧
+ √2𝑉

𝑧
,

(20)

(iii) if 𝑉
𝑧
∈ 𝐿

∞
, then 𝑧 ∈ 𝐿

∞
, (21)

(iv) 𝑉

𝑧
,

𝜕𝑉

𝑧

𝜕𝑧

are locally Lipschitz continuous. (22)

The proof of (20) is shown in Appendix B. The Lipschitz
continuity allows us to avoid discontinuous signals in the
controller and consequently allows us to avoid loss of tra-
jectory unicity and state and input chattering. The time
derivative of the Lyapunov-like function has to be upper
bounded by a function that exhibits certain properties [32–
34]: (TDPi) the function is not positive (TDPii), the function
is zero when the observer error is inside or on the boundary
of a residual set of predefined small size, and (TDPiii) the
function is negative when the observer error is outside such
residual set. The fulfillment of such properties implies that
(i) the observer error converges asymptotically to a residual
set of adequate predefined size and (ii) the control law, the
updating mechanism, and the observer mechanism provide
bounded signals. Differentiating (18), with respect to time,
yields

𝑑𝑉

𝑧

𝑑𝑡

=

𝜕𝑉

𝑧

𝜕𝑧

�̇�,
(23)

𝜕𝑉

𝑧

𝜕𝑧

≜ 𝑔

𝑧
=

{

{

{

{

{

𝑧 − 𝐶

𝑏𝑧
if 𝑧 ≥ 𝐶

𝑏𝑧

0 if 𝑧 ∈ (−𝐶
𝑏𝑧
, 𝐶

𝑏𝑧
)

𝑧 + 𝐶

𝑏𝑧
if 𝑧 ≤ −𝐶

𝑏𝑧
,

(24)

where 𝑧 is defined in (12). Substituting (17) into (23) yields

̇

𝑉

𝑧
= 𝑔

𝑧
�̇� = −𝑐

1
𝑔

2

𝑧

+ 𝑔

𝑧
(−

𝑎

2

𝑎

1

̇𝑎

1
+ 𝑎

𝑜
𝑎

1
+ ̇𝑎

2
+

̇𝑎

1

𝑎

1

𝑦

𝑚
+ 𝑎

1
𝑏𝑢 −

̇

�̂� + 𝑐

1
𝑔

𝑧
) .

(25)

Thenotation𝑔
𝑧
has been introduced for notational simplicity,

and the term 𝑐

1
𝑔

2

𝑧
has been added and subtracted in order

to contribute to obtain the required stability properties.
Incorporating (8) and (16) in (25) yields

̇

𝑉

𝑧
= − 𝑐

1
𝑔

2

𝑧

+ 𝑔

𝑧
(−

𝑎

2

𝑎

1

̇𝑎

1
+ 𝑎

𝑜
𝑎

1
+ ̇𝑎

2
+

̇𝑎

1

𝑎

1

𝑦

𝑚

+ (𝑎

1
𝑆

in
2
− 𝑦

𝑚
+ 𝑎

2
) 𝑢 −

̇

�̂� + 𝑐

1
𝑔

𝑧
) .

(26)

3.3. Step 3. Since the lumped parameters (−𝑎
2
𝑎

1
/𝑎

1
+𝑎

𝑜
𝑎

1
+ ̇𝑎

2
)

and ̇𝑎

1
/𝑎

1
, 𝑎
1
𝑆

in
2
− 𝑆

in
2
+ 𝑎

2
are unknown, time-varying, and

bounded, they should be expressed in terms of unknown
constant upper bounds, and such bounds should be expressed
in terms of an updated parameter vector and an updating
error vector.

The Luenberger-type observers for anaerobic digesters
may require the control gain to be known in order to cancel
the control input term (see [22]). Equation (26) indicates
that the cancelation of the term (𝑎

1
𝑆

in
2
− 𝑦

𝑚
+ 𝑎

2
)𝑢 by the

observer mechanism ̇

�̂� requires the term 𝑎

1
𝑆

in
2
− 𝑦

𝑚
+ 𝑎

2
to

be known. Nevertheless, because of the uncertainty on 𝑎
1
,

𝑆

in
2
, and 𝑎

2
, such cancelation is not possible. According to the

experimental data shown in [14], the term 𝑆in
2
−𝑦

𝑚
= 𝑆

in
2
−𝑆

2𝑚
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is usually positive. Therefore, Characteristic 6 is considered,
that is,

𝑏 ≜ 𝑆

in
2
− 𝑦

𝑚
> 0 ∀𝑡 ≥ 𝑡

𝑜
,

(27)

where 𝑆in
2
is a known nominal value of 𝑆in

2
that fulfills the

above property. Equation (26) can be rewritten as

̇

𝑉

𝑧
= − 𝑐

1
𝑔

2

𝑧

+ 𝑔

𝑧
(−

𝑎

2

𝑎

1

̇𝑎

1
+ 𝑎

𝑜
𝑎

1
+ ̇𝑎

2
+

̇𝑎

1

𝑎

1

𝑦

𝑚

+ (𝑎

1
𝑆

in
2
− 𝑦

𝑚
+ 𝑎

2
− 𝑏) 𝑢 + 𝑏𝑢 −

̇

�̂� + 𝑐

1
𝑔

𝑧
) .

(28)

In view of (27), it follows that

𝑎

1
𝑆

in
2
− 𝑦

𝑚
+ 𝑎

2
− 𝑏 = 𝑎

1
𝑆

in
2
− 𝑆

in
2
+ 𝑎

2
.

(29)

Hence, (28) can be rewritten as

̇

𝑉

𝑧

= −𝑐

1
𝑔

2

𝑧

+ 𝑔

𝑧
(−

𝑎

2

𝑎

1

̇𝑎

1
+ 𝑎

𝑜
𝑎

1
+ ̇𝑎

2
+

̇𝑎

1

𝑎

1

𝑦

𝑚
+ (𝑎

1
𝑆

in
2
− 𝑆

in
2
+ 𝑎

2
) 𝑢)

+ (𝑏𝑢 −

̇

�̂� + 𝑐

1
𝑔

𝑧
) 𝑔

𝑧
.

(30)

In accordance with [32, 33], the unknown plant model
lumped parameter terms are expressed in terms of unknown
positive constant upper bounds, and the uncertainty on such
bounds is tackled by means of updated parameters. The term
inside large parenthesis in (30) leads to

𝑔

𝑧
(−

𝑎

2

𝑎

1

̇𝑎

1
+ 𝑎

𝑜
𝑎

1
+ ̇𝑎

2
+

̇𝑎

1

𝑎

1

𝑦

𝑚
+ (𝑎

1
𝑆

in
2
− 𝑆

in
2
+ 𝑎

2
) 𝑢)

≤

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

−

𝑎

2

𝑎

1

̇𝑎

1
+ 𝑎

𝑜
𝑎

1
+ ̇𝑎

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

−

̇𝑎

1

𝑎

1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑦

𝑚

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

1
𝑆

in
2
− 𝑆

in
2
+ 𝑎

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

|𝑢|

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

.

(31)

Definition (8) indicates that 𝑎
𝑜
involves the terms 𝑘

2
𝜇

1
𝑋

1

and 𝑘

3
𝜇

2
𝑋

2
. Characteristic 3 mentions that 𝑘

3
is upper

bounded by a constant, Lemma A.3 mentions that 𝑘
2
𝜇

1
𝑋

1
is

bounded, and Lemma A.7 mentions that 𝜇
2
𝑋

2
is bounded.

Therefore, the term 𝑎

𝑜
is upper-bounded by an unknown

positive constant. This statement, jointly with Characteristic
6 and property (Pv) stated in Section 2.1, implies that the
lumped parameters appearing in (31) are upper bounded by
unknown positive constants:

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

−

𝑎

2

𝑎

1

̇𝑎

1
+ 𝑎

𝑜
𝑎

1
+ ̇𝑎

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝜅

1
,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

−

̇𝑎

1

𝑎

1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝜅

2
,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

1
𝑆

in
2
− 𝑆

in
2
+ 𝑎

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝜅

3
,

(32)

where 𝜅
1
, 𝜅
2
, and 𝜅

3
are unknown positive constant bounds.

Substituting the above expressions into (31), using property
(Pi) and arranging in terms of parameter and regression
vectors, yields

𝑔

𝑧
(−

𝑎

2

𝑎

1

̇𝑎

1
+ 𝑎

𝑜
𝑎

1
+ ̇𝑎

2
+

̇𝑎

1

𝑎

1

𝑦

𝑚
+ (𝑎

1
𝑆

in
2
− 𝑆

in
2
+ 𝑎

2
) 𝑢)

≤ 𝜅

1

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

+ 𝜅

2

󵄨

󵄨

󵄨

󵄨

𝑦

𝑚

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

+ 𝜅

3

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

𝑢max = 𝜑
⊤
𝜃

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

,

(33)

where

𝜑 = [1,

󵄨

󵄨

󵄨

󵄨

𝑦

𝑚

󵄨

󵄨

󵄨

󵄨

, 𝑢max]
⊤

,
(34)

𝜃 = [𝜅1
, 𝜅

2
, 𝜅

3]

⊤

.
(35)

Substituting (33) into (30) yields

̇

𝑉

𝑧
≤ −𝑐

1
𝑔

2

𝑧
+ 𝜑

⊤
𝜃

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

+ 𝑔

𝑧
(𝑏𝑢 + 𝑐

1
𝑔

𝑧
−

̇

�̂�) . (36)

The parameter vector 𝜃 can be rewritten as

𝜃 =

̂

𝜃 −

̃

𝜃,
(37)

where

̃

𝜃 ≜

̂

𝜃 − 𝜃,
(38)

where ̃𝜃 is an updating error vector and ̂

𝜃 is an updated
parameter vector provided by an update law that will be
defined later and 𝜃 is the unknown constant vector defined
in (35). Substituting (37) into (36) and arranging yields

̇

𝑉

𝑧
≤ − 𝑐

1
𝑔

2

𝑧
+ 𝑔

𝑧
(𝜑

⊤
̂

𝜃 sgn (𝑔
𝑧
) + 𝑏𝑢 + 𝑐

1
𝑔

𝑧
−

̇

�̂�)

− 𝜑

⊤
̃

𝜃

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

.

(39)

3.4. Step 4. The state observer ̇

�̂� has to be defined such that
the right hand side of (39) contains the terms −𝑐

1
𝑔

2

𝑧
and

−𝜑

⊤
̃

𝜃|𝑔

𝑧
|, and the remaining terms are canceled, such that

the time derivative of the Lyapunov-like function fulfills the
properties (TDPi), (TDPii), and (TDPiii) mentioned in Step
2. Expression (39) indicates that the observer mechanism ̇

�̂�

that leads to adequate time derivative of ̇

𝑉

𝑧
would contain

the term sgn(𝑔
𝑧
). The drawback is that the term sgn(𝑔

𝑧
) is

discontinuous with respect to 𝑧. From (24) it follows that

sgn (𝑔
𝑧
) = {

sgn (𝑧) if |𝑧| > 𝐶𝑏𝑧
0 otherwise.

(40)

Using the following property (which is based on [34]):

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

= 𝑔

𝑧
sat
𝑧 (41)

sat
𝑧
=

{

{

{

{

{

sgn (𝑧) if |𝑧| > 𝐶𝑏𝑧

(

1

𝐶

𝑏𝑧

)𝑧 otherwise,
(42)
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the discontinuity respect to 𝑧 is avoided. The proof of
property (41) is presented in 𝐶. Introducing (41) into (39)
yields

̇

𝑉

𝑧
≤ − 𝑐

1
𝑔

2

𝑧
+ 𝑔

𝑧
(𝜑

⊤
̂

𝜃sat
𝑧
+ 𝑏𝑢 + 𝑐

1
𝑔

𝑧
−

̇

�̂�)

− 𝜑

⊤
̃

𝜃

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

.

(43)

The observer ̇

�̂� should cancel the effect of terms 𝜑⊤̂𝜃sat
𝑧
, 𝑏𝑢,

and 𝑐
1
𝑔

𝑧
. Thus, ̇�̂� is chosen as

̇

�̂� = 𝜑

⊤
̂

𝜃sat
𝑧
+ 𝑏𝑢 + 𝑐

1
𝑔

𝑧
.

(44)

Substituting into (43) yields

̇

𝑉

𝑧
≤ −𝑐

1
𝑔

2

𝑧
− 𝜑

⊤
̃

𝜃

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

.
(45)

3.5. Step 5. In this step, the Lyapunov-like function is formu-
lated and differentiated with respect to time. The Lyapunov-
like function is defined as [28, 32, 33]

𝑉 (𝑥 (𝑡)) = 𝑉

𝑧
+ 𝑉

𝜃
, (46)

𝑥 = [
𝑧(𝑡),

̃

𝜃

⊤
]

⊤

,
(47)

𝑉

𝜃
= (

1

2

)

̃

𝜃

⊤
Γ

−1
̃

𝜃, (48)

where 𝑉
𝑧
is defined in (18), ̃𝜃 in (38), and 𝑧 in (12), and

Γ is a 3 × 3 diagonal matrix whose diagonal entries are
user-defined positive constants. Note that according to the
Lyapunov-like function definition and (48) and (51), the
matrix Γ must be definite positive; this is fulfilled if Γ is
a diagonal matrix whose entries are positive. The states of
the closed loop system are 𝑧 and ̃𝜃. For the sake of easier
understanding, the Lyapunov-like function 𝑉(𝑥(𝑡)) (46) is
rewritten in terms of 𝑧 and ̃𝜃, using expression (18):

𝑉 (𝑥 (𝑡)) = 𝑉

𝑧
+ (

1

2

)

̃

𝜃Γ

−1
̃

𝜃,

𝑉

𝑧
(𝑧) =

{

{

{

{

{

{

{

{

{

{

{

{

{

(

1

2

) (𝑧 − 𝐶

𝑏𝑧
)

2 if 𝑧 ≥ 𝐶
𝑏𝑧

0 if 𝑧 ∈ (−𝐶
𝑏𝑧
, 𝐶

𝑏𝑧
)

(

1

2

) (𝑧 + 𝐶

𝑏𝑧
)

2 if 𝑧 ≤ −𝐶
𝑏𝑧
.

(49)

Differentiating 𝑉(𝑥(𝑡)) with respect to time and using (48)
yield

̇

𝑉 =

̇

𝑉

𝑧
+

̇

𝑉

𝜃
(50)

̇

𝑉

𝜃
=

̃

𝜃

⊤
Γ

−1 ̇
̃

𝜃 =

̃

𝜃

⊤
Γ

−1 ̇
̂

𝜃,

(51)

Substituting (45) and (51) into (50) yields

̇

𝑉 ≤ −𝑐

1
𝑔

2

𝑧
− 𝜑

⊤
̃

𝜃

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

+

̃

𝜃

⊤
Γ

−1 ̇
̂

𝜃.

(52)

3.6. Step 6. In this step the updating law is formulated.
Equation (52) can be rewritten as

̇

𝑉 ≤ −𝑐

1
𝑔

2

𝑧
+

̃

𝜃

⊤
(−𝜑

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

+ Γ

−1 ̇
̂

𝜃) . (53)

The update law is chosen such that the term ̃

𝜃

⊤
𝜑|𝑔

𝑧
| is

canceled:

̇

̂

𝜃 = Γ𝜑

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

,

(54)

where 𝑔
𝑧
is defined in (24) and Γ is a 3 × 3 diagonal matrix

whose diagonal elements are user-defined positive constants.
Substituting (54) into (53) yields

̇

𝑉 ≤ −𝑐

1
𝑔

2

𝑧
≤ 0, (55)

The above expression fulfills properties (TDPi), (TDPii), and
(TDPiii) mentioned in Step 2.Therefore, the observer error 𝑧
converges to a residual set whose size is𝐶

𝑏𝑧
, as will be proven

in Section 4.

3.7. Step 7. In this step the control law is formulated based
on the observer equation (44) (𝑦) and the desired output
dynamics (10) (𝑦

𝑑
), such that the difference 𝑦 − 𝑦

𝑑
converges

asymptotically to zero when the control input does not get
saturated. Let

𝑥 = 𝑦 − 𝑦

𝑑
, (56)

where 𝑦 is provided by (44). Differentiating with respect to
time and using (44) yield

�̇� =

̇

�̂� − ̇𝑦

𝑑
= 𝜑

⊤
̂

𝜃sat
𝑧
+ 𝑏𝑢 + 𝑐

1
𝑔

𝑧
− ̇𝑦

𝑑
.

(57)

The input rule for the case of no saturation is based on
the input-output linearization method [28], such that 𝑥
converges exponentially to zero. Such input rule cancels the
nonlinear terms 𝑐

1
𝑔

𝑧
, 𝜑⊤̂𝜃sat

𝑧
, and − ̇𝑦

𝑑
and introduces the

nonlinear term −𝑐

2
𝑥:

𝑢

𝑜
=

1

𝑏

(−𝑐

1
𝑔

𝑧
− 𝜑

⊤
̂

𝜃sat
𝑧
+ ̇𝑦

𝑑
− 𝑐

2
𝑥) , (58)

where 𝑏 is defined in (27). The final control law involves the
saturation limits 𝑢min, 𝑢max:

𝑢 =

{

{

{

{

{

𝑢

𝑜
if 𝑢
𝑜
∈ [𝑢min, 𝑢max]

𝑢max if 𝑢
𝑜
> 𝑢max

𝑢min if 𝑢
𝑜
< 𝑢min,

(59)

where 𝑢min and 𝑢max are the extreme values of the control
input 𝐷 defined in Characteristic 4 and 𝑐

2
is a positive

constant defined by the user. The observer mechanism (44),
the update law (54), and the control law given by (59) and
(58) achieve the convergence of 𝑧 to the residual setΩ

𝑧
= {𝑧 :

|𝑧| ≤ 𝐶

𝑏𝑧
}, despite input saturation events, as will be proven

in Section 4.
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Remark 5. When input saturation occurs, the bioreactor is
in open loop operation, and it is difficult to guarantee the
expected convergence of the tracking error. To the author’s
knowledge, the expected convergence of the tracking error
under input saturation events has not been guaranteed for
bioreactors. Nevertheless, as can be noticed from numerical
simulation and experimental results shown in [16, 22], the
input saturation events only occur for some lapses of time.
Therefore, in the presentwork the convergence of the tracking
error to a residual set of user-defined size is proven for the
time lapses when input saturation does not occur.

The value of constant𝐶
𝑏𝑧
is defined as the following, such

that the tracking error 𝑒 converges to Ω
𝑒
= {𝑒 : |𝑒| ≤ 𝐶

𝑏𝑧
}, as

expected in control goal (CGii) of Section 2.2. Recall that 𝑧
converges to Ω

𝑧
= {𝑧 : |𝑧| ≤ 𝐶

𝑏𝑧
}. If the control input 𝑢

𝑜

defined in (58) fulfills 𝑢
𝑜
∈ [𝑢min 𝑢max] ∀𝑡 ≥ 𝑡

𝑜
, then the

signal 𝑥 defined in (56) converges to zero, and the tracking
error 𝑒 converges to the residual set Ω

𝑒
= {𝑒 : |𝑒| ≤ 𝐶

𝑏𝑧
}, as is

proven in Section 4. According to the control goal (CGii) and
(11), the size of the residual set Ω

𝑒
should be 𝐶

𝑏𝑒
. Therefore,

the positive constant 𝐶
𝑏𝑧
is defined as

𝐶

𝑏𝑧
= 𝐶

𝑏𝑒
. (60)

This completes the controller design.

Remark 6. The developed controller involves the control law
(58)-(59), the update law (54), and the observer (44). The
parameters necessary to implement it are (i) the nominal
value 𝑆in

2
which satisfies 𝑆in

2
− 𝑦

𝑚
> 0 according to Character-

istic 6, (ii) the signals that depend on the states of the plant
model and controller, namely, 𝑦

𝑑
(10), 𝑧 (12), 𝑔

𝑧
(24), 𝑏 (27),

𝜑 (34), sat
𝑧
(42), and 𝑥 (56), (iii) the user-defined constants,

namely, 𝐶
𝑏𝑒
, 𝑐
1
, 𝑐
2
, 𝛾
1
, 𝛾
2
, and 𝛾

3
, being 𝛾

1
, 𝛾
2
, and 𝛾

3
the

diagonal entries of Γ, and (iv) the constant 𝐶
𝑏𝑧

(60). The
user-defined parameters, 𝛾

1
, 𝛾
2
, 𝛾
3
, 𝑐
1
, 𝑐
2
, and 𝑎

𝑚
should be

chosen according to simulation results so as to obtain desired
evolution of the control input 𝑢, updated parameter vector ̂𝜃,
and observer state 𝑦.

Remark 7. The control law (58)-(59), the update law (54), and
the observer (44) depend on the observer error 𝑧, instead of
the tracking error 𝑒. This is due to the fact that the quadratic
form 𝑉

𝑧
(18) is defined in terms of 𝑧 instead of 𝑒, and the

Lyapunov-like function 𝑉 (46) is defined in terms of 𝑉
𝑧
.

Remark 8. The developed controller has two important
features. First, the only required model parameter is 𝑆in

2
;

other upper or lower bounds of parameters of models (1) to
(4) are not required as can be noticed from (44), (54), and
(58)-(59). Indeed, the upper bounds 𝜅

1
, 𝜅
2
, and 𝜅

3
are not

used. This implies less modeling effort. Second, it does not
involve discontinuous signals. Indeed, it uses the continuous
signal sat

𝑧
, instead of sgn(𝑔

𝑧
), so that the vector field of the

closed loop system is locally Lipschitz continuous. In turn,
this implies that input and state chattering are avoided, and
trajectory unicity is guaranteed, according to [27]. Therefore,

Reference
model

Control law
u = u(ym, ŷ, �̂�, yd, ẏd)

�̂�

�̂�

�̂�
ŷ

ŷ

ym

ym

ym

ym

yd , ẏd

u

uu

Parameter
updating

mechanism

Observer

Anaerobic
digester

Figure 1: Schematic diagram of the developed controller, in terms
of the basic signals 𝑦

𝑚
, 𝑦, ̂𝜃, 𝑦

𝑑
, and ̇𝑦

𝑑
.

the benefits Bf 1.1 and Bf 1.4 mentioned in introduction are
achieved.

Remark 9. The signals and the corresponding equations
required to compute the control law (58)-(59) are 𝑔z (24), ̂𝜃
(54), sat

𝑧
(42), 𝜑 (34), 𝑦

𝑑
(10), and 𝑥 (56). After analyzing

these expressions and signal 𝑧defined in 𝑧 (12), it is concluded
that (i) the control law (58)-(59) depends on the basic signals
𝑦

𝑚
, 𝑦, ̂𝜃, 𝑦

𝑑
, and ̇𝑦

𝑑
, (ii) the observer mechanism (44)

depends on signals 𝑦
𝑚
, ̂𝜃, and 𝑢; therefore, it depends on

the basic signals 𝑦
𝑚
, ̂𝜃, 𝑦
𝑑
, and ̇𝑦

𝑑
, and (iii) the parameter

updating mechanism (54) depends on the basic signals 𝑦
𝑚
,

𝑦. Figure 1 shows a schematic diagram of the developed
controller, in terms of the basic signals.

4. Stability Analysis

In this section it is proven that the closed loop signals 𝑧
and ̃𝜃 are bounded, and that the observer error 𝑧 converges
to a residual set of predefined size despite input saturation.
In addition, it is proven that the tracking error 𝑒 converges
asymptotically to a residual set of user-defined size for the
time lapses during which the control input does not get
saturated. Recall that in [16] the convergence of the observer
error to a residual set of small size is guaranteed if the
constant user-defined parameters of the control and observer
mechanisms are properly defined. Nevertheless, such size is
unknown, so that the correct choices of the constant user-
defined parameters are unknown. It is difficult to prove
the convergence of the tracking error for the case of input
saturation, because the system gets in open loop.

The stability analysis of the present section is based on the
Lyapunov-like function method presented in [32–34], which
will be applied to (55). The bounded nature of the signals
𝑧 and ̃

𝜃 and the Barbalat’s Lemma allow us to prove the
convergence of the observer error 𝑧. Moreover, the bounded
nature of ̃𝜃 implies that ̂𝜃 is also bounded, so that ̂𝜃 does
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not experience drifting, and consequently, the control input
𝑢 does not exhibit excessive magnitude.

Theorem 10 (boundedness of the closed loop signals). Con-
sider (i) the plant model (1) to (4), subject to Characteristics
1 to 6 and Assumption 1; (ii) the controller, which involves the
control law (58)-(59), the update law (54), and the observer
mechanism (44); (iii) the signals that depend on the states of
the plant model and controller, namely, 𝑦

𝑑
(10), 𝑧 (12), 𝑔

𝑧
(24),

𝑏 (27), 𝜑 (34), sat
𝑧
(42), 𝑥 (56); (iv) the user-defined constants,

namely, 𝐶
𝑏𝑒
, 𝑐
1
, 𝑐
2
, 𝛾
1
, 𝛾
2
, and 𝛾

3
, being 𝛾

1
, 𝛾
2
, and 𝛾

3
the

diagonal entries of Γ; and (v) the definition of 𝐶
𝑏𝑧
(60). If this

controller is employed to define the value of the control input
𝑢, then (i) the signals 𝑦, ̂𝜃, and 𝑢 remain bounded and (ii) the
transient 𝑧 is upper bounded by a positive constant:

|𝑧| ≤ 𝐶𝑏𝑧

+

√

2{𝑉

𝑧𝑜
+ (

1

2

)

× (𝛾

−1

1
(

̂

𝜃

1
(𝑡

𝑜
) − 𝜃

1
)

2

+ 𝛾

−1

2
(

̂

𝜃

2
(𝑡

𝑜
) − 𝜃

2
)

2

+ 𝛾

−1

3
(

̂

𝜃

3
(𝑡

𝑜
) − 𝜃

3
)

2

) }

1/2

,

(61)

where

𝑉

𝑧𝑜
=

{

{

{

{

{

{

{

{

{

(

1

2

) (𝑧 (𝑡

𝑜
) − 𝐶

𝑏𝑧
)

2 if 𝑧 (𝑡
𝑜
) ≥ 𝐶

𝑏𝑧

0 if 𝑧 (𝑡
𝑜
) ∈ (−𝐶

𝑏𝑧
, 𝐶

𝑏𝑧
)

(

1

2

) (𝑧 (𝑡

𝑜
) + 𝐶

𝑏𝑧
)

2 if 𝑧 (𝑡
𝑜
) ≤ −𝐶

𝑏𝑧

(62)

𝑧 (𝑡

𝑜
) = 𝑦

𝑚
(𝑡

𝑜
) − 𝑦 (𝑡

𝑜
) . (63)

Proof. Recall that 𝑧 and ̃

𝜃 were defined in (12) and (38),
respectively. From (55) it follows that 𝑉(𝑥(𝑡)) ≤ 𝑉(𝑥(𝑡

𝑜
)),

so that 𝑉(𝑥(𝑡)) ∈ 𝐿

∞
. Therefore, from (46) it follows that

𝑉

𝜃
∈ 𝐿

∞
and 𝑉

𝑧
∈ 𝐿

∞
; from (48), it follows that ̃𝜃 ∈ 𝐿

∞
;

from (38), it follows that ̂𝜃 ∈ 𝐿
∞
; from (18), it follows that

𝑧 ∈ 𝐿

∞
; from (24), it follows that 𝑔

𝑧
∈ 𝐿

∞
; from Lemma A.5

andAssumption 1 it follows that𝑦 = 𝑆
2
∈ 𝐿

∞
and𝑦
𝑚
= 𝑆

2𝑚
∈

𝐿

∞
.Theproperties 𝑧 ∈ 𝐿

∞
,𝑦
𝑚
∈ 𝐿

∞
, and definition (12) lead

to 𝑦 = 𝑦
𝑚
− 𝑧 and 𝑦 ∈ 𝐿

∞
. This completes the proof for the

first part ofTheorem 10. Arranging and integrating (55) yield

𝑉 (𝑥 (𝑡)) + 𝑐

1
∫

𝑡

𝑡
𝑜

𝑔

2

𝑧
𝑑𝜏 ≤ 𝑉 (𝑥 (𝑡

𝑜
)) , (64)

where 𝑉(𝑥(𝑡
𝑜
)) is the initial value of 𝑉(𝑥(𝑡)). Evaluating

𝑉(𝑥(𝑡)) (18), 𝑉
𝑧
(46), and 𝑉

𝜃
(48) for 𝑡 = 𝑡

𝑜
yields

𝑉 (𝑥 (𝑡

𝑜
)) = 𝑉

𝑧𝑜
+ (

1

2

) (

̂

𝜃(𝑡

𝑜
) − 𝜃)

⊤

Γ

−1
(

̂

𝜃 (𝑡

𝑜
) − 𝜃)

⊤

, (65)

𝑉

𝑧𝑜
=

{

{

{

{

{

{

{

{

{

(

1

2

) (𝑧 (𝑡

𝑜
) − 𝐶

𝑏𝑧
)

2 if 𝑧 (𝑡
𝑜
) ≥ 𝐶

𝑏𝑧

0 if 𝑧 (𝑡
𝑜
) ∈ (−𝐶

𝑏𝑧
, 𝐶

𝑏𝑧
)

(

1

2

) (𝑧 (𝑡

𝑜
) + 𝐶

𝑏𝑧
)

2 if 𝑧 (𝑡
𝑜
) ≤ −𝐶

𝑏𝑧
,

(66)

𝑧 (𝑡

𝑜
) = 𝑦

𝑚
(𝑡

𝑜
) − 𝑦 (𝑡

𝑜
) . (67)

From (46), (64), and (65) it follows that

𝑉

𝑧
+ 𝑉

𝜃
+ 𝑐

1
∫

𝑡

𝑡
𝑜

𝑔

2

𝑧
𝑑𝜏

≤ 𝑉

𝑧𝑜
+ (

1

2

) (

̂

𝜃 (𝑡

𝑜
) − 𝜃)

⊤

Γ

−1
(

̂

𝜃 (𝑡

𝑜
) − 𝜃)

⊤

,

(68)

𝑉

𝑧
≤ 𝑉

𝑧𝑜
+ (

1

2

) (

̂

𝜃 (𝑡

𝑜
) − 𝜃)

⊤

Γ

−1
(

̂

𝜃 (𝑡

𝑜
) − 𝜃)

⊤

. (69)

Incorporating the property (20) yields

|𝑧| ≤ 𝐶

𝑏𝑧

+

√

2{𝑉

𝑧𝑜
+ (

1

2

)

× (𝛾

−1

1
(

̂

𝜃

1
(𝑡

𝑜
) − 𝜃

1
)

2

+ 𝛾

−1

2
(

̂

𝜃

2
(𝑡

𝑜
) − 𝜃

2
)

2

+ 𝛾

−1

3
(

̂

𝜃

3
(𝑡

𝑜
) − 𝜃

3
)

2

) }

1/2

,

(70)

where ̂𝜃
1
(𝑡

𝑜
), ̂𝜃
2
(𝑡

𝑜
), and ̂𝜃

3
(𝑡

𝑜
) are the first, second, and third

entries of the vector ̂𝜃(𝑡
𝑜
). End of proof.

Remark 11. Theorem 10 indicates that the transient behavior
of the observer error 𝑧 is bounded by a constant limit that
depends on (i) the user-defined initial values ̂𝜃

1
(𝑡

𝑜
), ̂𝜃
2
(𝑡

𝑜
),

and ̂𝜃
3
(𝑡

𝑜
), (ii) the initial value 𝑧(𝑡

𝑜
) = 𝑦

𝑚
(𝑡

𝑜
) − 𝑦(𝑡

𝑜
), and

(iii) the user-defined constants 𝛾
1
, 𝛾
2
, 𝛾
3
, and 𝐶

𝑏𝑧
. Therefore,

the transient value of 𝑧 can be constrained to lower values by
choosing large values of 𝛾

1
, 𝛾
2
, and 𝛾

3
and low values of 𝐶

𝑏𝑧
,

and choosing 𝑦
𝑚
(𝑡

𝑜
) such that 𝑦

𝑚
(𝑡

𝑜
) − 𝑦(𝑡

𝑜
) is small.

In control designs that involve observers (see [15, 16]), the
goal of the observer is that the estimated output converges
towards the real output with a small threshold 𝐶

𝑏𝑧
. In the

present work such goal is assumed in the form of goal (CGi).
The proof of the observer error convergence is based on the
application of the Barbalat’s Lemma to expression (55). The
result is that 𝑔

𝑧
converges to zero and 𝑧 converges to the

residual setΩ
𝑧
= {𝑧 : |𝑧| ≤ 𝐶

𝑏𝑧
}.This implies the convergence

of the tracking error towards a residual set, whose size is
user-defined. Notice that the asymptotic convergence of the
observer error is achieved despite the input saturation and
despite the fact that the exact values and upper bounds of
plant and noise model parameters are assumed unknown.

Theorem 12 (Convergence of the observer error). Consider
(i) the plantmodel (1) to (4), subject toCharacteristics 1 to 6 and
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Assumption 1: (ii) the controller, which involves the control law
(58)-(59), the update law (54), and the observer mechanism
(44), (iii) the signals that depend on the states of the plant
model and controller, namely, 𝑦

𝑑
(10), 𝑧 (12), 𝑔

𝑧
(24), 𝑏 (27),

𝜑 (34), sat
𝑧
(42), and 𝑥 (56), (iv) the user-defined constants,

namely, 𝐶
𝑏𝑒
, 𝑐
1
, 𝑐
2
, 𝛾
1
, 𝛾
2
, and 𝛾

3
, being 𝛾

1
, 𝛾
2
, and 𝛾

3
the

diagonal entries of the matrix Γ, and (v) the definition of 𝐶
𝑏𝑧

(60). If this controller is employed to define the value of the
control input 𝑢, then 𝑧 converges asymptotically to Ω

𝑧
, where

Ω

𝑧
= {𝑧 : |𝑧| ≤ 𝐶

𝑏𝑧
} and 𝐶

𝑏𝑧
= 𝐶

𝑏𝑒
.

Proof. From (64) it follows that 𝑔2
𝑧
∈ 𝐿

1
. It is necessary to

prove that𝑔2
𝑧
∈ 𝐿

∞
and𝑑(𝑔2

𝑧
)/𝑑𝑡 ∈ 𝐿

∞
to apply the Barbalat’s

Lemma. Since 𝑔
𝑧
∈ 𝐿

∞
, then 𝑔2

𝑧
∈ 𝐿

∞
. Signals𝑉

𝑧
in (18) and

𝜕𝑉

𝑧
/𝜕𝑧 in (24) lead to𝑉

𝑧
= (1/2)𝑔

2

𝑧
, 𝑔2
𝑧
= 2𝑉

𝑧
. Differentiating

with respect to time yields

𝑑𝑔

2

𝑧

𝑑𝑡

= 2

̇

𝑉

𝑧
= 2𝑔

𝑧
�̇�.

(71)

It is necessary to prove that �̇� ∈ 𝐿
∞
. From Lemma A.5 and

Assumption 1 it follows that 𝑦 ∈ 𝐿

∞
and 𝑦

𝑚
∈ 𝐿

∞
. Since

𝑦

𝑚
∈ 𝐿

∞
, ̂𝜃 ∈ 𝐿

∞
, and 𝑔

𝑧
∈ 𝐿

∞
, it follows that 𝜑 ∈ 𝐿

∞

(34) and ̇

�̂� ∈ 𝐿

∞
(44). Since ̇

�̂� ∈ 𝐿

∞
, ̇𝑎

1
∈ 𝐿

∞
, 𝑎
𝑜
∈ 𝐿

∞
,

𝑎

1
∈ 𝐿

∞
, ̇𝑎
2
∈ 𝐿

∞
, 𝑏 ∈ 𝐿

∞
, 𝑢 ∈ 𝐿

∞
, 𝑦 ∈ 𝐿

∞
, it follows that

�̇� ∈ 𝐿

∞
(15). Therefore, 𝑑𝑔2

𝑧
/𝑑𝑡 ∈ 𝐿

∞
(71). So far, it has been

proved that 𝑔2
𝑧
∈ 𝐿

1
, 𝑔2
𝑧
∈ 𝐿

∞
, 𝑑(𝑔2
𝑧
)/𝑑𝑡 ∈ 𝐿

∞
. Applying the

Barbalat’s Lemma, cf. [36], yields: lim
𝑡→∞

𝑔

2

𝑧
= 0.Thus, 𝑧 (24)

converges asymptotically to Ω
𝑧
, where Ω

𝑧
= {𝑧 : |𝑧| ≤ 𝐶

𝑏𝑧
}.

End of proof

It is important to ensure that the measured output 𝑦
𝑚

converges towards the desired output 𝑦
𝑑
, with some user-

defined threshold 𝐶

𝑏𝑒
. Therefore, it will be proven that

the tracking error 𝑒 converges asymptotically towards the
residual set Ω

𝑒
= {𝑒 : |𝑒| ≤ 𝐶

𝑏𝑒
} when the control input does

not get saturated. To that end, the convergence of 𝑧 towards
Ω

𝑧
is taken into account and the relationship between 𝑧, 𝑥,

and 𝑒 is established. The drawback of such proof is that it is
only valid when the control input is not saturated.

Theorem 13 (convergence of the tracking error). Consider (i)
the plant model (1) to (4), subject to Characteristics 1 to 6 and
Assumption 1: (ii) the controller, which involves the control law
(58)-(59), the update law (54), and the observer mechanism
(44), (iii) the signals that depend on the states of the plantmodel
and controller, namely, 𝑦

𝑑
(10), 𝑧 (12), 𝑔

𝑧
(24), 𝑏 (27), 𝜑 (34),

sat
𝑧
(42), and 𝑥 (56), (iv) the user-defined constants, namely,

𝐶

𝑏𝑒
, 𝑐
1
, 𝑐
2
, 𝛾
1
, 𝛾
2
, and 𝛾

3
, being 𝛾

1
, 𝛾
2
, and 𝛾

3
the diagonal entries

of matrix Γ, and (v) the definition of 𝐶
𝑏𝑧
(60). If this controller

is employed to define the value of the control input 𝑢 and the
computed signal control 𝑢

𝑜
∈ [𝑢min, 𝑢max], then the tracking

error 𝑒 converges asymptotically to Ω
𝑒
, where Ω

𝑒
= {𝑒 : |𝑒| ≤

𝐶

𝑏𝑒
}.

Proof. Setting 𝑢 = 𝑢
𝑜
and replacing (58) in (57) yield

�̇� = −𝑐

2
𝑥. (72)

This implies that 𝑥 converges asymptotically to zero. The
tracking error 𝑒 can be expressed in terms of 𝑧 and 𝑥. Signals
𝑒 in (9), 𝑧 in (12), and 𝑥 in (56) lead to

𝑒 = 𝑦

𝑚
− 𝑦

𝑑
= (𝑦

𝑚
− 𝑦) + (𝑦 − 𝑦

𝑑
) = 𝑧 + 𝑥. (73)

Since 𝑥 converges asymptotically to zero, and 𝑧 converges
asymptotically to Ω

𝑧
= {𝑧 : |𝑧| ≤ 𝐶

𝑏𝑧
}, where 𝐶

𝑏𝑧
= 𝐶

𝑏𝑒
, it

follows that 𝑒 converges asymptotically toΩ
𝑒
= {𝑒 : |𝑒| ≤ 𝐶

𝑏𝑒
}.

End of proof.

Remark 14. If the control input gets saturated, then (i)
the closed loop signals 𝑧, ̃𝜃, and 𝑦 remain bounded, as
stated in Theorem 10, (ii) the observer error 𝑧 converges
asymptotically to a residual set of size 𝐶

𝑏𝑧
with 𝐶

𝑏𝑧
= 𝐶

𝑏𝑒
, as

stated inTheorem 12, and (iii) the convergence of the tracking
error to a residual set of predefined size is not guaranteed.
Indeed, when the input gets saturated, that is, 𝑢

𝑜
> 𝑢max

or 𝑢
𝑜
< 𝑢min, the expression (72) is not valid, so that the

convergence of the tracking error is not guaranteed.

The above stability analysis shows that benefits Bf 1.2,
Bf 1.3, Bf 1.5, and Bf 1.6 mentioned in introduction are
accomplished.

5. Simulation Example

In this example, the plant (1) to (4), subject to Characteristics
1 to 6 and Assumption 1, is considered.The values of the yield
coefficients, kinetic parameters, and proportion of biomass
not attached to the reactor appearing in (1) to (5) are taken
from [12]. The controller mechanism and the corresponding
parameters are stated in Remark 6. The considered scenario
is the same as that in [32] and consequently similar to that
in [16], that is, (i) the influent concentrations of VFA and
COD are varying, (ii) output measurement is noisy, (iii) the
command signal 𝑟 involves changes larger than 4mmol/L,
and (iv) the control input gets saturated. The corresponding
values are similar to those in [16], in order to compare the
performance of the controller and the observer.The values of
some parameters are

𝑆

in
1
= 9 (1 + 0.3 sin( 2𝜋

4.2

𝑡)) [g/L] , (74)

𝑆

in
2
= 100 (1 + 0.3 sin( 2𝜋

3.8

𝑡)) [mmol/L] , (75)

𝐷 ∈ [0 1.2] day−1, (76)

𝑎

1
= 1, 𝑎

2
= 2 sin( 2𝜋

0.42

𝑡) , (77)

where 𝑎
1
and 𝑎

2
are the parameters considered in the noise

model (7). Recall that the values of 𝑆in
1
, 𝑆in
2
, 𝑎
1
, and 𝑎

2
are

not used by the controller, neither by the control law, nor the
update law nor the observer mechanism. The controlled is
started at 𝑡 = 6.25 days. From [12, 14] it follows that 𝑆

2
is

always lower than 𝑆in
2
. Since 𝑆in

2
follows the trajectory (75), 𝑆

2
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satisfies 𝑆
2
< 100mmol/L, and thus the value 100mmol/L is

chosen for 𝑆in
2
. The values of the controller parameters are

𝑆

in
2
= 100mmol/L,

𝑢min = 0, 𝑢max = 1.2 day
−1
,

𝑟 = 15 if 6.25 ≤ 𝑡 < 8.33 day,

𝑟 = 10 if 8.33 ≤ 𝑡 < 16.7 day,

𝑟 = 18 if 16.7 ≤ 𝑡 < 29.2 day,

𝑟 = 10 if 29.2 ≤ 𝑡 < 33 day,

𝐶

𝑏𝑒
= 0.3, 𝑎

𝑚
= 6, 𝑐

1
= 1,

𝑐

2
= 10, 𝛾

1
= 10, 𝛾

2
= 10, 𝛾

3
= 10,

(78)

where 𝛾
1
, 𝛾
2
, and 𝛾

3
are the diagonal entries of the matrix Γ

appearing in the update law (54); the parameters 𝑟 and 𝑎
𝑚

correspond to the reference model (10); 𝑆in
2
is required to be

known and satisfies Characteristic 6.The results are shown in
Figures 2 and 3, with Figure 3 being a zooming of Figure 2.

Figure 3 indicates the following: (i) the estimated output
𝑦 converges towards the measured output 𝑦

𝑚
, such that

the observer error 𝑧 converges to the residual set Ω
𝑧
and

remains therein after the time instant of 14.5 days, despite
the effect of the varying behavior of 𝑆in

1
and 𝑆in

2
, the output

measurement noise and the control input saturation, (ii) the
output measurement 𝑦

𝑚
tracks the desired output 𝑦

𝑑
, so that

the tracking error 𝑒 converges to the residual set Ω
𝑒
, but

such convergence is degraded when the control input gets
saturated, (iii) the output measurement 𝑦

𝑚
exhibits sustained

oscillations due to measurement noise and oscillations in
𝑆

in
1
and 𝑆in

2
, (iv) the control input 𝑢 exhibits high and low

frequency oscillations due to the measurement noise and
the oscillations in 𝑆in

1
and 𝑆in

2
, and (v) the control input 𝑢

gets saturated during some intervals which is owed to the
enormous magnitude of the disturbances in 𝑆in

1
and 𝑆in

2
and

the measurement noise (close to 30%).

6. Discussion and Conclusions

In this work a controller for an anaerobic digester, with
output measurement noise and constrained input, has been
designed using the Lyapunov-like function method. The
Characteristics 1 to 6 and Assumption 1 were taken into
account in the control design and the stability analysis. The
benefits Bf 1.1 to Bf 1.6 are achieved, and the main ones can
be recalled as follows: (i) the exact values of the parameters
of both plant model and noise model are not required to be
known; (ii) although a nominal value of 𝑆in

2
, denoted by 𝑆in

2
, is

required to be known, other upper or lower bounds of the
parameters of the plant and noise models are not required
to be known; (iii) discontinuous signals are avoided in the
control law, the update law, and the observer mechanism,
so that undesired state chattering and input chattering are
avoided; (iv) the boundedness of the closed loop signals is
guaranteed, so that parameter drifting is avoided; (v) the

observer error converges to a residual set of user-defined size,
and such size is not degraded, neither by the uncertainty on
themodel parameters nor by the input saturation; and (vi) it is
guaranteed that the tracking error converges to the expected
residual when the control input does not get saturated.

The time-varying behavior of the model parameters
implies that (i) the system is nonautonomous and (ii) the
coordinates of the equilibrium points vary with time. There-
fore, it is difficult to guarantee the local asymptotic stability
by means of the indirect Lyapunovmethod. Nevertheless, the
developed boundedness analysis indicates that the concen-
trations of acidogenic biomass,methanogenic biomass, COD,
and VFA are bounded for nonnegative values of the dilution
rate, despite large values of the dilution rate, regardless of
the control law, the update law, and the observer mechanism
used and regardless of the structure of the specific growth
rates 𝜇

1
and 𝜇

2
. In fact, the current structures of specific

growth rates, for instance Monod and Haldane growth rates,
are usually bounded, even if the substrate concentrations
were not bounded. The bounded nature of the digester
concentrations allows us to tackle the lack of knowledge on
the reaction rate terms and to prove that the closed loop
signals are bounded.

The state observer was used in order to handle the
effect of input saturation, not to estimate any unknown
state. The control law (58)-(59) involves an integral action
appearing in the updated parameter ̂𝜃, as can be noticed from
(54). Nevertheless, excessive integral action caused by input
saturation does not occur. In addition, the convergence of
the observer error 𝑧 to Ω

𝑧
and the size of this residual set

are not altered by the input saturation (see Section 4). It is
difficult to establish the influence of input saturation on the
convergence and transient behavior of the tracking error 𝑒
due to the nonlinear nature of the plant model and closed
loop system.

The numerical simulation example indicates the follow-
ing: (i) the reference model (10) leads to smooth behavior
of 𝑦
𝑑
when the reference signal 𝑟 exhibits step changes, thus

contributing to diminish the input saturation periods; (ii)
the tracking error converges to a residual set of predefined
size when the control input is not saturated; and (iii) the
convergence of the tracking error is degraded when the
control input gets saturated.

Appendices

A. Proof of Lemma 4

Theupper constant bounds of the digester states and reaction
rate terms are established, in order to allow the controller
design and its stability analysis.

The bounded nature of biological concentrations can be
established by using the indirect Lyapunov method which
is based on the Jacobian matrix or other techniques as
geometric control theory and state transformations, as it is
discussed in what follows. In [19, 22, 37, 38] the stability
of the digester presented in [14] was analyzed by means
of the indirect Lyapunov method. The equilibrium point
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ŷ

ŷ
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Figure 2: Example 1: (a) output measurement 𝑦
𝑚
[mmol/L] (solid line), desired output 𝑦

𝑑
(dash-dot line), and estimated output 𝑦 (dotted

line); (b) tracking error 𝑒 (solid line) and observer error 𝑧 (dash-dot line); (c) control input𝐷 [day −1].
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Figure 3: Example 1, zoomed view: (a) output measurement 𝑦
𝑚
[mmol/L] (solid line), desired output 𝑦

𝑑
(dash-dot line), and estimated

output 𝑦 (dotted line); (b) tracking error 𝑒 (solid line) and observer error 𝑧 (dash-dot line); (c) control input𝐷 [day −1].

concerning the normal open loop operation of the digester
is asymptotically stable, under nonnegative dilution rate.
Nevertheless, the stoichiometric coefficients, the proportion
of biomass not attached to the reactor and feed concen-
trations are assumed constant. This is in contrast to the
fact that plant parameters, mainly the feed concentrations,
exhibit significative time dependent variation, as mentioned
in [12, 39]. In [16, 40] the digester model is rewritten in
canonical form and the stability of the internal dynamics
is proven. Nevertheless, yield coefficients and feed concen-
trations are assumed constant in the development of the
state transformation. In [19], constant upper bounds are
established for the concentrations of acidogenic biomass

and chemical oxygen demand (COD), under nonnegative
dilution rate. To that end, a state transformation is carried
out by defining a linear combination of acidogenic biomass
and COD concentrations. Nevertheless, the yield coefficients
and the proportion of biomass not attached to reactor are
assumed constant in order to allow the development of the
state transformation.

By contrast, in the present work it is established that
the concentrations of acidogenic biomass, methanogenic
biomass, chemical oxygen demand (COD), and VFA are
bounded under the following conditions: (i) time-varying
but nonnegative behavior of the dilution rate 𝐷 and (ii)
time-varying but bounded behavior of the yield coefficients,
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proportion of biomass not attached to the reactor, kinetic
parameters, and inflow concentrations.

The characteristics stated in Lemma 4 are established
through several lemmas, in order to facilitate the
understanding and the development of the procedure.
The proofs involve several state transformations, with upper
or lower constant bounds of plant model parameters as
coefficients.

Lemma A.1. Consider the plant (1) to (4), subject to Char-
acteristics 1 to 6 and Assumption 1. The concentrations of
acidogenic biomass and COD, that is, 𝑋

1
and 𝑆

1
, are upper

bounded by positive constants as follows:

𝑆

1
≤ max{

𝑆

1𝑖max
min {1, 𝛼min}

, 𝑆

1
(𝑡

𝑜
) + 𝑘

1min𝑋1 (𝑡𝑜)}

𝑋

1

≤ (

1

𝑘

1min
)max{

𝑆

1𝑖max
min {1, 𝛼min}

, 𝑆

1
(𝑡

𝑜
) + 𝑘

1min𝑋1 (𝑡𝑜)} ,

(A.1)

where 𝑆
1𝑖max, 𝛼min, and 𝑘1min are constant bounds established

in Characteristic 3.The above statement does not depend on the
control law, the update law, or the observer mechanism used.

Proof. Let

𝑍

1
= 𝑆

1
+ 𝑘

1min𝑋1, (A.2)

where 𝑘
1min is the lower bound of 𝑘

1
, as considered in

Characteristic 3. Differentiating (A.2) with respect to time
and using trajectories (1) and (3) yield

̇

𝑍

1
= (𝑆

in
1
− 𝑆

1
)𝐷 − 𝑘

1
𝜇

1
𝑋

1
+ 𝑘

1min𝜇1𝑋1 − 𝛼𝐷𝑘1min𝑋1.

(A.3)

FromCharacteristics 3 and 2 and expression (5) it follows that
𝑘

1min ≤ 𝑘1, 𝜇1 ≥ 0, and𝑋1 ≥ 0. Therefore,

𝜇

1
𝑋

1
≥ 0,

−𝑘

1
𝜇

1
𝑋

1
≤ −𝑘

1min𝜇1𝑋1 − 𝑘1𝜇1𝑋1 + 𝑘1min𝜇1𝑋1 ≤ 0.
(A.4)

Substituting (A.4) into (A.3) yields

̇

𝑍

1
≤ −𝑆

1
𝐷 − 𝛼𝐷𝑘

1min𝑋1 + 𝑆
in
1
𝐷. (A.5)

Characteristic 3 mentions that 𝛼 ≥ 𝛼min, 𝑆
in
1
≤ 𝑆

1𝑖max, so that

̇

𝑍

1
≤ −𝑆

1
𝐷 − 𝛼min𝐷𝑘1min𝑋1 + 𝑆1𝑖max𝐷. (A.6)

Using the inequalities 1 ≥ min{1, 𝛼min} and 𝛼min ≥

min{1, 𝛼min} yields

̇

𝑍

1
≤ −min {1, 𝛼min}

× [𝑆

1
+ 𝑘

1min𝑋1 −
𝑆

1𝑖max,

min {1, 𝛼min}
]𝐷.

(A.7)

Let

𝑍

1
= 𝑍

1
−

𝑆

1𝑖max
min {1, 𝛼min}

(A.8)

𝑍

1
= 𝑆

1
+ 𝑘

1min𝑋1 −
𝑆

1𝑖max
min {1, 𝛼min}

, (A.9)

where 𝑍
1
is defined in (A.2). Substituting (A.9) into (A.7)

yields
̇

𝑍

1
≤ −min {1, 𝛼min} 𝑍1𝐷. (A.10)

Differentiating (A.8) with respect to time yields ̇

𝑍

1
=

̇

𝑍

1
.

Using (A.10) yields ̇

𝑍

1
≤ −min{1, 𝛼min}𝑍1𝐷. Using Lemma

in [28] yields

𝑍

1
≤ 𝑍

1𝑜
𝑒

−min{1,𝛼min}𝐷(𝑡−𝑡𝑜)
,

(A.11)

where 𝑍
1𝑜

is the initial value of 𝑍
1
and can be obtained by

evaluating (A.9) for 𝑡 = 𝑡
𝑜
:

𝑍

1𝑜
= 𝑆

1
(𝑡

𝑜
) + 𝑘

1min𝑋1 (𝑡𝑜) −
𝑆

1𝑖max
min {1, 𝛼min}

. (A.12)

From (A.11) it follows that

𝑍

1
≤ max {0, 𝑍

1𝑜
} . (A.13)

Substituting (A.9) and (A.12) into (A.13) yields

𝑆

1
+ 𝑘

1min𝑋1 −
𝑆

1𝑖max
min {1, 𝛼min}

≤ max{0, 𝑆
1
(𝑡

𝑜
) + 𝑘

1min𝑋1 (𝑡𝑜) −
𝑆

1𝑖max
min {1, 𝛼min}

} ,

𝑆

1
+ 𝑘

1min𝑋1

≤

𝑆

1𝑖max
min {1, 𝛼min}

+max{0, 𝑆
1
(𝑡

𝑜
) + 𝑘

1min𝑋1 (𝑡𝑜) −
𝑆

1𝑖max
min {1, 𝛼min}

} ,

𝑆

1
+ 𝑘

1min𝑋1

≤ max{
𝑆

1𝑖max
min {1, 𝛼min}

, 𝑆

1
(𝑡

𝑜
) + 𝑘

1min𝑋1 (𝑡𝑜)} .

(A.14)

Notice that expression (A.14) is different to that of [19],
because the time-varying behavior of the yield coefficients
and proportion 𝛼 have been taken into account. Expression
(A.14) leads to

𝑆

1
≤ max{

𝑆

1𝑖max
min {1, 𝛼min}

, 𝑆

1
(𝑡

𝑜
) + 𝑘

1min𝑋1 (𝑡𝑜)} , (A.15)

𝑋

1

≤ (

1

𝑘

1min
)max{

𝑆

1𝑖max
min {1, 𝛼min}

, 𝑆

1
(𝑡

𝑜
) + 𝑘

1min𝑋1 (𝑡𝑜)} ,

(A.16)
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and these are the constant upper bounds for 𝑋
1
and 𝑆
1
. End

of proof.

Remark A.2. The expressions in Lemma A.1 indicate that 𝑋
1

and 𝑆
1
are bounded if the dilution rate 𝐷 is nonnegative,

regardless of the control law, update law, and observer used.
In addition, 𝑋

1
and 𝑆

1
are bounded for any structure of

the specific growth rate used for 𝜇
1
that is continuous

with respect to substrate concentration. The reason is that
the concentrations 𝑋

1
and 𝑆

1
are bounded for nonnegative

dilution rate𝐷, as is concluded from the above proof.

Lemma A.3. Consider the plant (1) to (4), subject to Charac-
teristics 1 to 6 andAssumption 1.The reaction rate term 𝑘

2
𝜇

1
𝑋

1

is bounded as follows: 𝑘
2
𝜇

1
𝑋

1
≤ 𝜅

𝜇
1
𝑋
1

, where 𝜅
𝜇
1
𝑋
1

is a positive
constant defined as

𝜅

𝜇
1
𝑋
1

=

𝑘

2max𝜇1max
𝑘

1min

×

[max {𝑆
1𝑖max/min {1, 𝛼min} , 𝑆1 (𝑡𝑜) + 𝑘1min𝑋1 (𝑡𝑜)}]

2

𝐾

𝑆1
+max {𝑆

1𝑖max/min {1, 𝛼min} , S1 (𝑡𝑜) + 𝑘1min𝑋1 (𝑡𝑜)}
,

(A.17)

where 𝑘
2max, 𝑆1𝑖max, 𝛼min, and 𝑘1min are constant bounds

established in Characteritic 3. This statement is independent of
the control law, the update law, and observer mechanism used.

Proof. The upper bound for 𝑘
2
𝜇

1
𝑋

1
can be established by

using (A.16) and (A.15). The function 𝜇
1
(5) is monotonically

increasing with respect to 𝑆
1
, as mentioned in [18]. Thus, the

maximum value of 𝜇
1
is obtained by replacing the maximum

value of 𝑆
1
(A.15) into 𝜇

1
(5):

𝜇1

≤ 𝜇1max
max {𝑆1𝑖max/min {1, 𝛼min} , 𝑆1 (𝑡𝑜) + 𝑘1min𝑋1 (𝑡𝑜)}

𝐾𝑆1 +max {𝑆1𝑖max/min {1, 𝛼min} , 𝑆1 (𝑡𝑜) + 𝑘1min𝑋1 (𝑡𝑜)}
.

(A.18)

This bound, Characteristic 3, and (A.16) lead to

𝑎

𝑜
= 𝑘

2
𝜇

1
𝑋

1
≤ 𝑘

2max𝜇1𝑋1 ≤ 𝜅𝜇1𝑋1 ,

𝜅

𝜇1𝑋1

=

𝑘

2max𝜇1max

𝑘

1min

×

[max {𝑆
1𝑖max/min {1, 𝛼min} , 𝑆1 (𝑡𝑜) + 𝑘1min𝑋1 (𝑡𝑜)}]

2

𝐾

𝑆1
+max {𝑆

1𝑖max/min {1, 𝛼min} , 𝑆1 (𝑡𝑜) + 𝑘1min𝑋1 (𝑡𝑜)}
.

(A.19)

This is the constant upper bound for the acidogenic reaction
rate term 𝑘

2
𝜇

1
𝑋

1
. End of proof.

Remark A.4. The reaction rate term 𝑘

2
𝜇

1
𝑋

1
has a constant

upper bound for any structure of the specific growth rate
𝜇

1
, as can be concluded from the procedure shown in Proof

of Lemma A.3. The reasons are (i) the concentrations 𝑋
1

and 𝑆

1
are bounded for nonnegative dilution rate 𝐷, as

is concluded from Proof of Lemma A.1; (ii) the specific

growth rates are usually bounded for bounded values of
the substrate concentration, so that 𝜇

1
is bounded for non-

negative dilution rate 𝐷; and (iii) if 𝑋
1
and 𝜇

1
are bounded,

then 𝑘
2
𝜇

1
𝑋

1
is also bounded.

The upper bounds for 𝑋
2
and 𝑆

2
are established as the

following.

Lemma A.5. Consider the plant (1)–(5), subject to Char-
acteristics 1 to 6 and Assumption 1. The concentrations of
methanogenic biomass and VFA are bounded as follows: 𝑋

2
≤

𝜅

𝑥
2

, 𝑆
2
≤ 𝜅

𝑆
2

, where 𝜅
𝑥
2

, 𝜅
𝑆
2

are positive constants defined as

𝜅

𝑥
2

=

1

𝑘

3min

×max{
𝑆

2𝑖max
min {1, 𝛼min}

+

𝑘

2max𝑆1𝑖max
𝑘

1min min {1, 𝛼min}
,

𝑆

2
(𝑡

𝑜
) + 𝑘

3min𝑋2 (𝑡𝑜) +
𝑘

2max
𝑘

1min
𝑆

1
(𝑡

𝑜
) } ,

(A.20)

𝜅

𝑆
2

= max{
𝑆

2𝑖max
min {1, 𝛼min}

+

𝑘

2max𝑆1𝑖max
𝑘

1min min {1, 𝛼min}
,

𝑆

2
(𝑡

𝑜
) + 𝑘

3min𝑋2 (𝑡𝑜) +
𝑘

2max
𝑘

1min
𝑆

1
(𝑡

𝑜
) } ,

(A.21)

where 𝑆
2𝑖max,𝛼min, 𝑘2max, 𝑘1min, and 𝑘3min are constant bounds

established in Characteristic 3.This statement is independent of
the control law, the update law, and observer mechanism used.

Proof. Let

𝑍

2
= 𝑆

2
+ 𝑘

3min𝑋2 + (
𝑘

2max
𝑘

1min
) 𝑆

1
, (A.22)

where 𝑘
3min, 𝑘2max, and 𝑘1min are constant bounds estab-

lished in Characteristic 3. Differentiating with respect to time
and using (4), (2), (3) yield

̇

𝑍

2
=

̇

𝑆

2
+ 𝑘

3min ̇

𝑋

2
+ (

𝑘

2max
𝑘

1min
)

̇

𝑆

1

= 𝑆

in
2
𝐷 − 𝑆

2
𝐷 − 𝛼𝑘

3min𝐷𝑋2 + (
𝑘

2max
𝑘

1min
) 𝑆

in
1
𝐷

− (

𝑘

2max
𝑘

1min
) 𝑆

1
𝐷 + 𝑘

2
𝜇

1
𝑋

1
− (

𝑘

2max
𝑘

1min
)𝑘

1
𝜇

1
𝑋

1

− 𝑘

3
𝜇

2
𝑋

2
+ 𝑘

3min𝜇2𝑋2.

(A.23)
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Using the inequalities of Characteristic 3 yields

−𝑘

3
𝜇

2
𝑋

2
+ 𝑘

3min𝜇2𝑋2 ≤ 0,

̇

𝑍

2
≤ − 𝑆

2
𝐷 − 𝛼min𝑘3min𝑋2𝐷 − (

𝑘

2max
𝑘

1min
) 𝑆

1
𝐷

+ 𝑆

2𝑖max𝐷

+ (

𝑘

2max
𝑘

1min
) 𝑆

1𝑖max𝐷 + 𝑘2max𝜇1𝑋1

− (

𝑘

2max
𝑘

1min
)𝑘

1
𝜇

1
𝑋

1

≤ − 𝑆

2
𝐷 − 𝛼min𝑘3min𝑋2𝐷

− (

𝑘

2max
𝑘

1min
) 𝑆

1
𝐷 + 𝑆

2𝑖max𝐷

+ (

𝑘

2max
𝑘

1min
) 𝑆

1𝑖max𝐷

≤ −min {1, 𝛼min} [𝑆2 + 𝑘3min𝑋2 +
𝑘

2max
𝑘

1min
𝑆

1

−

𝑆

2𝑖max
min {1, 𝛼min}

−

𝑘

2max𝑆1𝑖max
𝑘

1min min {1, 𝛼min}
]𝐷.

(A.24)

Let

𝑍

2
= 𝑍

2
−

𝑆

2𝑖max
min {1, 𝛼min}

−

𝑘

2max𝑆1𝑖max
𝑘

1min min {1, 𝛼min}
, (A.25)

𝑍

2
= 𝑆

2
+ 𝑘

3min𝑋2 +
𝑘

2max
𝑘

1min
𝑆

1

−

𝑆

2𝑖max
min {1, 𝛼min}

−

𝑘

2max𝑆1𝑖max
𝑘

1min min {1, 𝛼min}
,

(A.26)

where 𝑍
2
is defined in (A.22). Expression (A.24) is rewritten

in terms of 𝑍
2
(A.26) as the following. Differentiating (A.25)

with respect to time yields ̇

𝑍

2
=

̇

𝑍

2
. Using (A.24) and

definition (A.26) yields ̇

𝑍

2
≤ −min{1, 𝛼min}𝑍2𝐷. Using

Lemma in [28] yields 𝑍
2
≤ 𝑍

2
(𝑡

𝑜
)𝑒

−min{1,𝛼min}𝐷(𝑡−𝑡𝑜), where
𝑍

2
(𝑡

𝑜
) is the initial value of 𝑍

2
and can be obtained by

evaluating (A.26) for 𝑡 = 𝑡
𝑜
:

𝑍

2
(𝑡

𝑜
) = 𝑆

2
(𝑡

𝑜
) + 𝑘

3min𝑋2 (𝑡𝑜) +
𝑘

2max
𝑘

1min
𝑆

1
(𝑡

𝑜
)

−

𝑆

2𝑖max
min {1, 𝛼min}

−

𝑘

2max𝑆1𝑖max
𝑘

1min min {1, 𝛼min}
.

(A.27)

Thus, 𝑍
2
≤ max{0, 𝑍

2
(𝑡

𝑜
)}. Using the definition (A.26) yields

𝑆

2
+ 𝑘

3min𝑋2 +
𝑘

2max
𝑘

1min
𝑆

1
−

𝑆

2𝑖max
min {1, 𝛼min}

−

𝑘

2max𝑆1𝑖max
𝑘

1min min {1, 𝛼min}

≤ max{0, 𝑆
2
(𝑡

𝑜
) + 𝑘

3min𝑋2 (𝑡𝑜) +
𝑘

2max
𝑘

1min
𝑆

1
(𝑡

𝑜
)

−

𝑆

2𝑖max
min {1, 𝛼min}

−

𝑘

2max𝑆1𝑖max
𝑘

1min min {1, 𝛼min}
} ,

𝑆

2
+ 𝑘

3min𝑋2 +
𝑘

2max
𝑘

1min
𝑆

1

≤ max{
𝑆

2𝑖max
min {1, 𝛼min}

+

𝑘

2max𝑆1𝑖max
𝑘

1min min {1, 𝛼min}
,

𝑆

2
(𝑡

𝑜
) + 𝑘

3min𝑋2 (𝑡𝑜) +
𝑘

2max
𝑘

1min
𝑆

1
(𝑡

𝑜
) }

(A.28)

and, hence,

𝑋

2
≤ 𝜅

𝑥
2

𝜅

𝑥
2

=

1

𝑘

3min
max{

𝑆

2𝑖max
min {1, 𝛼min}

+

𝑘

2max𝑆1𝑖max
𝑘

1min min {1, 𝛼min}
,

𝑆

2
(𝑡

𝑜
) + 𝑘

3min𝑋2 (𝑡𝑜) +
𝑘

2max
𝑘

1min
𝑆

1
(𝑡

𝑜
) }

(A.29)

𝑆

2
≤ 𝜅

𝑆
2

𝜅

𝑆
2

= max{
𝑆

2𝑖max
min {1, 𝛼min}

+

𝑘

2max𝑆1𝑖max
𝑘

1min min {1, 𝛼min}
,

𝑆

2
(𝑡

𝑜
) + 𝑘

3min𝑋2 (𝑡𝑜) +
𝑘

2max
𝑘

1min
𝑆

1
(𝑡

𝑜
) }

(A.30)

End of proof.

Remark A.6. Lemma A.5 indicates that 𝑋
2
, 𝑆
2
are bounded

if the dilution rate 𝐷 is non-negative, regardless the control
law and observer used. In addition, the concentrations𝑋

2
, 𝑆
2

have a constant upper bound for any structure of the specific
growth rates 𝜇

1
, 𝜇
2
, as can be concluded from the procedure

shown in Proof of Lemma A.5.

The upper bound for 𝜇
2
𝑋

2
can be established on the basis

of the Lemma A.5 shown above.

Lemma A.7. Consider the plant (1)–(5), subject to Character-
istics 1 to 6 and Assumption 1. The term 𝜇

2
𝑋

2
is bounded as
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follows: 𝜇
2
𝑋

2
≤ 𝜅

𝜇
2
𝑥
2

, where 𝜅
𝜇
2
𝑥
2

is a positive constant defined
as

𝜅

𝜇
2
𝑥
2

=

𝜇

2max√𝐾𝐼2max

𝑘

3min (2√𝐾𝑆
2
min + √𝐾𝐼

2
min)

×max{
𝑆

2𝑖max
min {1, 𝛼min}

+

𝑘

2max𝑆1𝑖max
𝑘

1min min {1, 𝛼min}
,

𝑆

2
(𝑡

𝑜
) + 𝑘

3min𝑋2 (𝑡𝑜) +
𝑘

2max
𝑘

1min
𝑆

1
(𝑡

𝑜
) } ,

(A.31)

where 𝜇

2max, 𝐾

𝐼
2
max,𝐾𝑆

2
min, 𝐾

𝐼
2
min, 𝑆2𝑖max,𝛼min, 𝑘

2max,
𝑆

1𝑖max, 𝑘1min, 𝑘3min, and 𝑘2max are constant bounds established
in Characteristic 3.This statement is independent of the control
law, the update law, and observer mechanism used.

Proof. The maximum value of 𝜇
2
can be found by differenti-

ating it with respect to 𝑆
2
. Differentiating 𝜇

2
(5) with respect

to 𝑆
2
yields

𝜕𝜇

2

𝜕𝑆

2

= 𝜇

𝑜

𝐾

𝑆
2

− 𝑆

2

2
/𝐾

𝐼
2

(𝐾

𝑆
2

+ 𝑆

2
+ 𝑆

2

2
/𝐾

𝐼
2

)

2
. (A.32)

Equating to zero, solving for 𝑆
2
, and substituting in (5) yield

𝑆

∗

2
= √𝐾𝐼

2

𝐾

𝑆
2

, (A.33)

𝜇

∗

2
= 𝜇

2max

√
𝐾

𝐼
2

2
√
𝐾

𝑆
2

+
√
𝐾

𝐼
2

. (A.34)

The optimal value 𝑆∗
2
=
√
𝐾

𝐼
2

𝐾

𝑆
2

was already established in
[41]. Since 𝜇

2max,𝐾𝐼
2

, 𝐾

𝑆
2

may be time-varying, 𝜇
2
(A.34) has

an upper bound:

𝜇

2
≤ 𝜇

2max

√
𝐾

𝐼
2

2
√
𝐾

𝑆
2

+
√
𝐾

𝐼
2

≤ 𝜇

2max

√
𝐾

𝐼
2
max

2
√
𝐾

𝑆
2
min + √𝐾𝐼

2
min

,

(A.35)

where 𝜇
2max, 𝐾𝐼2max, 𝐾𝐼

2
min, and 𝐾𝑆

2
min are established in

Characteristic 3. Therefore, using (A.29) and property (A.35)
yields

𝜇

2
𝑋

2
≤ 𝜅

𝜇
2
𝑥
2

, (A.36)

𝜅

𝜇
2
𝑥
2

=

𝜇

2max√𝐾𝐼2max,

𝑘

3min (2√𝐾𝑆
2
min + √𝐾𝐼

2
min)

×max{
𝑆

2𝑖max
min {1, 𝛼min}

+

𝑘

2max𝑆1𝑖max
𝑘

1min min {1, 𝛼min}
,

𝑆

2
(𝑡

𝑜
) + 𝑘

3min𝑋2 (𝑡𝑜) +
𝑘

2max
𝑘

1min
𝑆

1
(𝑡

𝑜
) }

(A.37)

End of proof.

Remark A.8. The reaction rate term 𝜇

2
𝑋

2
has a constant

upper bound for any structure of the specific growth rates
𝜇

1
and 𝜇

2
, as is concluded from the procedure in the above

proof. The reasons are (i) the biomass concentration 𝑆
2
is

bounded for nonnegative dilution rate 𝐷, as is indicated by
Lemma A.5, (ii) the specific growth rates are usually bounded
for bounded values of the substrate concentration, so that
𝜇

2
is bounded for nonnegative dilution rate 𝐷, and (iii)

the biomass concentration 𝑋
2
is bounded for non-negative

dilution rate𝐷, as is indicated by Lemma A.5.

Remark A.9. Lemmas A.1, A.3, A.5, and A.7 establish the
results stated in Lemma A.3.1.

B. Proof of Property (20)
Solving (18) for 𝑧 yields

𝑧 = ±(𝐶

𝑏𝑧
+ √2𝑉

𝑧
) if 𝑉

𝑧
≥ 0,

𝑧 ∈ [−𝐶

𝑏𝑧
, 𝐶

𝑏𝑧
] if 𝑉

𝑧
= 0.

(B.1)

Therefore,

|𝑧| =

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝐶

𝑏𝑧
+ √2𝑉

𝑧

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

if 𝑉
𝑧
≥ 0,

|𝑧| ∈ [0, 𝐶𝑏𝑧
] , if 𝑉

𝑧
= 0.

(B.2)

Hence,

|𝑧| ≤ 𝐶𝑏𝑧
+ √2𝑉

𝑧
.

(B.3)

End of proof.

C. Proof of Property (41)
The signal |𝑔

𝑧
| can be rewritten as

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

= 𝑔

𝑧
sgn (𝑔

𝑧
) . (C.1)
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From (24), it follows that

sgn (𝑔
𝑧
) = sgn (𝑧) if 𝑧 > 𝐶

𝑏𝑧
or 𝑧 < −𝐶

𝑏𝑧
, (C.2)

𝑔

𝑧
= 0 if 𝑧 ∈ [−𝐶

𝑏𝑧
, 𝐶

𝑏𝑧
] , (C.3)

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

= 0 if 𝑧 ∈ [−𝐶
𝑏𝑧
, 𝐶

𝑏𝑧
] . (C.4)

From (42) it follows that

sat
𝑧
= sgn (𝑧) if |𝑧| > 𝐶𝑏𝑧. (C.5)

From expressions (C.1), (C.2), (C.4), and (C.5) it follows that

sgn (𝑔
𝑧
) = sgn (𝑧) = sat

𝑧
if |𝑧| > 𝐶𝑏𝑧,

󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

= 𝑔

𝑧
sgn (𝑧) = 𝑔

𝑧
sat
𝑧

if |𝑧| > 𝐶𝑏𝑧,
󵄨

󵄨

󵄨

󵄨

𝑔

𝑧

󵄨

󵄨

󵄨

󵄨

= 0 = 𝑔

𝑧
sat
𝑧

if 𝑧 ∈ [−𝐶
𝑏𝑧
, 𝐶

𝑏𝑧
] .

(C.6)

Combining the last two expressions yields |𝑔
𝑧
| = 𝑔

𝑧
sat
𝑧
. End

of proof.
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González-Álvarez, and J. Garćıa-Sandoval, “A robust control
scheme to improve the stability of anaerobic digestion pro-
cesses,” Journal of Process Control, vol. 20, no. 4, pp. 375–383,
2010.

[17] M. Estaben, M. Polit, and J. P. Steyer, “Fuzzy control for an
anaerobic digester,” Control Engineering Practice, vol. 5, no. 9,
pp. 1303–1310, 1997.

[18] L. Mailleret, O. Bernard, and J. P. Steyer, “Robust regulation of
anaerobic digestion processes,” Water Science and Technology,
vol. 48, no. 6, pp. 87–94, 2003.

[19] J. Hess and O. Bernard, “Design and study of a risk manage-
ment criterion for an unstable anaerobic wastewater treatment
process,” Journal of Process Control, vol. 18, no. 1, pp. 71–79, 2008.

[20] N. Hilgert, J. Harmand, J.-P. Steyer, and J.-P. Vila, “Nonparamet-
ric identification and adaptive control of an anaerobic fluidized
bed digester,”Control Engineering Practice, vol. 8, no. 4, pp. 367–
376, 2000.

[21] L. Mailleret, O. Bernard, and J.-P. Steyer, “Nonlinear adaptive
control for bioreactors with unknown kinetics,” Automatica,
vol. 40, no. 8, pp. 1379–1385, 2004.

[22] H. O. Méndez-Acosta, D. U. Campos-Delgado, R. Femat, and
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