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This paper studies a fully discrete Crank-Nicolson linear extrapolation stabilized finite element method for the natural convection
problem, which is unconditionally stable and has second order temporal accuracy of O(At* + hAt + h™). A simple artificial viscosity
stabilized of the linear system for the approximation of the new time level connected to antidiffusion of its effects at the old time level
is used. An unconditionally stability and an a priori error estimate are derived for the fully discrete scheme. A series of numerical
results are presented that validate our theoretical findings.

1. Introduction

Natural convection flow has many thermal engineering appli-
cations such as in double-glazed windows, solar collectors,
cooling devices for electronic instruments, gas-filled cavi-
ties around nuclear reactor cores, and building insulation.
Typically, fluid flow and heat transfer are governed by the
partial differential equation system of momentum, mass, and
energy conservation, but in the case of natural convection,
the so-called Boussinesq approximation is generally used.
The natural convection problem which we consider is for
bounded, polyhedral domains Q, ¢ Q in RY (d = 2,3) with
dist(0Q,, 0Q) > 0, the simulation time ¢t*, and the force field
y:Qx(0,t"] —» R;find the velocity u : Q x (0,t"] — R,
the pressure p : Q x (0,t"] — R, and the temperature
T:Qx(0,t"] — R satisfying [1]

u, —PrAu+ (u-V)u+ Vp = PrRalT, C=|‘i|,
g
u=0 onodQ, u=0 inQ-Q,=Q,
Uleg =y, V-ou(x,t)=0 in Q,

T,-V-(kVT)+(u-V)T =y in Q,

oT
-9
on

Tl = Tos

T=0 on [, on Ify,

in Q,
€]

where ( is a unit vector in the direction of gravity, » is the
outward unit normal to Q, and I'; = 0Q \ I'; where I
is a regular open subset of 0Q), Pr is Prandtl number, Ra
is Rayleigh number, and k > 0 is thermal conductivity
parameter. Moreover, k = k, in O, and k = k, in Q, where
k, and k, are positive constants. A global-in-time existence
result for a more general natural convection problem (Navier-
Stokes/Fourier model) is given in [2].

Many authors have worked hard to study for a great
variety of efficient numerical schemes for the natural con-
vection problem [3-17] and relevant research [18, 19]. We
mention only a few papers here. [3, 4] are the early papers
by using mixed finite element (FE) method. Cibik and
Kaya [5] have formulated a projection-based stabilization
FE technique for solving the steady-state natural convection
problems. The global stabilizations are added for both velocity



and temperature variables and these effects are subtracted
from the large scales. Galvin et al. [7] consider the prob-
lem of poor mass conservation in mixed FE algorithms
for flow problems with large rotation-free forcing in the
momentum equation. Zhang et al. [8] have presented a
subgrid stabilized defect-correction method for steady-state
natural convection problem. Shi and Ren [11] have proposed
a least squares Galerkin-Petrov nonconforming mixed FE
method for stationary conduction-convection problems. Luo
et al. [12] have given an optimizing reduced Petrov-Galerkin
least squares mixed FE for the nonstationary conduction-
convection problem. Boland and Layton [1] have derived
stability properties and error estimates for the mixed FE
spatial discretization case when used to approximate heat
flow in a fluid enclosed by a solid medium. Benitez and
Bermudez have presented a second order Lagrange-Galerkin
method for natural convection problems in [17]. In 20, 21], a
stability analysis of thermal natural convection in superposed
fluid and porous layers is carried out.

Our goal in this paper is to solve time-dependent natural
convection problem efliciently and accurately. Usually fully
implicit schemes are (almost) unconditionally stable, but
one has to solve a system of nonlinear equations at each
time step. Although an explicit scheme is much easier in
computation, it suffers a restricted time step size from the
stability requirement. A popular approach is based on an
implicit scheme for the linear term and a semi-implicit
scheme or an explicit scheme for the nonlinear term. There
are numerous works on the Crank-Nicolson and relevant
high order scheme for the Navier-Stokes (NS) equations
[22-30]. The Crank-Nicolson linear extrapolation (CNLE)
scheme for NS equations was first studied by Baker in [23].
The second and third order CNLE methods are introduced
and analysed in [24]. A stabilized extrapolated trapezoidal FE
method is given in [25] for the NS equations. A variational
multiscale method based on the CNLE scheme for the NS
equations is proposed in [26]. He et al. [27-29] have studied
the NS equations based on the Crank-Nicolson extrapolation
(Crank-Nicolson/Adams-Bashforth, or two level methods)
schemes. In [31], we have studied fully implicit Crank-
Nicolson scheme for natural convection problem.

We consider herein a simple, second order accurate, and
unconditionally stable fully discrete Crank-Nicolson linear
extrapolation stabilized (CNSLE) FE method for natural
convection problem which requires the solution of one linear
system per time step. Suppressing the spatial discretization,
the method is

un+1 —-u" n+l +u"
Y_TW  pea B T®
At 2

N (Un+1/2 . V) (”n+1 + ”n) + (Pnﬂ + Pn)
2 2

n+1 n
— uhAU™" = PrRa{ (#) — uhAu",
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n+l _ gn n+1 n
-7 . (kv (ﬁ))
At 2
n+1 n
+ (Un+1/2 . V) <T 2+ T ) B ‘uhATnH

_ yn+1/2 _ MhATn,
(2)

where the time step At > 0, the constant g = O(1), and
U™t = (3/2)u" - (1/2)u™! is the linear extrapolation
of the velocity to t,,,/, from previous time levels. It is a
three time levels scheme. Artificial viscosity stabilizations
are introduced into the linear systems for "' and T""' by
adding —phAu™" and —uhAT™" to the left-hand sides (LHS)
and correcting them by —phAu" and —uhAT" on the right-
hand sides (RHS), respectively. To the best of the authors’
knowledge, there are no papers dealing with the error analysis
of the fully discrete CNLE FE method for natural convection
problem.

The paper is organized as follows. Section 2 collects some
preliminaries for the analysis that follows. In Section 3, we
give the fully discrete CNSLE FE method and prove it is
unconditionally stable in Theorem 5. In Section 4, error esti-
mates for velocity and temperature are derived in Theorem 6.
Numerical experiments are described in Section 5. Conclu-
sions follow.

2. Preliminaries

2.1. The Variational Formulation of Natural Convection Prob-
lem. Let (-,-) and | - || denote the L*(Q) inner product and
norm, respectively. Define the velocity space X, the pressure
space M, the temperature space W, and the divergence-free
space V as follows:

X:= HS(Q)d = {ve HI(Q)d :v=0 on F},

M= L5 (@) = {p e I*(Q),(p. 1), = 0},

(3)
W:={SeH'(Q):$=0 on I},
Vi=Hyg (Q={veX:V-v=0in Q},

where H7(Q)) denotes the standard Sobolev space [32] with
norm | - || j All other norms will be clearly labeled with
subscripts.

The weak formulation of problem (1) reads as follows: find
(u,p,T) € (X,M,W) for all t € (0,¢"], for all (v,q,S) €
(X, M, W), such that

(v, v) + Pr(Vu, Vv) + ¢ (u,u,v) = (V- v, p) = PrRa ({T,v),
(V-u,q)=0,

(T,,S) + k (VT,VS) + € (u,T,S) = (1,5).
(4)
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Here, the skew-symmetric trilinear forms [1, 3, 5]
1 1
c(u,vw) = 5((u-V)v-w)— E((u-V)w-V),

Yu,v,w € X,
. . (5)
c(wT,S) = 5((u'V)TS)—E((u'V)ST),
VueX; T,SeW,
which satisfy the following lemma.
Lemma1 (see [25, 33]). LetQ C R¢ (d=2,3) forallu,v,w €
X;T,SeW.

c(u,v,w) = -c(u,w,v),

lc (u, v,w)| < C[Vul VY] [Vwll,

lc (u, v, w)| < CllullIVul? [ 9v] [V, ©
cuT,S) = -cuST),
cw,T,S) < CVul IVT] VS]],

<, T, ) < Clull[Vul > |VT| |VS],
if, in addition, v, Vv € L*(Q),
le (u, v, w)] < C (Wl ooy + 19Vl eogy) IVl V0]l
lc (u, v, w)| < C (Ilull V¥l ooy + IVl 1Vl oo () Nl
)
and if, in addition, T, VT € L®(Q),
€ (u, T,9)| < C (Il ooy + IVT o)) IVl VS,
1€ (u, T,9)| < C (Ilull IVT |l ooy + IVl I Tl oo ) ISI-
)

We will use the Poincare inequality: for all w € X, or W,
lwl < CpllVal.

2.2. Finite Element Approximation. Assume Q" = {K} to be
a quasiuniform mesh of Q with mesh size 0 < h < 1; let
(Xp> My, W) € (X, M, W) be a pair of conforming velocity-
pressure-temperature finite element spaces which contain
piecewise continuous polynomials of degree m, m — 1, and
m, respectively, and satisfy the usual inf-sup condition and
the following approximation properties [33]:

o {lu= v+~ IV (=)} < CH™
vu e H" (Q)n X,

Jof P -al <CH"pl,, VpeH" (@M, (9
Jnf AT =Syl + 1V (T = S} < CH™ [T

VYT € H" (Q) nW.
The subspace V}, of X, is given by
Vh = {Vh € Xh : (qh,V . Vh) = O,th € Mh} . (10)

2.3. The Modified Stokes Projection. The following modified
Stokes projection operators are similar than the one in [5].
For the reader’s convenience, we only present the definition
and the error results of the projection operators. We can easily
derive the result.

Definition 2 (see [5]). The modified Stokes projection opera-
tor for velocity u and pressure p is Py : (X, M) — (X, M),
Py(u, p) = (&1, p), such that

Pr(V(u-1),Vv,) - (p-pV-v,) =0,
(11)
(V- (u-1u).q,) =0,

for all (v, q,) € (X, My,). In spaces (V;,, M},), Definition 2
reduces to the following: given (u, p) € (X, M), find i € V,
such that

Pr(V(u-u),Vv,) = (p—qu V- v,) =0, (12)

for all (v,,q,) € (V,, M},). The modified Stokes projection
operator for temperature T is Pr : W — W, P(T) = T,
such that

(V(T-T),vS,) =0, VS, eW,. (13)

Lemma 3 (error estimates of the modified Stokes projection).

Suppose the inf-sup condition holds; then (ii, T) exists uniquely
and satisfies

Pr|V (u - )
<C(Prinf |V(u-v,)|* +Pr" inf |p- 2),
(Pr ot 1V =) + 2" int =g
|v(r-T)| < Cinf V(T =S|,
(14)

where C is a constant independent of h and m.

3. Numerical Scheme and Its Stability

3.1. Numerical Scheme. Lett, = nAt,n =0,1,2,...,N, and
t* = NAt. Define the linear extrapolation of the convecting
velocity uy, to t,,, 1/, == (¢, +t,.1)/2 by

_ 3 1 -
E [uz,uz 1] = Euz - EMZ Y (15)

where ] is a known approximation to u(x, t;). The fully

discrete CNSLE FE method of (1) is presented as follows.
Algorithm 4. Consider the following steps.

Step 1. Let (u),T}) be the modified Stokes projections of
(uy, T,) into spaces (V},,W,); then at the first time level,
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find (u, p).T}p) € (X, M, W), for all (v,,q,,S,) € We find that CNLES FE method requires the solution
(Xy,> M;,, Wp,), such that of only one linear problem at each time step; thus it needs
less time than fully implicit Crank-Nicolson scheme. Denote

1_ 0 1,0 koin = min(k,, k,), and k,,,, = max(k,, k).
(uh uh,vh) + Pr (V ( “h er “n ) ,Vvh) + ph (Vu,l,,Vvh)

At
3.2. Stability of the Method
1, .0 1,0
+ u, +u
_ (Ph 5 ph,v . Vh> +c(u2, —h_Th 5 h,vh> Theorem 5. Suppose 0 < k. < kp, < 00, andy €
L*(0, T; H'(Q)). Algorithm 4 is unconditionally stable in the
T! 40 following sense, for any h, At >0, 4> 0,and 0 <I < N - 1:
=PrRa<C< h h),vh>+yh(Vu2,Vvh),
(V ’ u;’qh) =0, I+1||2 l TZH + TZ ’ I1+1]2
w T kX o (B ) anafor|
=
T, - Ty T, +Tj
———8, | +k(V ,VS !
( e 2 " < |+ VT + bt Yl )
n=0
T, +Tp 17
+uh (VT;,VS,) +E<u2, h ",sh) 17
(20)
=(y (tl/z) ,Sp) + ph (VTE’ Vsh) . . 2
+
[+ praey v (%) + ust|vil [
Step 2. For n > 1, given (up, p,, T)) € (Xp, M, Wy), "0
find ', it T € (X My, W), for all (v, g5, S,) € < Lol 02
Xy My W) such that <Jil| + h ]
(21)
un+1 —u un+1 +u" PrR zk—l C TO 2 hAt VTO 2
(u,vh)+Pr<V<u),V1}h> +PrRa* ki Cp | [T+ e[V
At 2
+ ph (VU™ vy oo 2
H ( " h) +Atzkmlin“y (tn+1/2)||—1 :
n+1 n n=0
n on-1] Up T U
te (E [”h’ U ] ’ 5 Vh) Proof. We first derive the stability of temperature T' and then
of velocity u. Choosing S, = (T}, + T)/2 € W, in (17) yields
e T -1 T} + 79 T+ T\ |
Pn * Py —, = | +k|V| ——
I Vv, At 2 2
s T} - T T+ T
:PrRa(C(%),vh) +pthAt<V( hAt h)v( 5 h (22)
+ ph (Vup,Vv,), ~ (y(t ) T, +T£)
= 1/2)> .
2

(V : ”ZH)%) =0,
(18) Applying the Cauchy-Schwarz and Young’s inequalities gives

R N IR T T
At 2 2At i 2
+1
(7T, 55,) - o enl -l @)
— n  n-1 T;zl+1 + T;: M ZAt
+C(E[uh,uh ,T’Sh) 2

v T, + T}
2

1.4 2 1
< -k k.
= (y (bur1/2) > Su) + uh (VT, VSy,). ka‘"“y(tl/z)"‘l i kam
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Thus, we get the bound of temperature on the first time level:

v T, + T}
2

< |1 + e[ VTE + Lty (1)1,

2
+ uht|vTh|

[T + Atk

(24)

For n > 1, taking ), = (T”Jrl +T})/2 € W, in (19) and using
the Cauchy-Schwarz and Young inequalities lead to

T\
2

< [,{hAt"VTZ"Z + kr_nlmAt"V (tn+1/2)||i1

(17w = 1T ) + KtV

+ v )

Summing the above equation over n from 1 to [ yields

v e\
4 2

1
<[l + st 9T + kodadt Y Iy (),
n=1

(26)

1+1))2

+ uhAd| Ve

min

Substituting the bound [ TL" + Atk IV(TE + T)/2)]” +
(,thAtIIVT,llH2 of (24) into the above relation, we obtain the
result of (20).

Now we derive the stability of velocity u. Taking v, =
(u,ll + ug) /2 € V, in (16) and applying the Cauchy-Schwarz
and Young inequalities, we have

‘2

1 0
u, +u
2

2 2
Jeid” = o]
L . L

2At
N .
2At

< (”}1+”2>|2+ prRa?|| T} + TC | '

2 2 2 2|,
Then
2
[+ pracfv (@) + uhne] v

1 0112 (28)
< "“2”2 + yhAt“VuZ"z + PrRa’At Lt Ty

-1

For n > 1, taking v, = (uz+1 +uy)/2 € V, in (18)
and making use of the Cauchy-Schwarz inequality and the
Young’s inequality lead to

(208 IR ( |
20t
+#Mt"V "“H ||V W (29)
: v(_zw_Z) ot
T2 2 "2 2|

Multiplying the above relation by 2At and summing over n

from 1 to I give
2
LA
2]+ (454)

“uh" + yhAt“Vuh“ + At PrRa’ Z

' I+1

+ uhAt| v, ||

n+1
T, + Th

-1

(30)

+ PrAV(l + w21 +

MhAtlqu,l,H2 of (28) into the above relation and using the
result (20), we get the desired result (21). O

2
Inserting the bound IIu;II

4. Error Estimate

(un+1 pn+1, Tn+1) and
"1 into the approxi-

Denoting (u(t,1), p(te1), T(te1)) =

splitting the error terms €};"', €)', and ef.

n+l  n+l n+1

1
mation errors nu 1y, and 77" and the model errors ¢]}*
n+1

¢, »and @, respectively,

ntl _  ntl n+l _ ( n+1 ~n+1) ( n+1 ~n+1)
e, =u —u, =\u -—u —\Y, —u
_  ntl n+1
=My — Py
n+1 n+1 ntl n+1 ~n+l1
=p" -t = (P ) (Ph -P )
_ . n+l n+l
My TP o

e;+1 — Tn+1 _ T;ﬁl — (Tn+1 _ Tn+1) _ (TI:HI _ Tn+1)

n+1 n+1
=y —9r >

(31)



where (@', p*', T™*!) are the modified Stokes projections

of (u(t,,1), p(t,e1)> T(t,,1)) into spaces (X, M}, W;,), respec-
tively. For m > 2, we assume the exact solution of problem (1)
satisfies following regularity assumptions:

we L (0,65 H™ (@) n L™ (0,t"; H™ ()Y,
u € (0,6 H™ (@),

ug € L (0,65 H(Q)T), e € L7 (0,67 L7(Q)7),

P € L2 (0,67 L2 (),
T e L (0,67 H™ Q) n L™ (0,6 H™' (),
T, e I (0t H™ (),

T, e (0,6 H (Q)), Ty € L? (0,51 (Q)).
(32)

Theorem 6. Assume that the solution (u, p,T) of problem
(1) satisfies regularity assumptions (32). Let the finite element
spaces (X, M}, W,,) include continuous piecewise polynomials
of degree m, m — 1, and m (m = 2), respectively. If At satisfies
the condition

—d
max {CH™ 2 Atl|ull oo o 1 (0>
> 1
6 PrRa’ CpAt + CH™ 2 At| Tl oo g | < >
(33)

then there is a constant C = C(Pr, k,Ra, Q,m,u, p,T) such
that, forany 0 <1< N -1,

s (o) = |

, (Atng)Pr 19 (((u

1/2
x<2>1)||2)

I+1
-1,

taet) =10, )+ (u(t,) - 1))

+ ”T (tl+1)

, (Atgkmin v (((r
@) )m

(B0 9 (1) - )]

(taer) = T + (T (1,) = T3))

(o) 9 (1 1)~ 12|

< (A?(hm + uhAt + Atz) .
(34)
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Remark 7. We see that our proof is conditionally convergent.
We think that the condition (33) is not necessary theoretical,
and it might be removed. But we cannot make it herein and
will study it in the future.

Now we give the outline of the proof. The proof is
proved in Part 1 (establishing the error estimate for Step 1
in Algorithm 4) and Part 2 (deriving the error estimate for
Step 2 in Algorithm 4). In each parts, we first derive the
error equations of the momentum equation and the energy
equation; then give the error estimates of the momentum
error equation and the energy error equation, respectively,
and finally derive Theorem 6 by using the Gronwall lemma
and the triangle inequality.

Proof. Part 1. Derive the error estimate of Step 1 in
Algorithm 4.

Step 1.1. Establishe the error equations of the momentum
equation and the energy equation. Subtracting equations (16)
and (17) from (4) at t = t,, for V(v;,, S},) € (V},, W},) gives

1 0
Uy, —y
<ut(tl/2)_—At >Vh)
1 0
u, +u
+Pr<Vu(t1/2)—V( h2 h),Vvh)

- ph (V (u;, - ug) , Vvh) +c(u (ﬁ/z) U (t1/2) Vi)

1 n
o Uyt U, Pt Py
C( h; 2 ,Vh>_(p(t1/2)_ 5 ,V'Vh

_PrRa<(T(t1/2) (T 1 vh),

T
<T (ty2) = A—th>5h>
T, + T}
+k<VT(t1/2)—V<%) vsh>
—‘uh(V(Tﬁ

_ o Th+Ty
+C(u(t1/2)’T(t1/2)’Sh)_C(uh’Th Sh) 0.

(36)

(35)

T4),VSy)

Adding and subtracting

(M) ) (o (M) ) g, )

+uh (Vu(t;) — Vu(ty),Vv,)

(B2 .,,)

2
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({70 )

2

(LT ) (v T2 1)) )

+uh (V(T () = T (t)), VS,)
(37)

to (35) and (36), respectively, we have

€y =€y
At

- ( 12g. vh) + MO, (u, p, T, e5vy)

) vh> + Pr (Velll/z, Vvh) + ph (Ve; - Veg, Vvh)

(eTA‘ﬁ 5, ) ¢ (el 98,) (9 (e - ) 95,
= EN, (u,T;S,),
(38)
where
MO, (u, p, T, er; vy,)
(M) )
+Pr (V (M -u (tl/z)) ,Vvh)
+uh (Vu(t,) = Vu(ty),Vv,)
+ <p(t1/2) By (tl);p(t(’),v-vh)
(LT
+PrRa({T (ty,), vy) + PrRa(Ceyl?, v, )
—c(u(tryn) o1 (£12)  74) +c<uz,w,vh),
EN, (u,T;S;,)
(TSI g )
k(V(M) _vmm),vsh)
+uh (VT (t,) = VT (t,), VS,)
~(u(tyn) T (t1y2)Sh) +z<u2, @’Sh)
(39)

7
Using the error decomposition (31) and choosing v}, = (p}/ 2
qol/2 give
2az (o = lotl") + erfogl
+ 2 (Jvail’ - [vellF)
(WuAt u’(Plll/2> +Pr (Vﬂl/z §01/2) (40)
+ [/lhAt (V (%Atﬂu ) SV(P:{/Z)
_( 1/2 V- (P1/2) MO, (u p.Toep; 1/2))
oz (il =[98 ) + Klver”
h
& (Iverl™ - [votl)
<ﬂTAtﬂT)¢;/2) Kk (Vﬂuz’ Vgol/z)
+ phAt <V (%) ’ V§01/2> EN, (u,T (P1/2) .
(41)

Step 1.2. Derive the error inequalities of the momentum
equation (40). From the definition of the modified Stokes
projection (11)-(13), we have

( ’71/2 (P1/2) (1/2 V. gD1/2>

(PI/Z) 0.

(42)
k (V;71/2

For the linear terms on the RHS of (40), applying the

Cauchy-Schwarz, Young inequalities. and the approximation
properties (9) gives

nu rlu 1/2
(5

Pry_ 12 6CH|ns— 1o 2

24” 9. P—rp —“At“

P m

2; ” 1/2" PrAt " t“L (to t Hm+1(Q))

1 0 (43)

‘MhAt <v (%) ) V<Pi/2>

;” <P1/2“2 N 6(#??02 v(niA—tnﬁ) ?

P C Zth+2A

< Bogueft + LA iy



8 Mathematical Problems in Engineering

We next estimate the term MO, (u, p, T, e; ¢ 1/2) of (40). For (t ) B 0 u (t ) +u (to) 1/2

the linear terms of MO, (u, p, T, er; gobl/ %), using the Cauchy- 0 2 Pu

Schwarz and Young’s inequalities together with Taylor expan-

i t, t u(ty)+ult

sion on £, e ge +C<u(%)) GRIGHA]

u(t;) —u(to) 1/2 (45)
( AL —u (t12) 9,
_Prypo 4 Using the inequalities of Lemma 1 and the regularity assump-
" “ max ””m(t)” tions (32) on u, then the second and the third terms of (45)

24 Pr teft,,

are bounded by

Pr

(2280

Pr 122 4 2
< 5alvel| + cpeat s [V O

e (e 91%)]

= [e (o, 02|

o (v (#0217 = e (. 02) € () . )
P 2 Cuh*AP Pryc 122 o 122 o, 012
< v + A max o0 O e e
t t cpr vy,
’(P( 1);P( o) ~p(tp), V- (P1/2) +CPr “ Mu “ (46)
(44)
Bopc e O (e - T g2
< SalVeu |+ o max e I°
- u(t) +u(ty) o
pea (P27 gy ) e ) )
< g"Vgoi/Z“z +CPrRa’ At4t$ai(]“T”(t)"2’ <C "V‘Pm“ “VWB"
0°F1
P 2 _ 2
PrRal (1}, 01" < SalFoll ool
= PrRa |(Gr” - Goi” 0. | | |
Using Taylor expansion on ¢, we write the first and the fourth
"Vgo,i/z" +6PrRa Cp“ﬂl/z " terms of (45) as
+—r Vol 2+9P Ra> C2||pk [’
alror T el RICOSRIOANTY
Vo.*|” +6PrRa’ Cp |/
RN e
tc (“(to)’f’ﬁ% )
where we have used the assumption (33) in the last equation.
For the the nonlinear terms of |[MO, (u, p, T, er; 1/2)| in (40), < _ 1/2
by adding and subtracting some terms and asmg Lemma 1, S |C (4 (o) = u(t12) e (t112) )' (47)
e e O e (1) i 1) 927
c (u (ti2)>u(tiy) (pll/ ) ny (”2» 1”’1;_%,%14/2> < CAt 'c u; (tg),u(ty), q)l/z)'

1/2

= ( (tya)>u(tyyn) Py ) (“hx 2/27% ) +Cat? |C u(ty), uy (to) 901/2)|
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with t5 € (t,,t,). Applying Lemma 1, Taylor expansion on
t, and the regularity assumptions (32), the terms of (47) are
bounded by

At e (u, (tg) (1) 37|

< CAt (”’/‘t (to)|| | Vu (tl/Z)"L‘X’(Q)

19 (o) o (1172 ) o)

<ol
s (48)
+CAt (””t (to)| | Vu (t1/2)||L°°(Q)

2
+ [Vaa, (o) s (1) oo )
CAt? |C to) Uy (te) (Pu )|

Pl‘ ” (P1/2||2 CAt

S04 ||V”(to)|| [Vt (t0)]-

Combining these inequalities with (40), we obtain

. P
i (9 - 142T) + ST
h
e (A O

S Iar " “ m"‘f’;"

Ch2m+2 2
o (3 000 il o)

+ e o]+ ce o

+ CPr_1||V172||2

oo | max fu, O

[toots

+ Pr’ max ||Vutt (t)“
te[toty |

+ max [, O
te[toty |

+ Pr’Ra’ n[lax I (t)||

tEOI

+||Vu (to)”z"V”tt (te)llz

+6PrRa CP||;7”2||
+CPr WP HP AL terﬁiif]"vut o’
+ CAE (Ju, (t)] |V (t12)l ooy
# [an e e )l o)

(49)

Step 1.3. Derive the error inequality of the energy error
equation (41). Similarly, for the linear terms on the RHS of
(41), we have

0
’7% R/APRY)
ar 0T
2
kmin 1/2 ’7’; B ’1’(1)"
< — 16 || + 4kmm v

e L R Y Y

1 f—
(525 )

1 0\ (12
< —min kmin 1/2" MhAt) ‘V ( T — ’/IT) '
16 kmin At
Culh*™
mm 1/2 ¢
<+ L ey
(50)
For the linear terms of EN, (u, T; <p¥2), we arrive at
T (t,)-T(t,)
l(# T, () 91
< Smin mln “ 1/2” ||Tm(t)||
T(t;)+T(t
(s (M T(tm)) o)
(51)
< m1n “ 1/2" max At max ||VTtt(t)l|

T(t) —T(to) 12
WAt V[ ——— |,V
IZ ( ( At Pr
1/2“2 . Cu*h*At?
T kmin

k_.
S min

16

2
max [V, (0]
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Using Lemma 1, we write the nonlinear terms of |EN, (u,
T, /)| in (41) as

B B T+ T
)T 00) ) v (0 T 1)

2 (el 917)

( (t12)> T (t12) ‘PT )

T (t,)+ T (t,) 1/2)
T

—E(u(to) ~u

+E<u(t0),—T (£) + T (to) (pl/z) .

2 »Pr
(52)

From Lemma 1, Taylor expansion on t, and the regularity
assumptions (32), it follows that

()

= [¢ (% 017
= |-e (o, 91?) + € (u (t0) . > 01%))|

e A e L

b v’

min

E(u (1) - ut, L) T 00) . T(t"),sv%/Z)

z (ﬂg, T(t;)+T(t) )‘P;ﬂ)

2

< gl vt < 22

1/2“ + Ckmm"vnu'l
l = (u (i), T (t12) ’(P;/Z)

+E<u(t0), T(t) +T(t0),¢;,2)

2

1 1
s @“%“
+CAP ("”t (to) "VT(tl/z)“L”O(Q)
2
+[|Va, (to)|| | T (tl/Z)”LOO(Q))

i g1 + —IIVTtt(te)ll

(53)

Mathematical Problems in Engineering

for any t4 € (ty,t,). Combining equations (52)-(53) with (41),
we get

(ot - ) + o
h
+ 2 (ot - ||V<P9r||2)

Ch

Vo

< sarllotl + 5 N L A

t (IIW [+ o[ ot

+||V;71/2|| + W At* max VT, (t)||2>
te[tot ]

max ||Tm (t)|| +k

max
te[toty |

, Cat 4
[ max ||VT” (t)||2
te[touts ]

min

T )

+ CAE (|lu, ()| IVT (t1/2) 0

[V T o)
(54)

Step 1.4. Combining (49) with (54), multiplying it by 2At, and
using the approximation properties (9) yield

ol + peacfogl

+ st ([voi "~ [vil)

+ - "(pT" +kmmAt||V<p“2||

+ st ([vor " = [vos ()

<CR™? (1+4°AF)

x (Pr_l [ Y
+kr_nlin||Ttl|iz(t0,t1;Hm+l(Q)))
+ COtPr (s () [ + (1))
+ CAR ko (1T (#) ey + 1T )y

ot (o))
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+ CAPPr! ErBax [[e4gse (t)“2

0°F1

+Pr? n[mx] Ve, O

te |yt

+ max ||tht t)“

te[tot |

+Pr’Ra® max ||Tn (t)||

te[toty |

7 () P71 <t9>||2]
rearicl, | mas 1, 0
te[tot ]

max

+ k% max ||VT” (1‘)||2
to>t1]
VT, (te>||2]

+CPrRA LA™ (T (1) + IT (t0)11)

+ Cu’h* AL <Pr ! rFax [V, (t)||

te[tot; ]

min

+kt IFax ||VT (t)|| )

0! 1

+ CAL ([l ()] V2t (212 o

2
AN (tl/z)”po(m)
+CAt* ("”t (to)| |vT (tl/z)"L‘x’(Q)

VT o)
(55)

where we have used (pi/ = (1/2)%’ 1/2 (1/2)(p;. This

ended the proof of Part 1.

Part 2. We derive the error estimate of Step 2 in
Algorithm 4.

Step 2.1. Establis the error relations of Step 2. For n > 1 and
for all (v, S;,) € (V},, W), taking the variational formulation
(1) att =t,,,, gives

(4 (tns12) > vi) + Pr(Vua (t012) » Vi)
+c(u(tyryn) >t (tasrya) Vi)
= (P (tn1/2) >V - i)
= PrRa({T (t,41/2) 5 V) »

1

(T, (tn+1/2) ,Sy) +k (VT (tn+1/2) ,VS,)
+C(u(tyr2)> T (srya) > Sn)

= (Y (tur12) > Sh) -
(56)

Then, subtract (18)-(19) from (56) to get
g
(ut (e A

n+1+ n
+Pr (V (u(th/Z) <—%> ,Vvh>>

(74 1), 7w,
+c (u (tn+1/2) U (tn+1/2) > Vh)

n+1 n
n  n-1 h +uh
—C E[uh,uh ],T,Vh

n+1

- (P (tn+1/2) %7V : Vh)

(57)

Tﬂ+1+T
= PrRa (CT( tuerj2) = Cu,vh) ,

Tﬂ+1 _ T;:
a0

Tn+1 Tn
+k (V (T (tira) = hT”NSh))

—uh(V (T3 - 171),VS,)

+¢(u (tn+1/2) T (tn+1/2) )

(1 ) -

Tn+l + Tn

—E<E [ ], = Sh> =0.

By adding and subtracting some terms to (57), we can obtain
following error equations (recall that (g,,V - v,) = 0, Vg, €
Ml’l):

it (en+1 _ e

(el V) + Pr (Ve 2, vw,)

+uh (Vez+1 - Ve, Vvh)

= (e;':m, V- vh) + MO, (u, p, T, e5vy) »
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n+1

o (7 —en8,) + k (Ve vs,)

+uh(V(er” —e),VS,)

Mathematical Problems in Engineering

(71;+1 B nu q)n+1/2>
At “

+ Pr (VT]HH/Z VQOZH/Z)

=EN, (uT;S,), - (egﬂ/z, V. (pZ+1/2)
(58) ’/’n+1 -1 /
u u n+1/2
+ uhAt (V ( A7 ) Vo, )
with
- MO, (u p-Tser; ”H/Z),
MO, (u, p, T, egsvy,) (60)
1 n+l n+1/2
tyer) —u(t — - k|v
_ (u( n+1)At u(t,) —ty (perjn) >Vh) 2At ( “ lozl ) + “ Pr "
n+1 n||2
, ; + - ([Vor | - [Verl
+Pr (V(W _u(tn+1/2)>’vvh> (" " )
(’7?1 fr ‘Pn+1/2>
+uh (V (u(ty) —u(t,)), Vo) A T (61)
n+1/2 n+1/2
(- K260 ) k()
n+1 _ ’1 /
T n+1/2
+PrRa (Ce"“/z, Vh) + uhAt (V ( Ar ) Vor )
T (¢t T (¢t 1/2
(LT ) - BN, (T ).
PrRa (¢T (¢t >
+ PrRa (T (ty12) 2 V) (59) Step 2.2. Derive the error estimate of the momentum equation
—c(u (tn+1/2) u (tn+1/2) V) (60). Basing on Definition 2, we obtain
n+1 n
n-11 Uy TUy
+c <E [uh,uh T Vh) > (vnn+1/2’v¢z+l/2) B (e;+1/2’v ) (PZ+1/2) —0,

EN, (u,T;S;,)

(Mo T8 r,).s.)

At
(T Y )

(62)
k (anJrl/Z V(Pn+1/2) 0.

Similarly, for the linear terms on the RHS of (60), we have

n+l
(VT (6,,1) = T (1,))  VS) ‘( -~ ”u,q)rm)
= (u(tpa) > T (tnir2) »Sh) " )
Pr 2 S\t -
n+1 n \V} n+1/2 u  — lu
(el BT, <ulve 5
2
Pr 2 Ch¥mt?
\Vi 1n+1/2 -
n+1/2 n+1/2 24" " " hrat o t"L (tuwtuesH™ ()
Using (31) and taking v, = Sy =@ ' give -
u

(5

silve T

(o - hotP) + e v

h M n
2 (fog [ - Ivgtl?)

20t

N

At

My ) ’ V(PZH/Z)

C M2 Ap}2m+2
+ e —
Pr

””t "Lz(tn,tm;H’"“(Q))'
(63)
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For the linear terms of |[MO,,(u, p, T, er; @ ”*1/2)| in (60), we e[ BLu(),u(, )]
obtain n)>U\lp1
u () = u () u(t,,,)+ult,
(b)) ) ), ),
Pr ||V‘Pn+l/2|'2 L CAt Cat* "u (t)” . E[ S 1] u(t,.)+ul(t,) 412
24 Pr tE[t t g Moty =5 %P
ul(t,,) +ult, n _ t, t,
P%(V(% ”(tnﬂ/z)) +1/2) <E [¢Z’¢u ]’u( +1)2+u( )>(PZ+1/2>
Pr n 2 _ n—1 n+l1/2  n+l/2
ﬂ" g0u+1/2” + CPrAt! (hax (Ve )|, c(E [uh, uy ] el ?)

=L+L+--+1;

3 —ul(t
] (a0 ) .
At
272
< "V(p;’“/ 2”2 + M max "V”t(t)" where we have used Lemma 1 and rearranged some terms.
24 Pr telt,t Using definition (15) of the operator E[-, -] and the regularity
tions (32) yields
P (tur) + P (t0) n B
(P26 0
Pr n+l/2 2 CAt4 (64) HVE [u (tn) U (tn—l)] " < C’
S Vel “Proretg 1"p”(t I 3 1 (66)
n  n-1 n n—1
[VE [ ) < S 09l + 5 V™|
T(t T(t
PrRa <C (n+1)2+ ( ) —(T (tn+1/2) (Pn+1/2>
We now estimate each nonlinear terms of (65). For the
E " gon+1/2|'2 + CPrRa2A#* max ”Ttt(t)uz’ terms I, ..., I,, by making use of Lemma 1, Taylor expansion
7L t€ltystyi] on t and Young’s inequality together with the regularity
assumptions (32), we infer that
PrRa (e}, g7)| ’
- PrRa |(C’1n+1/2 C(Pn+1/2’ Z+1/2)' |Il| N |12l
< PrRa (Cp gy | [V o “V( (tye) #10(ta) ))”
= 2 n+1/2

R )
Pr "V“ n+1/2)" "V‘Pnﬂ/z“

E" (;)Z+1/2|'2 + 6Pr RazCﬁ, gD;iH/ZHZ
/ +Clv (Gt - Su6) =t )|
+ 6PrRa’Cp |y /?
” < v ( U (ty) +u( )II “V n+1/2||
For the nonlinear terms of MO, (u, p, T, er; ¢ "*1/2)| in (60), 2 (67)
it follows that Pr “v n+1/2||2 ) CAr Hvun(t)"
_C( (n+1/2) u( n+1/2) (Pn+1/2) 24 Pr te[t t 2
e B ) ) < cloE | 5e ]
sup | 5%
< o+ coe (o + o).

_ u(tn 1)+u(tn)
=c <u (tn+1/2) , % -u (tn+1/2)’ |I4| <C “E [(PZ’ <pZ’1]|| "VSDZH/ZH

S"ZH/Z) i—;” Vo P+ cpr! (A

n 1

1)
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n+1/2  n+1/2

Adding and subtracting c(E[u(t,), u(t,_)1.7, '* ¢, ') to
I, using Lemma 1, the inverse, and Young’s inequalities, we
have (for detail, see [25])

1] < glvelr
+CPr! (1 + ||V112||2 + "Vr]Z_l"Z) "VﬂZH/ZHZ
n+1 |2) )

(68)

o\ [{ T e e

Combining these inequalities with (60), we arrive at

L (et - 1oiP)

e (T

2
Ch2m+2
o (5 000 ) Bl o
CAt? 2
+ Br [teﬁiﬁl]”um @)
+(1+Pr2) max ||V, (t)"2
€[ tustn1
+Pr’ Ra®> max [T (t)"2
te[twtml]
+ max ||p,t (t)||2]
t€[t,otur |
272
+ Cuh AF max ||Vut (t)||

Pr te[tuton]
+cpr (vl + [ [7)
)
‘P;l"ﬂ/z"z)

+CPr! (1+ [onil? + |var 1|| )||v "“/2||

s (gl + Ve

+6PrRa’C; (“;1"“/2“ +

+ C? “V’?ZH/ZH ( n+1 |2) ‘

(69)
Step 2.3. Establish the error estimate of the energy error
equation (61). For the linear terms on the RHS of (61), we

yield that

‘(’1?1 — 1y (p;ﬂ/z)
At

gl +

< K min ” n+1/2 “ 9Cp || nr" =t ’
kmin At
g —min mm |' n+1/2 “ Ch

k.. At ”T “L (bt s H™H(Q))?

Mathematical Problems in Engineering

’1?1 — 1y n+1/2
“uhAt (V < A , Vor.

< mm ” n+1/2.|
C‘H Ath2m+2
T“T Mz 2t e sH ()
(70)
For the linear terms of |EN,,(u, T; (p"+1/ 2], we obtain
T (tn ) -T (tn)
’(HT -T; (tn+1/2) ‘P;l“+l/2
K min " 1/2 CAt!
S8 vor ” _teﬁli‘x ]||Tm(t I,
T(t T(t
kl(v( ( n+1)2+ ( ) _T(tm.]/z)) V(Pn+1/2>
CAt*K?
mm n+1/2 max 2
<Ko s S o7, 0
] (L) T 0 ) 02
At
Cu*h*At?
< mm "V n+1/2” ”k— max ||VT (t)||
min t€ltutan]
(71)

By adding and subtracting c(E[uj, uj, - Elu(t,), u(t,_,)],
(T(t,.) +T(t))/2, <p"“/2) to the nonlinear terms of |EN, (1,
T, (p”“/z)l in (61), we can obtain

_E( (n+1/2) T( n+1/2) (Pn+1/2)
+c< [Mh, vt ,—TEH + i ‘PHH/Z)

2 T
_ = T (tn+1) +T (tn)
o O e

- Tt n+1/2) ‘P;lfl/z)

+c (E [u (tn) Nz (tn—l)]
T (tn+1) +T (tn) n+1/2>
—_— 0

_”(tn+1/2)7 B > Pr
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T (¢ T (¢
—E<E[’727”IZ_1 ) (n+1)2+ (t, ),q);n/z
( oo 1],w,¢gjl/2

—E(E [MZ:MZ 1] 7/]”+1/2>§0;l"+1/2)

=11, + I, +---+ Is.

15

Substituting the above inequalities of Step 2.3 into (61), we
obtain

k..
s (195 = 1ot + 5=

e )

(72) Ch2m+2
< k- (A_ tu At) IT: ||L2(t s H(Q))
Same as Step 2.2, basing on Lemma 1, Taylor expansion on
t, Young’s inequality, the inverse inequality, the regularity CAt*
assumptions (32), and the estimate (66) of the operator E[-, -], + k e E’nax "Tm (t)”
we can derive that min
2
|11, | + |11, (1 + kmax)t E:iil]”VTtt Gl
T(tn 1) + T(tn)
<C HV (+ =T (tpy) + max ||Vu, (t)||2]
t€[tptn |
n+1/2
”V” (tn+1/2)|| “V?’ . " C‘uztht2 2
+ 3 max ||V, (¢)|
min  t€[tutu]

eCfv (Gult) - 3u(6) - ultnp)

y llV < T (tn+1)2+ T (t,) )ll “V(P;H/z “

mm “V n+1/2 "

K €[tuty

. ver

Vq);ﬂ /2 "2

|IL,| < C|VE [},

< kmin
=

18

+ Chigh (I + |V

min

)

| < C|E ¢} o ][ |vei”|

k

<

min
<

18

n+1/2|| + Ckmm (”4)2"2 + ||(P;L—1||2) ,
] < Sz
+ Gt [ 2 (1 o+ 9 [F)

+ Cli? ”Vn?l/z "

x (o[ + Nl + ol + o™ [7)-

CAt!
+ < max ||Vutt (t)|| +t fnax VT, )]

N (o e
9. ')
# ki (14 [V [0 ) o2
) v o |+l

il + Joi ).

)

+ Cl (2P

(74)

Step 2.4. Combining (69) with (74) and rearranging some
terms yield

v

oz (e =il +
(oo - 190ll) + 5 (ot

(||V<p"+1

n+1

ey

4+ _min kmin
2

v n+1/2'| +

- IviI*)

< Ch2m+2 (i
h A

t )
|| l‘"L2 (tn,tn+l;li l(n))

2
) el o, 0, 501 )
(73) Pr kmin
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+CAf* | Pr! max [[e4ees (t)||2

ntntl

+ (Pr +Prl+ kmm) max ||V, (t)||2

ntntl

+Pr' max ||ptt (t)||

te[tn n+1]
+Pr*Ra’> max T, ()|
te[tyt |
"’k;nlm max T, (t )"2
1€ [tunturi ]

kmm (1 + kmax) max ]HVTtt (t)"2:|

winil

+ Cu’h* AL [Pr_1 max ||V, (t)||
t

ot ]

min

+k max ||VTt (t)||2]

Lot ]

+C(Prl+ k)
< (1P + v+ otlF + ot )
)

(Pr_l'|v”ln+l/2” +kmm'|v’7n+l/2” )

+C(1+ |V + v

+ Ch—d/Z "V?]ZH/Z 'l

x (et I+ il + ot 1)

+ Ch—d/z ||V77;1"+1/2 “

< (los I + ol + sl + o)

+6PrRa2Ci(||l1r’}+l/2" " n+1/2|| )

(75)

Multiplying (75) by 2At and summing it over »n from 1 to [,
using the approximation property (9), and substituting the
error estimate (55) of the first time level into it, we can obtain

ot [+ o Y prfogt
n=0
e
; Atkam"V(pl“/z" + vl

<Ch™? (1+ 4’ M)
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"ut”iz(o,t*;H'"“(Q)) ”Tt”iz(o,t*;H’"”(Q))
Pr k

min
+CAr’ [Pr_l e (t)"i“’(o,t*;Lz(O))

+ P e O o 00 200)

+(PrePrt k) [V (t)||12_°°(o,t*;L2(Q))

+ Pr'Ra’||T,, (t)”iw(o,t*;ﬁ(m)

S o (t)||12,°°(o,t*;L2(Q))

ety (1 K) IV (000200
+ G AL [P Vit (oo 002200

honin[VT (t)”im(o,t*;Lz(Q))]

2 2
+C(Pr +kyy, ) Ath "Nl (0. )

2m 2
+ O ST o e )

1
+C (P! + ke, ) ALY gl
n=0

+ CH™ P | oo o Hmﬂ(m)m)|¢l“||

—(d/2
+ CH™ Y (Jlull o 0.4+ 1)

T2 ) At;llstllz
+ (CH™ I oo 40
+6era2c§,)Ati0||¢;||2
+ (CH™ T oo g g mes ) A
+6Pr Ra?C2AL) 1]

+ CPrRa* Cph™™*? At T|| 2o s (-
(76)

Applying condition (33) and the regularity assumptions (32)
to (76) yields

el +AfZPrllV<P’”’2II

eVl [+ St |
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; Atkam T 4 it
<C (Pr +Pr kmlm + kmmkfnélx + Pr RaZC%)

X (hzm + WAL + At4)
—-(d/2
C(H" T oo 0101 )

!
+6PrRa’C}) Afz o7l

n=0
+C(Pr! + ki,

—(d/2
+ B (| oo o v )

!
2
+"T||L°°(O,t*;H”’“(Q))>) AtZH‘PZ" .
(77)
Making use of the Gronwall lemma [22], forany 0 </ < N —

1, there exists a constant C = é(Pr, k,Ra, Q,m,u, p,T) such
that

el +AfZPrl1V<P’“’2||

hAtlv 1+1 l [+1]2
eyl T+ St | "

+Atkam||V<p 1/2)|| +MhAt"V(pl+1||

<SC(R"+ P WAL + M)
We complete the proof of Theorem 6 by using the triangle
inequality. O
Corollary 8. Under the conditions of Theorem 6 and letting
(X, M, W,,) be continuous (P,, P, P,) finite element spaces,

then there exists a constant C = C(Pr, k, Ra, O, u, p, T) such
that, forany 0 <I< N -1,

l+1
o 1) = "]

+ (Atnz:)Pr IV (((u(
x <2>‘1)||2)m

T ) -1

tuet) =14, )+ (u(t,) ~ 1))

17

IV (((T () - T3) + (T (2,) - T}))

x ()" )“2>l/2

() 9 () - )|
i M CUES ]

< C\(h2 + phAt + Atz) .

1
+ ( Atz koin
n=0

+ (phAt)

(79)

Remark 9. Corollary 8 shows that the optimal convergence
rate of Algorithm 4 in space by using (P,, P;, P,) elements is
O(h?) for temperature and velocity in H ! seminorm, with
the choosing ¢ = O(1) and At = O(h). However, the
error estimates in space are suboptimal for temperature and
velocity in L* norm. We can find these facts from Tables 1-4
in the next section.

5. Numerical Experiments

We first verify the convergence rates and the effectiveness
of our methods by an analytical solution. Then we test the
stability of the method in case Ra is large in a squared
cavity with the left wall heating. The code was implemented
using the software package FreeFEM++ [37]. The pairs of
continuous (P,, P;, P,) elements are chosen for the FE spaces
(X}, My, W,,). All computations are carried out in the domain
Q = [0, 1]°. The uniform mesh is obtained by dividing Q into
squares and then drawing a diagonal in each square in the
same direction. We set the parameter y = O(1).

Example 1 (analytical solution). As in [38-41], to obtain an
analytical solution for the considered problem, a right-hand
side function is added to the momentum equation of (1). The
analytical solution is

u (x,9) = 10x*(x — 1)’y (y = 1) (2y = 1) cos () ,

w, (%, y) = —10x(x— 1) (2x - 1) y*(y = 1)* cos (£),
(80)

p(x,y)=102x-1)(2y —1)cos(t),

T(xy) = u (% y) +1u (% y).

The initial velocity field and temperature field are equal to the
analytical solution at time ¢t = 0. We choose the parameters
that are k = 1.0, Pr = 1.0, and Ra = 100, respectively. The
mesh and time step sizes scalings are set that for a refinement,
each of h and At get cut in half, where the final time is
chosen as t* = 0.1 and At = (1/10) h. We list the errors and
the convergence rates (CR) for velocity u and temperature T
in L°(0,t*; L*(Q2)) (denoting as L®°) and L*(0,t*; H'(Q))
(denoting as L>') norm in Tables 1-4, respectively. Tables 1
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TaBLE 1: Errors and CPU costs of velocity u by using CNSLE and At = (1/10)h.
1/h llee — 1]l 00 CR o — 1)l pon CR CPU
4 0.00166806 — 0.0149995 — 3.104
8 0.000194755 3.09844 0.00402588 1.89754 10.576
16 2.3595e — 005 3.04511 0.00103018 1.96641 52.494
32 2.93692¢ - 006 3.00611 0.000259323 1.99007 405.008
64 3.69237e — 007 2.99168 6.49529¢ — 005 1.99728 3274.88
TABLE 2: Errors and CPU costs of temperature T by using CNSLE and At = (1/10)h.
1/h IT = Tyl ;o0 CR IT — Tyl 0. CR CPU
4 0.000922881 — 0.00869632 — 3.104
8 0.00011998 2.94335 0.00240038 1.85714 10.576
16 1.49476e — 005 3.00481 0.000615762 1.96282 52.494
32 1.86956e — 006 2.99914 0.000154998 1.99012 405.008
64 2.37001e — 007 2.97973 3.88187e — 005 1.99743 3274.88
TaBLE 3: Errors and CPU costs of velocity u by using CNS and At = (1/10)h.
1/h llue — 14,1l o0 CR llue = 1,ll 0. CR CPU
4 0.00166784 — 0.0149995 — 8.174
8 0.000194742 3.09834 0.00402588 1.89754 19.609
16 2.35941e - 005 3.04507 0.00103018 1.96641 105.721
32 2.93687e — 006 3.00607 0.000259323 1.99007 752.208
64 3.69237e — 007 2.99166 6.49529¢ — 005 1.99728 5581.34
TABLE 4: Errors and CPU costs of temperature T by using CNS and At = (1/10)h.

1/h IT =Tyl ;o000 CR IT =Tyl 0. CR CPU
4 0.000922881 — 0.00869632 — 8.174
8 0.00011998 2.94335 0.00240038 1.85714 19.609
16 1.49476e — 005 3.00481 0.000615762 1.96282 105.721
32 1.86956e — 006 2.99914 0.000154998 1.99012 752.208
64 2.37001e — 007 2.97973 3.88187e — 005 1.99743 5581.34

and 2 are the results of Crank-Nicolson linearized extrap-
olation stabilized (CNSLE) FE method. Tables 3 and 4 are
the results of Crank-Nicolson stabilized (CNS) FE method,
which the nonlinear system is solved by Newton iterative at
each time step and the iterative tolerance is 10~®. We find that
the errors listed in Tables 1 and 3 and in Tables 2 and 4 are
similar, respectively, which means that the CNSLE method
is comparable to the CNS method. From Tables 1-4, we find
that a quadratic convergence rate for the computed velocity
and temperature in H' seminorm is obtained, which test and
verify the theoretical results. However in Tables 1-4, it is easy
to see that a cubic convergence rate both for the computed
velocity and temperature in L* norm is obtained, which
indicate that our error estimate in L* norm is suboptimal. As

expected, since CNSLE is the linearized version of the CNS
method, which does not include any iterations in computing,
CPU cost by CNSLE method is relatively less than by CNS
method. The numerical results agree well with the theoretical
predictions.

Example 2 (natural convection in a squared cavity with the
left wall heating). Now we present natural convection in a
squared cavity with the left wall heating. The boundary con-
ditions are given in Figure 1. We choose the initial conditions
u, = 1, T, = 1, the parameters k = 1.0, Pr = 0.71,
10* < Ra < 107, the right hand functions y = 0, the time step
At = 0.1, and the uniform mesh size h = 1/64. We performed
the following study: calculating the problem from the rest
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TaBLE 5: Comparison of maximum vertical velocity at y =
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0.5 with mesh size used in computation for Example 2.

Ra Present Reference [31] Reference [34] Reference [35] Reference [16] Reference [36]
10* 19.6221 (64) 19.63 (64) 19.51 (41) 19.63 (71) 19.629 (32) 19.79 (101)
10° 68.4791 (64) 68.48 (64) 68.22 (81) 68.85 (71) 68.65 (32) 70.63 (101)
10° 220.444 (64) 220.46 (64) 216.75 (81) 2216 (71) 220.57 (32) 22711 (101)
107 695.416 (64) 694.14 (64) — 702.3 (71) 699.3 (64) 714.48 (301)
TaBLE 6: Comparison of maximum horizontal velocity at x = 0.5 with mesh size used in computation for Example 2.
Ra Present Reference [31] Reference [34] Reference [16] Reference [36]
10* 16.1825 (64) 16.19 (64) 16.18 (41) 16.183 (32) 16.10 (101)
10° 34.7359 (64) 34.74 (64) 34.81 (81) 34.76 (32) 34 (101)
10° 64.8122 (64) 64.81 (64) 65.33 (81) 64.81 (32) 65.40 (101)
107 146.914 (64) 148.40 (64) — 148.8 (64) 143.56 (301)

Adiabatic, u; =0,u, =0

T=1 T=0
MIZO u; =
u, =0 u, =0

Adiabatic, u; =0,u, =0

FIGURE I: Natural convection in cavity: the physical domain with its
boundary conditions.

until the approximation solution reaches a steady state. The
criterion to stop this process is

n+l
uy,

n n+1 n
Uy no - T "LZ(Q)

17 2

L2(Q) '

I N

<107,

(81)

where n + 1, n denote t,,,,, t,,, respectively. We describe the
final results of the problem at its steady state in Tables 5-7 and
Figures 2-4, which are according to the results of [16, 17, 34—
36]. The numbers in parenthesis of Tables 5-7 correspond to
the used mesh.

Tables 5 and 6 present the maximum vertical velocity
at midheight and horizontal velocity at midwidth and com-
pare the quantitative results with the available benchmark
solutions [16, 34-36]. Figure 2 presents the vertical velocity
distribution at the midheight and the horizontal velocity
distribution at the midwidth for Ra = 10*, 10°, 10°, 107,
respectively. We find that the differences in the profiles are
getting larger along with the increase of Rayleigh numbers. It
is seen that the agreement is excellent even at higher Rayleigh
numbers.

The heat transfer coeflicient in terms of the local Nusselt
number is defined by

oT

Nulocal (x’ y) = _%'

(82)
Variation of local Nusselt number at hot wall and cold wall of
cavity for different Rayleigh numbers is plotted in Figure 3.
We calculate the average Nusselt number on the vertical
boundary of the cavity at x = 0 by

1
Nu = j Nulocal (x’ y) dy (83)
0

The average Nusselt numbers at the hot wall of the cavity are
given in Table 7, which are according to the results of [16, 34,
35].

Figure 4 presents streamlines and isotherms for Ra =
10%,10%, 10,107, respectively. For the streamline patterns,
it is easy to see that elliptical vortex at the cavity center
break up into two vortices tending to approach to the corners
differentially heated sides of the cavity with Rayleigh number
increasing. With the increase of Rayleigh numbers Ra, the
temperature convection becomes increasingly prominent, the
isotherms gradually transform into horizontal except for the
immediate neighborhood of the hot and cold walls which
remain parallel to the isothermal vertical walls. These results
are keeping with the results of [16, 17, 34-36].

6. Conclusions

In this paper, a fully discrete stabilized finite element method
based on the Crank-Nicolson linear extrapolation scheme in
time for natural convection problem is given. The method is
unconditionally stable. Optimal error estimates in HI semi-
norm and suboptimal error estimates in L> norm are derived
for velocity and temperature with a constrain condition. The
derived theoretical results are supported by two numerical
examples.
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FIGURE 2: Natural convection in cavity: comparison of vertical velocity at the midheight (a) and horizontal velocity at midwidth (b) for
different Rayleigh numbers.

Hot wall Cold wall

y-coord.
y-coord

15 20 25 30 35 40 45

10 15 20 25 30
Local Nusselt number Local Nusselt number

Ra = 10* Ra=10° - Ra=10*

. Ra=10°
—— Ra=10° —— Ra=10’ —— Ra=10°

—— Ra=10’
(a) (b)

FIGURE 3: Natural convection in cavity: comparison of local Nusselt numbers along the hot wall (x = 0) (a) and the cold wall (x = 1) (b) for
different Rayleigh numbers.

TaBLE 7: Comparison of average Nusselt number on the vertical boundary of the cavity at x = 0 with mesh size used in computation for
Example 2.

Ra Present Reference [8] Reference [34] Reference [16] Reference [36]
10* 2.24511 (64) 2.21(12) 2.24 (41) 2.245 (32) 2.254 (101)
10° 4.52572 (64) 4.53 (22) 4.52 (81) 4.521 (32) 4.598 (101)
10° 8.87446 (64) 9.00 (32) 8.92 (81) 8.826 (32) 8.976 (101)
107 16.9603 (64) —

— 16.52 (64) 16.656 (301)
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Streamlines
Streamlines

Streamlines
Streamlines

Isotherms
Isotherms

Isotherms
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FIGURE 4: Natural convection in cavity: streamlines and isotherms for Ra = 10%, 10°, 10°, 107 from left to right, respectively.
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