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The reuse of data oriented workflows (DOWs) can reduce the cost of workflow system development and control the risk of
project failure and therefore is crucial for accelerating the automation of business processes. Reusing workflows can be achieved
by measuring the similarity among candidate workflows and selecting the workflow satisfying requirements of users from them.
However, due to DOWs being often developed based on an open, distributed, and heterogeneous environment, different users
often can impose diverse cost constraints on data oriented workflows. This makes the reuse of DOWs challenging. There is no
clear solution for retrieving DOWs with cost constraints. In this paper, we present a novel graph based model of DOWs with cost
constraints, called constrained data oriented workflow (CDW), which can express cost constraints that users are often concerned
about. An approach is proposed for retrieving CDWs, which seamlessly combines semantic and structural information of CDWs.
A distance measure based on matrix theory is adopted to seamlessly combine semantic and structural similarities of CDWs for
selecting and reusing them. Finally, the related experiments are made to show the effectiveness and efficiency of our approach.

1. Introduction

Data oriented workflows (DOWs) nowadays have been
adopted in diverse areas such as high quality computation
[1–4] and supply chain process [5, 6]. The reuse of DOWs
can reduce the cost of workflow system development and
control the risk of project failure and is crucial for accelerating
the automation of business processes. For example, managers
want to find and customize a logistic workflow such that cus-
tomers can quickly perform the tasks of inquiry/quotation,
order conformation, payment, and delivery within the least
cost. Because each step in a logistic workflow system has to
spend some cost to perform, managers are concerned about
how to make the least cost of the whole logistic workflow
by selecting suitable tasks from those developed logistic
workflows and assembling a new one instead of developing
a new workflow.The reuse of workflows with cost constraints
is a challenging problem.

Reusing workflows can be achieved by measuring the
similarity among candidate workflows and selecting the
workflow satisfying requirements of users from them. Most
existing approaches of retrieving DOWs are made based

on their structures [7–9] because of most real-life work-
flows such as [10]. However, the structure based approaches
often concentrate on data flows and invocation relations
between services, but they neglect the semantic information
that services and data rely on. As a result, the accuracy
of retrieving DOWs is low, which is hard to satisfy the
users’ requirements indeed. Semantic based approachesmake
full use of semantic information of services and data in
workflows and retrieve workflows by comparing them from
the perspective of semantics [8], where ontologies are used to
represent semantic information of services and data [11, 12].
These approaches have illustrated their potential in reusing
DOWs.

However, due to DOWs being often developed based
on an open, distributed, and heterogeneous environment,
different users often can impose diverse cost constraints on
data oriented workflows. This makes the reuse of DOWs
challenging. There is no clear solution for retrieving DOWs
with diverse cost constraints. On one hand, there is no formal
representation model that not only represents both semantic
and structure information within DOWs, but also encodes
diverse cost constraints that are imposed on DOWs by
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different users. The vendors of DOWs cannot represent and
publishmore semantic enriched information for their DOWs
that will be reused by users. This will straightforwardly
bring about the poor accuracy in retrieving DOWs. On the
other hand, we lack a feasible method to seamlessly combine
the semantic and structure based approaches for retrieving
and reusing DOWs. This makes the retrieval results full of
uncertainty. These problems will impede the more accurate
DOW retrieval and therefore have a significance to the reuse
of DOWs.

In this paper, we present a novel graph based model
of DOWs with diverse cost constraints, called constrained
data oriented workflow (CDW), which can express cost con-
straints that users are often concerned about. An approach is
proposed for retrieving CDWs, which seamlessly combines
semantic and structural information of workflows by com-
puting the similarities between CDWs. A distance measure
based on matrix theory is adopted to seamlessly combine
semantic and structural similarities of CDWs for selecting
and reusing them. Finally, the related experiments are made
to show the effectiveness and efficiency of our approach.

This paper is organized as follows. Section 2 is the related
work of the development for data orientedworkflow retrieval.
An overview of our work will be discussed in Section 3.
Section 4 is some basic notations about constrained data
oriented workflows. Semantic similarity computation of task
nodes will be discussed in Section 5. In Section 6, we discuss
CDW structure based similarity and comparison. Section 7
is the experiments and evaluation with other methods.
Section 8 is the conclusion and future work.

2. Related Work

The main actuating force of workflow retrieval is naturally
derived from the nonlinearities and uncertainties of planning
and modeling of real world applications, which have been
recognized and researched in some interesting work [13–18].
We also need to consider such nonlinearities and uncertain-
ties in business process management. Traditional workflow
representations mainly focus on activities/tasks and control
oriented flow [19, 20]. Dataflow is not paid more attention
to because traditional workflows are executed on a closed
environment within a specific corporation rather than an
open one. Some methods consider the semantic information
but ignore the constraint which can reflect the quality of
services.

Many workflow systems have emerged based on the
recent research within semantic community [21–24]. Berg-
mann and Gil proposed a novel representation and retrieval
method based on graph [20]. They extended a traditional
workflow into a new representation whose nodes had three
types: task node, dataflow node, and semantic node rep-
resented by a RDF file. However, specific applications or
services cannot be provided by one single corporation due
to the open, distributed, and heterogeneous execution envi-
ronment. They need the cooperation of different kinds of
service providers. Most of them did not consider constraint
information which reflects requirements of specific users

[25]. Some constraints such as time and cost, are important
to reflect the quality of services provided by workflows.
They cannot be defined and formulated in advance. Internal
dependencies between semantic information residing in
tasks/services such as hierarchical relationship and primary
and secondary relationshipmust also be considered. Seamless
integration of semantic and structure information is neces-
sary to represent, execute, and reuse workflows because of
the open, heterogeneous, and distributed environment on the
Web.

Graphmatching plays a key role tomeasure the similarity
of two workflow models. It is a popular and mutual research
topic. There are two classes of graph matching. One is the
exact graph matching which includes graph isomorphism
and subgraph isomorphism. The other is the inexact graph
matching which includes attributed graph matching and
attributed subgraph matching. Time complexity is a difficult
problem in real-life applications that should be considered.
From the perspective of implementing algorithms, graph
matching can be also classified into three classes: graph iso-
morphism, feature extraction, and iterative methods. Graph
isomorphism is a common approach introduced in [26].
Feature extraction [27] uses the idea that certain properties
might be shared by similar graphs. This method has been
widely used in the applications of character recognition,
fingerprint images. In the iterative method, it is assumed
that the similarity of two nodes depends on the similarity of
their adjacent nodes. After multiple iterations, the similarity
between two graphs will be obtained. Key words instead of
data and semantic information play an important role in
traditional workflow retrieval. The seamless combination of
structure and semantic similarities is an urgent challenge
for workflow retrieval. Bergmann and Gil presented a new
similarity model which could seem as an enhancement
of the well-known local/global approach [28]. However, it
seems that they had not considered the constraints between
semantic information of nodes and data types. In essence,
these approaches are control flow based rather than dataflow
based. They cannot seamlessly combine semantic and struc-
ture information together for representation and similarity
comparison of constrained data oriented workflows. In our
paper, a holistic approach based on matrix norm is proposed
to measure the similarity of two workflow models. The time
complexity can be also acceptable for workflow retrieval.
Furthermore, the increasing speed of execution time is
no faster than the growing speed of graph size. Seamless
integration of semantic and structure similarities leads to a
high retrieval accuracy and efficiency.

3. Overview of Process for Retrieving CDWs

In the section, we give an overview of the whole procedure
of our approach using a formal graph based representation
model called CDW for data oriented workflows retrieval
with constraints, where a CDW model seamlessly integrates
the structural and semantic information, as well as the cost
constraints, and so forth. We attempt to effectively and
efficiently retrieve CDWs by measuring and comparing the
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similarities of both the semantic and structural information
between CDWs.We argue that combination of structural and
semantic information within CDWs will be greatly helpful to
find more suitable workflows that satisfy both the functional
requirements and diverse constraints from users. The whole
procedure for retrieving CDWs can be mainly divided into
five steps.

Step 1. Arepository SCDWof candidate constrained data ori-
ented workflows should be constructed beforehand, denoted
by SCDW = {CDW

1
,CDW

2
,CDW3, . . . ,CDW𝑛}. Each

workflow in the repository can be represented by a formal
representation model called CDW, which will be introduced
in Section 4. Similarly, the request workflow that users
require can be also represented by the CDW representation
model, which is denoted by RCDW. Furthermore, we define
a counter variable 𝑖, which will be used for traversing all the
candidate CDWs in SCDW.

Step 2. We traverse each candidate CDW
𝑖
in SCDW and

compute the semantic similarity between RCDW and CDW
𝑖
.

The semantic information residing in task nodes is rep-
resented by the RDF ontology language. Each task node
corresponds to a RDF file. During the semantic similarity
computation for RCDW and CDW

𝑖
, the semantic similarity

between task nodes within RCDWandCDW
𝑖
can be reduced

to matching their similarity between their RDF files. Mean-
while, the data types of input data and output data between
task nodes are also matched. For two task nodes, respectively,
from RCDW and CDW

𝑖
, both the similarity for matching

their RDF files and the similarity for matching their data
types will be considered to compute the semantic similarity
between them.

Step 3. We need to determine the identicalness between task
nodes within RCDWandCDW

𝑖
. A similarity threshold value

is set, which is 0.7 in this paper. That is, if the semantic
similarity obtained in Step 2 between two task nodes is not
less than the threshold value (i.e., 0.7), then we regard the
two nodes as identical. The reason why we do that is the fact
that task nodes in CDWs are very likely to be semantically
heterogeneous in an open environment such as polysemy and
toponymy.

Step 4. We further compute the similarity between RCDW
and CDW

𝑖
by comparing their structures. Structural similar-

ity between RCDW and CDW
𝑖
is made based on normalized

matrices proposed in our previous work [7]. The normalized
matrices for RCDWandCDW

𝑖
are, respectively, constructed.

Then, a distance based metric is used to compute their struc-
tural similarity, that is, the distance between their normalized
matrices.

Step 5. If 𝑖 ≤ 𝑛, then go to Step 2 for comparing the
next CDW with RCDW. We select the candidate CDW

𝑘

as the one that is the most similar to RCDW, where 𝑘

satisfies the following condition: sim (RCDW,CDW
𝑘
) =

min{sim(RCDW,CDW
𝑖
) for each 1 ≤ 𝑖 ≤ 𝑛}.

4. Basic Notations

4.1. Formal Representation for CDWs

Definition 1 (constrained data oriented workflow, CDW). A
constrained data oriented workflow (CDW) is denoted by
CDW = (𝑉, 𝐸, 𝛼, 𝛽, 𝛾, 𝜆, 𝜂), which is a directed labeled graph.

(i) 𝑉 is a set of nodes representing tasks/services in
actual applications.

(ii) 𝐸 ⊆ 𝑉 × 𝑉 is a set of ordered pairs of nodes, called
directed edges.

(iii) 𝛼 : 𝑉 → 𝐿
𝑉
is a mapping function which assigns

each node a label, where 𝐿
𝑉
is a set of label names for

tasks.
(iv) 𝛽 : 𝑉 → RF is a mapping function which maps each

node to a RDF file, where RF is a set of RDF files that
illustrate the semantic information of task nodes.

(v) 𝛾 : 𝑉 → 2

DT is a mapping function which maps each
node to a subset of data types. It represents the input
information which can be processed by task nodes,
where DT is the set of data types.

(vi) 𝜆 : 𝑉 → 2

DT is a mapping function whichmaps each
node to a subset of data types. It represents the output
information provided by task nodes.

(vii) 𝜂 : 𝐸 → 𝐿
𝐸
is amapping functionwhich assigns each

edge a constraint label in set 𝐿
𝐸
.

In the representation of CDW, nodes represent different
tasks or functional activities in an actual application. A
service can be provided by a specific task node. Some of
them integrated together can accomplish a complex and
comprehensive service such as scientific computation.

Semantic information is represented using the RDF
language and is defined as a property of node, which is a key
feature of semantic representation of task nodes.We establish
the correspondence relations between nodes and RDF files
using amapping function instead of extending each task node
with a RDF graph. This method can largely eliminate the
degree of redundancy of a graph and clearly reflect the main
workflow execution.

Data oriented workflows are often designed based on
open, distributed, and heterogeneous environment to accom-
plish complex data processing. Therefore, it should have
a high degree of modularity. True users care much about
the input and output parameters that the task node could
process and provide instead of data processing details. The
representation for dataflowmainly emphasizes the data types
that are used to communicate information between task
nodes.

Now, we will give an example of CDWs to intuitively
illustrate a data oriented workflow with constraint shown
in Figure 1. In this figure, there are three task nodes which
provide the services of function analysis, price analysis, and
audit, respectively. Task nodes are represented by rectangles.
Two control flows are represented by solid arrows as two
edges with the constraints [1, 2] and [0, 3]. Solid line ovals are
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Function
analysis

Price
analysis

[1,2] [0,3]

OP DataType
{.xml, .doc, .pdf}

rdf: type machine instance;
function analysis can print true

 rdf: type continuous instance;
price analysis has price of 100 dollars

OP DataType
{.txt, .doc, .bin}

IP DataType
{.txt, .xml, .doc}

 rdf: type continuous instance;
audit can audit true

IP DataType
{.doc, .xml}

IP DataType
{.pdf, .doc}

OP DataType
{.bin, .xml}

Audit

Figure 1: An example of CDW.

used to illustrate the input and output data types for each task
node. Dotted lines are used to represent the relations between
task nodes and data types properties. Dotted line ovals are
used to represent corresponding RDF files of task nodes.

4.2. Definitions Related to Constraints

Definition 2 (constraint). Let CDW = (𝑉, 𝐸, 𝛼, 𝛽, 𝛾, 𝜆, 𝜂) be
a CDW. A constraint of edge ⟨V

𝑖
, V
𝑗
⟩ is represented by an

interval of the form [𝑎, 𝑏], where 𝜂(⟨V
𝑖
, V
𝑗
⟩) = [𝑎, 𝑏], and 𝑎

and 𝑏 are real numbers and 𝑎 ≤ 𝑏.

In actual applications, specific constraints can be deter-
mined in the domain of [𝑎, 𝑏]. It reflects the variable and
dynamic features of our representation for constrained data
oriented workflows.

Definition 3 (intersection of constraints). Let CDW = (𝑉, 𝐸,

𝛼, 𝛽, 𝛾, 𝜆, 𝜂) and CDW󸀠 = (𝑉

󸀠
, 𝐸

󸀠
, 𝛼

󸀠
, 𝛽

󸀠
, 𝛾

󸀠
, 𝜆

󸀠
, 𝜂

󸀠
) be two

CDWs. Let 𝜂(⟨V
1
, V
2
⟩) = [𝑎, 𝑏] and 𝜂

󸀠
(⟨V
3
, V
4
⟩) = [𝑐, 𝑑] be

two constraints for edges ⟨V
1
, V
2
⟩ ∈ 𝐸 and ⟨V

3
, V
4
⟩ ∈ 𝐸

󸀠,
respectively. The intersection of constraints between the two
edges can be computed by the following:

[𝑎, 𝑏] ∩ [𝑐, 𝑑] = {

[max (𝑎, 𝑐) ,min (𝑏, 𝑑)] , if 𝑎 ≤ 𝑑 ∧ 𝑐 ≤ 𝑏,

0, otherwise.
(1)

Definition 4 (union of constraints). Let CDW = (𝑉, 𝐸, 𝛼, 𝛽,

𝛾, 𝜆, 𝜂) and CDW󸀠 = (𝑉

󸀠
, 𝐸

󸀠
, 𝛼

󸀠
, 𝛽

󸀠
, 𝛾

󸀠
, 𝜆

󸀠
, 𝜂

󸀠
) be two CDWs.

Let 𝜂(⟨V
1
, V
2
⟩) = [𝑎, 𝑏] and 𝜂

󸀠
(⟨V
3
, V
4
⟩) = [𝑐, 𝑑] be two

constraints for edges ⟨V
1
, V
2
⟩ ∈ 𝐸 and ⟨V

3
, V
4
⟩ ∈ 𝐸

󸀠,
respectively. The union of constraints between the two edges
can be computed by the following:

[𝑎, 𝑏] ∪ [𝑐, 𝑑] = [min (𝑎, 𝑐) ,max (𝑏, 𝑑)] . (2)

Definition 5 (duration of constraint). Let CDW = (𝑉, 𝐸, 𝛼, 𝛽,

𝛾, 𝜆, 𝜂) be a constrained data oriented workflow and ⟨V
𝑖
, V
𝑗
⟩ ∈

𝐸. Let 𝜂(⟨V
𝑖
, V
𝑗
⟩) = [𝑎, 𝑏] be the constraint for edge ⟨V

𝑖
, V
𝑗
⟩.

The duration of this constraint is denoted by Dur([𝑎, 𝑏]) =

𝑏 − 𝑎.

Definition 6 (summation of constraints). Let CDW = (𝑉, 𝐸,

𝛼, 𝛽, 𝛾, 𝜆, 𝜂) and CDW󸀠 = (𝑉

󸀠
, 𝐸

󸀠
, 𝛼

󸀠
, 𝛽

󸀠
, 𝛾

󸀠
, 𝜆

󸀠
, 𝜂

󸀠
) be two

CDWs. Let 𝜂(⟨V
1
, V
2
⟩) = [𝑎, 𝑏] and 𝜂

󸀠
(⟨V
3
, V
4
⟩) = [𝑐, 𝑑] be

two constraints for edges ⟨V
1
, V
2
⟩ ∈ 𝐸 and ⟨V

3
, V
4
⟩ ∈ 𝐸

󸀠,
respectively.The summation between their constraints can be
denoted by [𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎 + 𝑐, 𝑏 + 𝑑].

5. Semantic Similarity Computation

In our representation of CDW, all semantic information is
represented as properties of nodes. Four mapping functions
𝛼, 𝛽, 𝛾, and 𝜆 are to, respectively, associate a node V with
its node name, its input set of data types, its output set of
data types, and a RDF file RTV. A RDF file represents the
service function of a task node in the semantic level while
a name is only a label in actual applications. The similarity
between RDF files of two nodes can be used to measure the
actual functional similarity in an open and heterogeneous
environment. For example, we can measure the similarity
between two nodes with different names that have the same
function. It is also important for measuring the similarity
between two task nodes to consider their data types that
includes the semantic information of service data. As a
consequence, the semantic similarity includes two closely
related parts: the similarity for RDF files and the similarity
for data types.

5.1. Similarity for RDF Files. In this paper, we use RDF to
describe the semantic information of a task node, which
is regarded as a property in the task node by function 𝛽.
The similarity computation of RDF files can be reduced to
the comparison of their corresponding RDF graphs. The
matching for RDF graphs has been studied for decades, and
many good methods have been proposed. Each RDF graph
is composed by a set of statements (triples). Each statement
consists of three elements: subject, property, and object. The
similarity of two RDF graphs can be divided into three steps.

(1) We use a three-dimension vector 󳨀→ssv to represent the
similarity between two statements. Let statement = (𝑠, 𝑝, 𝑜)

and statement󸀠 = (𝑠

󸀠
, 𝑝

󸀠
, 𝑜

󸀠
) be any two statements. The

elements 𝑠, 𝑝, 𝑜, 𝑠󸀠, 𝑝󸀠, and 𝑜

󸀠 are the label strings of elements
in statements. Vector 󳨀→ssv = (ssv1, ssv2, ssv3)

𝑇, where ssv1 =

SimLD(𝑠, 𝑠

󸀠
), ssv2 = SimLD(𝑝, 𝑝

󸀠
), and ssv3 = SimLD(𝑜, 𝑜

󸀠
).
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Thenotation SimLD(s1, s2) is the similarity of label strings
𝑠
1
and 𝑠
2
by using the Levenshtein distance; that is,

SimLD (𝑠
1
, 𝑠
2
) = 1 −

LevD (𝑠
1
, 𝑠
2
)

max (

󵄨
󵄨
󵄨
󵄨

𝑠
1

󵄨
󵄨
󵄨
󵄨

,

󵄨
󵄨
󵄨
󵄨

𝑠
2

󵄨
󵄨
󵄨
󵄨

)

, (3)

where |𝑠
1
| and |𝑠

2
|, respectively, represent the length of strings

𝑠
1
and 𝑠
2
. Obviously, the value of SimLD(𝑠

1
, 𝑠
2
) is between

0 and 1. The notation LevD(𝑠
1
, 𝑠
2
) refers to the Levenshtein

distance between strings 𝑠
1
and 𝑠
2
.

(2) We use a matrix 𝑆𝑇 as an auxiliary matrix for further
computation of two RDF graphs: RDF

1
= {𝑠𝑡
1
, 𝑠𝑡
2
, . . . , 𝑠𝑡

𝑚
}

and RDF
2

= {𝑠𝑡

󸀠

1
, 𝑠𝑡

󸀠

2
, . . . , 𝑠𝑡

󸀠

𝑛
}. STU is the union of RDF1

and RDF2. All elements in STU are contained in the row
and column of 𝑆𝑇. For any 1 ≤ 𝑖, 𝑗 ≤ 𝑚 + 𝑛, the matrix
𝑆𝑇
(RDF1,RDF2)(𝑖, 𝑗) between RDF

1
and RDF

2
is represented as

follows:

𝑆𝑇
(RDF1 ,RDF2) (𝑖, 𝑗) = √ssv𝑇

𝑖𝑗
× ssv
𝑖𝑗
, (4)

where ssv
𝑖𝑗
is the statement similarity vector between the

statement
𝑖
in row and the statement

𝑗
in column in the matrix

𝑆𝑇.
(3) The similarity between RDF

1
and RDF

2
can be com-

puted by the notation SimRG(RDF1,RDF2), where

SimRG (RDF1,RDF2) = √tr [𝑆𝑇(RDF1,RDF2) × 𝑆𝑇

𝑇

(RDF1,RDF2)].

(5)

Definition 7 (similarity for RDF files). Let CDW = (𝑉, 𝐸, 𝛼,

𝛽, 𝛾, 𝜆, 𝜂, ) and CDW󸀠 = (𝑉

󸀠
, 𝐸

󸀠
, 𝛼

󸀠
, 𝛽

󸀠
, 𝛾

󸀠
, 𝜆

󸀠
, 𝜂

󸀠
) be two

CDWs. For any two nodes V ∈ 𝑉 and V󸀠 ∈ 𝑉

󸀠, the similarity
between their RDF files can be computed according to the
following equation:

SimRF (V, V󸀠) = SimRG (𝛽 (V) , 𝛽󸀠 (V󸀠))

= √tr (𝑆𝑇
(𝛽(V),𝛽󸀠(V󸀠)) × 𝑆𝑇

𝑇

(𝛽(V),𝛽󸀠(V󸀠))),

(6)

where 𝛽(V) and 𝛽(V󸀠) are the RDF graphs for nodes V and V󸀠,
respectively, according to Definition 1.

5.2. Similarity for Input and Output Data Types. Data types,
including input and output data types, indicate that informa-
tion can be operated by specific task nodes. In this paper,
they are represented by file names or information format
such as .doc, .pdf, and .bin. Different task nodes may deal
with different kinds of data types of services. Therefore, the
compatibility of input and output data types of different
nodes could be another factor to measure the services
similarity provided by task nodes. We use ComIP(V, V󸀠) and
ComOP(V, V󸀠) to represent the input data types compatibility
and output compatibility, respectively, for nodes V and V󸀠.
SimDT(V, V󸀠) is the data types similarity between nodes V and
V󸀠 considering both input and output data types similarities.
The definitions are as follows.

Definition 8 (compatibility for input and output data types).
Let CDW = (𝑉, 𝐸, 𝛼, 𝛽, 𝛾, 𝜆, 𝜂) and CDW󸀠 = (𝑉

󸀠
, 𝐸

󸀠
, 𝛼

󸀠
,

𝛽

󸀠
, 𝛾

󸀠
, 𝜆

󸀠
, 𝜂

󸀠
) be two CDWs. For any two task nodes V ∈ 𝑉

and V󸀠 ∈ 𝑉

󸀠, the compatibility of input data types and output
data types between V and V󸀠 can be computed by the following
formula:

ComIP (V, V󸀠) = {

1, if 𝛾 (V) ∩ 𝛾 (V󸀠) ̸= 0;

0, otherwise,

ComOP (V, V󸀠) = {

1, if 𝜆 (V) ∩ 𝜆 (V󸀠) ̸= 0;

0, otherwise.

(7)

Definition 9 (similarity for input and output data types). Let
CDW = (𝑉, 𝐸, 𝛼, 𝛽, 𝛾, 𝜆, 𝜂) and CDW󸀠 = (𝑉

󸀠
, 𝐸

󸀠
, 𝛼

󸀠
, 𝛽

󸀠
, 𝛾

󸀠
,

𝜆

󸀠
, 𝜂

󸀠
) be two CDWs. For any two task nodes V ∈ 𝑉 and

V󸀠 ∈ 𝑉

󸀠, the similarity of data types between V and V󸀠 can be
computed by the following equation:

SimDT (V, V󸀠) =

[ComIP (V, V󸀠) + ComOP (V, V󸀠)]

2

.

(8)

6. Similarity Computation between
CDWs Based on Distance Metric

6.1. IdenticalnessMeasure of Two Task Nodes. Semantic infor-
mation similarity between two task nodes, which ismeasured
by RDF files and data types similarities, can be used to
indicate the identicalness of services provided by them. In this
paper, we use an index IM(V, V󸀠) to measure the identicalness
of two task nodes from different constrained data oriented
workflows. We set the threshold of IM 0.7. This index will be
used to determine whether it is suitable to assign two task
nodes the same name from two workflows for comparison as
follows:

IM (V, V󸀠) = SimRF (V, V󸀠) × SimDT (V, V󸀠) , (9)

where SimRF(V, V󸀠) and SimDT(V, V󸀠) are, respectively, the
RDF files similarity and data types similarity according to
Definitions 7 and 9.

Identifying the identical task nodes between two CDWs
is a preprocessing for comparing their similarity of the future.
In this paper, the similarity computation of CDWs depends
on their normalized matrices. We need to determine the
task nodes related to the normalized matrices. Let CDW =

(𝑉, 𝐸, 𝛼, 𝛽, 𝛾, 𝜆, 𝜂) and CDW󸀠 = (𝑉

󸀠
, 𝐸

󸀠
, 𝛼

󸀠
, 𝛽

󸀠
, 𝛾

󸀠
, 𝜆

󸀠
, 𝜂

󸀠
) be

two CDWs.
Our preprocessing can be formally represented as follows.

(1) For any two nodes V ∈ 𝑉and V󸀠 ∈ 𝑉

󸀠, we use the
notation Ident(V, V󸀠) to represent that V and V󸀠 are
identical. Ident(V, V󸀠) if and only if IM(V, V󸀠) > 0.7 and
IM(V, V󸀠) = max{IM(V, V󸀠󸀠), IM(V󸀠󸀠󸀠, V󸀠) for all V󸀠󸀠 ∈

𝑉

󸀠 and 𝑉

󸀠󸀠󸀠
∈ 𝑉}. If Ident(V, V󸀠), then V and V󸀠 will

be assigned the same name label.
(2) The set of task nodes related to normalizedmatrices is

denoted by STN = {V
1
, V
2
, . . . , V

𝑘
}, where V

𝑖
∈ 𝑉 ∪ 𝑉

󸀠

for all 1 ≤ 𝑖 ≤ 𝑘, and, for any V
𝑖
, V
𝑗
∈ 𝑉 ∪ 𝑉

󸀠 and 𝑖 ̸= 𝑗,
V
𝑖
and V
𝑗
are not identical.
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6.2. Normalized Matrices and Distance Metric

Definition 10 (normalized matrices for two CDWs). Let
CDW = (𝑉, 𝐸, 𝛼, 𝛽, 𝛾, 𝜆, 𝜂) and CDW󸀠 = (𝑉

󸀠
, 𝐸

󸀠
, 𝛼

󸀠
, 𝛽

󸀠
, 𝛾

󸀠
,

𝜆

󸀠
, 𝜂

󸀠
) be two CDWs. NM and NM󸀠 are, respectively, the two

normalizedmatrices for CDWandCDW󸀠. 𝑛 is the cardinality
of the set STN after preprocessing. Let STN = {V

1
, V
2
, . . . , V

𝑘
},

where V
𝑖
∈ 𝑉∪𝑉

󸀠 for all 1 ≤ 𝑖 ≤ 𝑘, and, for any V
𝑖
, V
𝑗
∈ 𝑉∪𝑉

󸀠

and 𝑖 ̸= 𝑗, V
𝑖
and V
𝑗
are not identical. The normalized matrices

NM and NM󸀠 are computed by the formulas as follows:

NM (𝑖, 𝑗) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

1

𝑛

, if (V
𝑖
, V
𝑗
) ∈ 𝐸 \ 𝐸

󸀠
,

Dur (𝜂 (V
𝑖
, V
𝑗
)) ∩ Dur (𝜂󸀠 (V

𝑖
, V
𝑗
))

Dur (𝜂 (V
𝑖
, V
𝑗
))

×

1

𝑛

,

if (V
𝑖
, V
𝑗
) ∈ 𝐸 ∩ 𝐸

󸀠
,

0, otherwise,
(10)

NM󸀠 (𝑖, 𝑗) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

1

𝑛

, if (V
𝑖
, V
𝑗
) ∈ 𝐸

󸀠
\ 𝐸,

Dur (𝜂 (V
𝑖
, V
𝑗
)) ∩ Dur (𝜂󸀠 (V

𝑖
, V
𝑗
))

Dur (𝜂󸀠 (𝑣
𝑖
, 𝑣
𝑗
))

×

1

𝑛

,

if (V
𝑖
, V
𝑗
) ∈ 𝐸 ∩ 𝐸

󸀠
,

0, otherwise.
(11)

Definition 11 (distance metric [28]). Based on Definition 10,
one uses a distancemetric proposed in [28] formeasuring the
similarity between two constrained data oriented workflows
CDW and CDW󸀠 whose normalized matrices are, respec-
tively, NM and NM󸀠. Their distance metric between NM and
NM󸀠 is defined as follows:

DM (NM,NM󸀠) = √tr [(NM − NM󸀠)𝑇 × (NM − NM󸀠)].
(12)

The notation tr[∙] means the trace of matrix ∙, which is
the sum of elements in the main diagonal of a matrix.

The distance metric DM satisfies all the three properties
of distance measure as follows:

(1) DM(NM,NM󸀠) ≥ 0 if and only if NM = NM󸀠;
(2) DM(NM,NM󸀠) = DM(NM󸀠,NM);
(3) (DM(NM,NM󸀠󸀠) + DM(NM󸀠󸀠,NM󸀠)) ≥ DM(NM,

NM󸀠).

What is worth noting is that DM(NM,NM󸀠), de facto, is
the dissimilarity of NM and NM󸀠. The larger the DM value
between two CDWs is, the more dissimilar they are.

7. Experiments and Evaluation

7.1. Evaluation Indices, Workflow Repository, and Benchmark
Methods. In this paper, we will evaluate the effectiveness
and efficiency of our method by comparing it with the
three methods. We use the two indices: degree of richness

Table 1: List of indices of all methods.

Approach ExT DRR
Our method ExT CDW DRR CDW
Method in [29] ExT MCS DRR MCS
Method in [7] ExT CW DRR CW
Method in [28] ExT SSW DRR SSW

of retrieval (DRR) and time complexity. Evaluation of time
complexity is mainly done by computing the execution time
of workflow retrieval. So this index is shortened as ExT.
Another index DRR is defined as follows:

DRR =

SW R
SW C

, (13)

where SW R is the number of the workflows satisfying
requirements of users in the retrieved results. SW C is the
number of the workflows satisfying requirements of users in
the workflow repository.

We extended the functionality of workflowmodeling tool
[7]. In the extended tool, workflows with constraints can be
graphically constructed. In addition, it can store ontology
based semantic information. Each task node can be also
associated with a set of data types describing the input and
output parameters of the task node and a RDF file describing
the semantic information of the task node. A workflow
repository is implemented by a file directory in which many
CDWs are stored as .xml files, and semantic information of
nodes is stored as .rdf files. We manually constructed ten
groups of CDW models with different sizes (i.e., the node
number of a CDW) and depths (i.e., the node number of path
from the start node to the last node in a CDW) as the testing
data set for our experiments and evaluation.

The benchmark methods to compare are as follows.
Bunke and Shearer [29] presented a distance metric for com-
paring the similarity of graphs based on maximal common
subgraphs. This approach can be used for measuring the
similarity among workflow structures. The second approach
fully considers the constraints residing in workflows, such
as cost. Ma et al. [7] proposed an approach to compare
workflows with time constraints, where a time constraint is
represented by an interval. The third approach concentrates
on the comparison among semantic workflows, which was
proposed by Bergmann and Gil [28]. This method considers
comparing the semantic information in workflows.

In the following, we will compare our method with the
other three methods mentioned above according to the two
indices ExT and DRR. For simplification, Table 1 is the list of
indices of all methods.

7.2. Experimental Evaluation

7.2.1. Comparing Degrees of Retrieval Richness for Evaluating
Effectiveness. Figure 2 shows the degree of retrieval richness
of four methods. From this figure, we can find some facts.
Generally speaking, the larger the size of data set becomes,
the more suitably the candidate workflows may be contained.
Therefore, the value of DRRwill rise. From this figure, we can
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Figure 2: Comparison of degrees of retrieval richness.

find that the retrieval richness of our method is larger than
others. It indicates that our method will find more suitable
workflows with less irrelevant ones. DDR indicates that our
approach has a stronger ability to discover information in a
deeper level and will have a better retrieval effect obviously.

Higher value ofDRR reflects thatmore suitableworkflows
have been discovered. One possible reason is that ourmethod
considers semantic and structural similarities for constrained
data oriented workflows retrieval, which could discover deep
relations such as nodes with different names but the same
quality of service. This is quite important because users may
choose cheaper services that are sufficient for their require-
ments. From the experimental results, we can conclude that
ourmethodwith a higher degree of richness has an advantage
over others to find more suitable information for specific
users.

7.2.2. Comparing Time Complexity Based on Graph Depth
for Evaluating Efficiency. Figure 3 is the comparison result
of execution time between our method and that proposed
in [28]. From the experimental results, we can have the
following observation. As the size of graph grows larger,
the execution time of both methods increases. For example,
execution time of comparison between workflows with 70
nodes is longer than that with 30 nodes. In general, the
execution time of our method is lower than that proposed
in [28]. Graph depth has a larger effect on the execution
of approach in [28], but less on our method. From the
experimental results, we can find with the growing depths
of the same size of graphs that the execution time increases
faster than ours.
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Figure 3: Execution time comparison based on depth.

There are many factors that will bring about these
experimental results. First, both methods adopt graph to
represent workflow models. When workflow models became
complex and large,more structural and semantic information
needed to be dealt with through the whole comparison
process which demands more execution time obviously.
Second, Bergmann and Gil in [28] used a case reasoning
approach to measure the similarity of semantic information
of different nodes.Thismethod depends heavily on the depth
of graph. Time complexity of this method will grow faster
when the depth of graph increases. It straightly influences the
whole similarity measure time. In our method, we seamlessly
combine semantic and structural similarities into normalized
matrices. The whole time complexity largely depends on
the matrix computation. Usually time complexity of matrix
computation can be affordable in many cases. For example,
we have three workflow groups with 100 nodes in graphs but
different graph depths: 16, 17, and 19, respectively. From the
experimental results, ExT SSW grows faster than ExT CDW.

7.2.3. Comparing Total Time Complexity for Evaluating Perfor-
mance. Figure 4 is the execution time comparison between
our method and the other two. From this figure, we can find
that all methods cost more time with the growing of graph
sizes. The execution time of our method increases a little
faster than the other two methods. However, the extra time
cost will be tolerant and affordable if we further take a look
at Figure 4 because extra time cost will contribute to a better
degree of richness of retrieval.
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Figure 4: Execution time among the three methods.

Task nodes and relations between them are represented
in a graph by Bunke and Shearer in [29]. The authors
proposed a distance measure by maximal common sub-
graph. The formula is as follows: D MCS(𝑊

1
,𝑊
2
) = 1 −

(|𝑉|/max{|𝑉
𝑊1

|, |𝑉
𝑊2

|}). D MCS(𝑊
1
,𝑊
2
) computes the dis-

tance of 𝑊
1
and 𝑊

2
, where |𝑉| is the number of maximal

common subgraph between workflows 𝑊
1
and 𝑊

2
. Time

complexity mainly depends on the algorithm of subgraph
isomorphism.The time complexity of subgraph isomorphism
with unlabeled nodes in a graph has been proven to be anNP-
complete problem. However, if each node has a unique label,
the time complexity will decrease. Semantic information was
not considered in theworkflowmodels whichwould decrease
the execution time.

In brief, we evaluate the effectiveness and efficiency of
our approach by comparing it with the existing approaches of
workflow retrieval.The experimental results show that (1) our
method has more degree of semantic richness, which means
that our approach can find out more accurate candidate
workflows and has a higher retrieval precision; (2) the
execution time that our method needs is no more than the
other methods and is even lower than them. So our method
outperforms the existing approaches of workflow retrieval
and has higher performance.

8. Conclusion

In this paper, we proposed a graph based representation to
describe constrained data oriented workflows, which seam-
lessly combines semantic and structure similarities to gain a
better retrieval effect. It can mine out more and more deep

information that is crucial to reflect the quality of services
provided by workflows. It is convenient for workflows reuse
for different domain scientists with specific requirements.
The similarity comparison is based on matrix norm to
measure the distance of two normalized matrices for cor-
responding workflow models. The experimental evaluation
shows that our method outperforms the existing approaches
of workflow retrieval.Themethod proposed in this paper can
bewidely used inworkflows retrieval, reuse,matching, and so
on.
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