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The mixed𝐻
2
/𝐻
∞
control problem is studied for systems governed by infinite horizon backward stochastic differential equations

(BSDEs) with exogenous disturbance signal. A necessary and sufficient condition for the existence of a unique solution to the
𝐻
2
/𝐻
∞

control problem is derived. The equivalent feedback solution is also discussed. Contrary to deterministic or stochastic
forward case, the feedback solution is no longer feedback of the current state; rather, it is feedback of the entire history of the state.

1. Introduction

𝐻
∞

control is one of the most important robust control
approaches in which control law is sought to efficiently elim-
inate the effect of the exogenous disturbance in the practical
system. We refer the reader to [1–3] and the references
therein. If the purpose is to select control not only to restrain
the exogenous disturbance, but also to minimize a cost
function when the worst case disturbance 𝑑∗ is implemented,
this is the so-called mixed 𝐻

2
/𝐻
∞

control problem. Mixed
𝐻
2
/𝐻
∞

control problem has attracted much attention and
has been widely applied to various fields. Please refer to [4, 5]
for more information.

It should be pointed out that the above-mentioned works
are concerned only with the forward stochastic systems. The
case of systems governed by backward stochastic differential
equations with exogenous disturbance signal, to our best
knowledge, seems to be open. The objective of this paper
is to develop an 𝐻

2
/𝐻
∞

control theory for infinite horizon
backward stochastic systems.

A BSDE is an Itô stochastic differential equation (SDE)
for which a random terminal condition on the state has been
specified. Since BSDEs are well-defined dynamic systems, it
is very natural and appealing to study the control problems
involving BSDEs as well as their applications in lots of
different fields, especially in finance, economics, insurance,

and so forth. Please refer to [6–12] formore details.This paper
is concernedwithmixed𝐻

2
/𝐻
∞
control of backward systems

governed by infinite horizon linear BSDEs, namely, an infinite
horizon backward stochastic 𝐻

2
/𝐻
∞

control problem. This
means that our purpose is to study mixed𝐻

2
/𝐻
∞

backward
stochastic control problem in infinite horizon which presents
more robust and stable sense in practise. For that, as prelimi-
naries, we first need to review some results on infinite horizon
BSDEs in Section 2. Chen and Wang [13] gave an existence
and uniqueness result under a kind of Lipschitz condition
suitable for one-dimensional infinite horizon BSDEs.Wu [14]
generalized the result of [13] into the poisson jump process
case in unbounded stopping time duration and obtained the
corresponding comparison theorem. In this section, under
this frame, we get the existence and uniqueness result for the
infinite horizon matrix-valued BSDEs.

In Section 3, similar to the deterministic or stochastic
forward case, we formulate the infinite horizon backward
stochastic𝐻

2
/𝐻
∞
control problem. In Section 4, a necessary

and sufficient condition for the existence of a unique solution
to the 𝐻

2
/𝐻
∞

control problem is derived. It is shown that
the existence of a unique solution to the control problem is
equivalent to the corresponding uncontrolled perturbed sys-
tem to have a L

2
-gain less than or equal to 𝛾 and the resulting

solution is characterized by the solution of an uncontrolled
forward backward stochastic differential equation (FBSDE).
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2 Mathematical Problems in Engineering

Under some monotone assumptions, Hu and Peng [15] and
Peng and Wu [16] obtained the existence and uniqueness
results in an arbitrarily prescribed time duration. Wu and
Xu [17] gave some comparison theorems for FBSDEs. Riccati
equation plays an important role to get the feedback form of
the optimal control; please refer to Yong and Zhou [18] for the
details. Section 5 gives the equivalent linear feedback solution
by virtue of the solution of a Riccati-type equation. As it
turns out, the infinite horizon backward stochastic 𝐻

2
/𝐻
∞

control can no longer be expressed as a linear feedback of the
current state like that in deterministic or stochastic forward
case. Rather, it depends, in general, on the entire past history
of the state pair (𝑥(⋅), 𝑧(⋅)).

2. Notations and Preliminary Results of
Infinite Horizon BSDEs

To treat the infinite horizon backward stochastic 𝐻
2
/𝐻
∞

control problem, we need the following preliminary results
of infinite horizon BSDEs.

Let (Ω,F,F
𝑡
, 𝑃) be a completed filtering probability

space; let (𝑊
𝑡
)
𝑡≥0

be a standard one-dimensional Wiener
process (our assumption that𝑊(⋅) is scalar-valued is for the
sake of simplicity; no essential difficulties are encountered
when extending our analysis to the case of vector-valued
Wiener process). {F

𝑡
}
𝑡≥0

is the natural filtration generated by
this Wiener process𝑊(⋅) up to time 𝑡, whereF

0
contains all

𝑃-null sets ofF andF
∞
= ∨
𝑡≥0

F
𝑡
.

Throughout this paper, we adopt the following conven-
tional notations. 𝑆𝑛: the set of symmetric 𝑛 × 𝑛 matrices
with real elements; 𝐴𝑇: the transpose of the matrix 𝐴;
𝐴 ≥ 0 (𝐴 > 0): 𝐴 is positive semidefinite (positive
definite) real matrix; 𝐼: identity matrix; ‖𝑥‖ := 𝑥

𝑇
𝑥 =

(∑
𝑛

𝑖=1
|𝑥
𝑖
|
2
)
1/2 for 𝑛-dimensional vector 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
)
𝑇;

‖𝐴‖ := max
𝑥∈𝑅
𝑛
,‖𝑥‖=1

‖𝐴𝑥‖ for𝐴 ∈ 𝑅𝑛×𝑛;𝑁(⋅) > (≥ 0):𝑁(𝑡) >
(≥)0 for a.s. 𝑡 ∈ 𝑅+;𝑀(⋅) > (≥)𝑁(⋅):𝑀(⋅) − 𝑁(⋅) > (≥)0;𝑋: a
given Hilbert space;

𝐿
2

F (𝑅
+
; 𝑋)

=: {𝑓 : 𝑅
+
× Ω → 𝑋 is an F

𝑡

− adapted process such that E∫
∞

0

𝑓 (𝑡)


2

𝑑𝑡

< ∞} ;

S
2
=: {V
𝑡
, 0 ≤ 𝑡 ≤ ∞, is an F

𝑡

− adapted process such that E[ sup
0≤𝑡≤∞

V𝑡


2

]

< ∞} ;

𝐿
2
=: {𝜉, 𝜉 is a vector-valued F

∞

−measurable random variable such that E𝜉


2

< ∞} .

(1)

We consider the infinite horizon BSDE:

𝑥
𝑡
= 𝜉 + ∫

∞

𝑡

𝑓 (𝑠, 𝑥
𝑠
, 𝑧
𝑠
) 𝑑𝑠 − ∫

∞

𝑡

𝑧
𝑠
𝑑𝑊
𝑠
, 𝑡 ∈ [0,∞] ; (2)

(𝑥, 𝑧) take value in 𝑅𝑛 × 𝑅𝑛, 𝜉 ∈ 𝐿2, and 𝑓 is a map from
Ω × [0,∞] × 𝑅

𝑛
× 𝑅
𝑛 onto 𝑅𝑛 which satisfies the following.

(H2.1) For all (𝑥, 𝑧) ∈ 𝑅𝑛 × 𝑅𝑛, 𝑓(⋅, 𝑥, 𝑧) is progressively
measurable and

E(∫
∞

0

𝑓(𝑠, 0, 0)
 𝑑𝑠)

2

< ∞. (3)

(H2.2) There exist two positive deterministic functions 𝑢
1
(𝑡)

and 𝑢
2
(𝑡) such that, for all (𝑥

𝑖
, 𝑧
𝑖
) ∈ 𝑅
𝑛
× 𝑅
𝑛, 𝑖 = 1, 2,

𝑓 (𝑡, 𝑥1, 𝑧1) − 𝑓 (𝑡, 𝑥2, 𝑧2)


≤ 𝑢
1
(𝑡)
𝑥1 − 𝑥2

 + 𝑢2 (𝑡)
𝑧1 − 𝑧2

 , 𝑡 ∈ [0,∞) ,

∫

∞

0

𝑢
1
(𝑡) 𝑑𝑡 < ∞, ∫

∞

0

𝑢
2

2
(𝑡) 𝑑𝑡 < ∞.

(4)

Then we have the following.

Theorem 1 (see Wu [14]). There exists a unique solution
(𝑥, 𝑧) ∈ S2 × 𝐿2F(𝑅

+
; 𝑅
𝑛
) satisfying the BSDE (2).

Let us again consider a function 𝐹, which will be in the
sequel the generator of the BSDE, defined onΩ×[0,∞]×𝑆𝑛×𝑆𝑛,
with values in 𝑆𝑛, such that the process (𝐹(𝑡, 𝑦, 𝑧))

𝑡∈[0,∞]
is a

progressively measurable process for each (𝑦, 𝑧) ∈ 𝑆𝑛 × 𝑆𝑛.
Along the line of Chen andWang [13] orWu [14] combined

with that in Peng [19] for matrixed-valued BSDEs result in
finite horizon, we get the following existence and uniqueness
theorem for infinite horizon matrix-valued BSDEs.

Theorem 2. Suppose that 𝐹 satisfies the following.

(H2.1) For all (𝑦, 𝑧) ∈ 𝑆𝑛 × 𝑆𝑛, 𝐹(⋅, 𝑦, 𝑧) is progressively
measurable and

E(∫
∞

0

‖𝐹(𝑠, 0, 0)‖ 𝑑𝑠)

2

< ∞. (5)

(H2.2) There exist two positive deterministic functions 𝑢
1
(𝑡)

and 𝑢
2
(𝑡) such that, for all (𝑦

𝑖
, 𝑧
𝑖
) ∈ 𝑅
𝑛
× 𝑅
𝑛, 𝑖 = 1, 2,

𝐹 (𝑡, 𝑦1, 𝑧1) − 𝐹 (𝑡, 𝑦2, 𝑧2)


≤ 𝑢
1
(𝑡)
𝑦1 − 𝑦2

 + 𝑢2 (𝑡)
𝑧1 − 𝑧2

 , 𝑡 ∈ [0,∞) ,

(6)
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and ∫∞
0
𝑢
1
(𝑡)𝑑𝑡 < ∞, ∫∞

0
𝑢
2

2
(𝑡)𝑑𝑡 < ∞, 𝜉 is a given 𝑆𝑛-valued

random variable, and 𝜉 ∈ 𝐿2. Then, the following matrix-
valued infinite horizon BSDE

𝑌
𝑡
= 𝜉 + ∫

∞

𝑡

𝐹 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
) 𝑑𝑠 − ∫

∞

𝑡

𝑍
𝑠
𝑑𝑊
𝑠

(7)

admits a unique solution (𝑌, 𝑍) ∈ S2 × 𝐿2F(𝑅
+
; 𝑅
𝑛
).

3. Problem Statement

Now, we consider the following stochastic control system
governed by an infinite horizon linear BSDE:

𝑥 (𝑡) = 𝜉 − ∫

∞

𝑡

[𝐴 (𝑠) 𝑥 (𝑠) + 𝐵 (𝑠) 𝑢 (𝑠)

+ 𝐶 (𝑠) 𝑑 (𝑠) + 𝐷 (𝑠) 𝑧 (𝑠)] 𝑑𝑠

− ∫

∞

𝑡

𝑧 (𝑠) 𝑑𝑊 (𝑠) .

(8)

𝑍 ∈ R𝑛𝑍 is the penalty output, and the energy of the output
signal 𝑍 is given by

‖𝑍‖
2

2
= 𝑥
𝑇

0
𝐻𝑥
0
+ E∫

∞

0

[𝑥
𝑇

𝑡
𝑄
𝑡
𝑥
𝑡
+ 𝑧
𝑇

𝑡
𝑆
𝑡
𝑧
𝑡
+ 𝑢
𝑇

𝑡
𝑢
𝑡
] 𝑑𝑡, (9)

where 𝐻 is a nonnegative symmetric constant matrix and
𝑄
𝑡
(𝜔) and 𝑆

𝑡
(𝜔) are nonnegative symmetric bounded pro-

gressively measurable matrix-valued processes. 𝑢 and 𝑑 stand
for the control input and exogenous disturbance signal,
respectively. The energy of the disturbances is

‖𝑑‖
2

2
= E∫

∞

0

𝑑
𝑇

𝑡
𝑑
𝑡
𝑑𝑡. (10)

Later, we will state assumptions on the coefficients 𝐴(⋅),
𝐵(⋅), 𝐶(⋅), 𝐷(⋅), 𝑄(⋅), 𝑆(⋅) so as to guarantee the existence of a
unique solution pair (𝑥(⋅), 𝑧(⋅)) ∈ S2 × 𝐿2F(𝑅

+
; 𝑅
𝑛
) of BSDE

(8) for any 𝑢 ∈ 𝐿2F(𝑅
+
; 𝑅
𝑛
𝑢), 𝑑 ∈ 𝐿2F(𝑅

+
; 𝑅
𝑛
𝑑), and 𝜉 ∈ 𝐿2. We

refer to such a four-tuple (𝑥(⋅), 𝑧(⋅); 𝑢(⋅), 𝑑(⋅)) as an admissible
triple.

Now, we first define the infinite horizon backward
stochastic𝐻

2
/𝐻
∞

control as follows.

Definition 3 (backward stochastic𝐻
2
/𝐻
∞
control). For given

𝛾 > 0 and 𝑑 ∈ 𝐿2F(𝑅
+
; 𝑅
𝑛
𝑑), find, if possible, a control 𝑢 =

𝑢
∗
∈ 𝐿
2

F(𝑅
+
; 𝑅
𝑛
𝑢), such that

(i) the trajectory of the closed-loop system (8) with 𝜉 = 0
satisfies

‖𝑍‖
2

2
≤ 𝛾
2
‖𝑑‖
2

2
, ∀𝑑 ̸= 0 ∈ 𝐿

2

F (𝑅
+
; 𝑅
𝑛
𝑑

) and (11)

(ii) when the worst case disturbance ([4]) 𝑑∗ ∈

𝐿
2

F(𝑅
+
; 𝑅
𝑛
𝑑), if existing, is implemented in (8), 𝑢∗

minimizes the quadratic performance ‖𝑍‖2
2
simulta-

neously.

If we define

𝐽
1
(𝑢, 𝑑) = ‖𝑍‖

2

2
− 𝛾
2
‖𝑑‖
2

2
,

𝐽
2
(𝑢, 𝑑) = ‖𝑍‖

2

2

(12)

then the mixed𝐻
2
/𝐻
∞
control problem is equivalent to find

the Nash equilibria (𝑢∗, 𝑑∗) defined as

𝐽
1
(𝑢
∗
, 𝑑
∗
) ≥ 𝐽
1
(𝑢
∗
, 𝑑) , ∀𝑑 ∈ 𝐿

2

F (𝑅
+
; 𝑅
𝑛
𝑑

) , (13)

𝐽
2
(𝑢, 𝑑
∗
) ≥ 𝐽
2
(𝑢
∗
, 𝑑
∗
) , ∀𝑢 ∈ 𝐿

2

F (𝑅
+
; 𝑅
𝑛
𝑢

) , (14)

𝐽
1
(𝑢
∗
, 𝑑) ≤ 0, ∀𝑑 ̸= 0 ∈ 𝐿

2

F (𝑅
+
; 𝑅
𝑛
𝑑

) , 𝜉 = 0. (15)

Obviously, inequality (15) is associated with the 𝐻
∞

perfor-
mance. The first Nash inequality (13) is to keep that 𝑑∗ is the
worst case disturbance, while the second one (14) is related
with the 𝐻

2
performance. Clearly, if the Nash equilibria

(𝑢
∗
, 𝑑
∗
) exist and satisfy inequality (15), then 𝑢∗ is our desired

𝐻
2
/𝐻
∞

controller and 𝑑∗ is the worst case disturbance. In
this case, we also say that the infinite horizon backward
stochastic𝐻

2
/𝐻
∞

control admits a solution (𝑢∗, 𝑑∗).
Throughout this paper, we assume the following.

(A1) All matrices mentioned in this paper are bounded
progressively measurable processes.

(A2)

E∫
∞

0

‖𝐴 (𝑡)‖ 𝑑𝑡 < ∞,

E∫
∞

0

‖𝐷(𝑡)‖
2
𝑑𝑡 < ∞.

(16)

(A3)

𝛾 > 0,

𝑄 ≥ 0, E∫
∞

0

‖𝑄 (𝑡)‖ 𝑑𝑡 < ∞,

𝐵𝐵
𝑇
(⋅) >

𝐶𝐶
𝑇
(⋅)

𝛾
2
,

E∫
∞

0



𝐵 (𝑡) 𝐵(𝑡)
𝑇
−
𝐶 (𝑡) 𝐶(𝑡)

𝑇

𝛾
2



𝑑𝑡 < ∞.

(17)

From Theorem 2, we obtain that assumption (A2) is
sufficient to guarantee the existence of a unique solution pair
(𝑥(⋅), 𝑧(⋅)) ∈ S2 × 𝐿2F(𝑅

+
; 𝑅
𝑛
) of BSDE (8) for any 𝑢 ∈

𝐿
2

F(𝑅
+
; 𝑅
𝑛
𝑢) and 𝑑 ∈ 𝐿2F(𝑅

+
; 𝑅
𝑛
𝑑).

4. The Necessary and Sufficient Condition

In this section, we give a necessary and sufficient condition
for the existence of a unique solution to the backward stochas-
tic𝐻
2
/𝐻
∞

control problem. We begin our presentation with
some preliminaries.
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Consider the following uncontrolled stochastic perturbed
system:

𝑑𝑥
𝑡
= [𝐴 (𝑡) 𝑥

𝑡
+ 𝐶 (𝑡) 𝑑

𝑡
+ 𝐷 (𝑡) 𝑧

𝑡
] 𝑑𝑡 + 𝑧

𝑡
𝑑𝐵 (𝑡) ,

𝑥 (∞) = 𝜉, 𝑡 ∈ [0,∞) .

(18)

Let 𝑍 be the to-be-controlled output. For any 0 < 𝑇 <
∞, define the perturbation operator L : 𝐿2F(𝑅

+
; 𝑅
𝑛
𝑑) →

𝐿
2

F(𝑅
+
; 𝑅
𝑛
𝑍) as

L (𝑑) = 𝑍|
𝑥
∞
=0
, 𝑡 ≥ 0, 𝑑 ∈ 𝐿

2

F (𝑅
+
; 𝑅
𝑛
𝑑

) , (19)

with its norm

‖L‖2 := sup
𝑑∈𝐿
2

F
(𝑅
+
; 𝑅
𝑛
𝑑 ), 𝑑 ̸= 0, 𝑥

∞
=0

‖L(𝑑)‖2

‖𝑑‖2

= sup
𝑑∈𝐿
2

F
(𝑅
+
; 𝑅
𝑛
𝑑 ), 𝑑 ̸= 0, 𝑥

∞
=0

‖𝑍‖2

‖𝑑‖2

,

(20)

where

‖𝑍‖
2

2
= 𝑥
𝑇

0
𝐻𝑥
0
+ E∫

∞

0

[𝑥
𝑇

𝑡
𝑄
𝑡
𝑥
𝑡
+ 𝑦
𝑇

𝑡
𝑆
𝑡
𝑦
𝑡
] 𝑑𝑡. (21)

Obviously, L is a nonlinear operator.

Definition 4. Let 𝛾 > 0; system (18) is said to have L
2
-gain

less than or equal to 𝛾 if for any nonzero 𝑑 ∈ 𝐿2F(𝑅
+
; 𝑅
𝑛
𝑑),

‖ L‖
2
≤ 𝛾.

Proposition 5. For system (18) and given disturbance attenua-
tion 𝛾 > 0, if there exists a functionP(⋅), satisfying the following
SDE (the variables 𝑡 and 𝜔 are suppressed):

𝑑𝑃 = [−𝐴
𝑇
𝑃 − 𝑃𝐴 − 𝑄 −

𝑃𝐶𝐶
𝑇
𝑃

𝛾
2
]𝑑𝑡 − 𝐷

𝑇
𝑃𝑑𝑊(𝑡) ,

𝑃 + 𝑆 ≤ 0, 𝑃 (0) = −𝐻, 𝑡 ∈ [0,∞) ,

(22)

then ‖ L‖
2
≤ 𝛾.

Proof. It only needs to note the following identity:

‖𝑍‖
2

2
− 𝛾
2
‖𝑑‖
2

2

= ‖𝑍‖
2

2
− 𝛾
2
‖𝑑‖
2

2
+ E∫

∞

0

𝑑 (𝑥
𝑇
𝑃𝑥) − 𝑥

𝑇

0
𝐻𝑥
0

= −𝛾
2



V −
𝐶
𝑇
𝑃𝑥

𝛾
2



2

2

+ E∫
∞

0

𝑦
𝑇
(𝑃 + 𝑆) 𝑦 𝑑𝑡 ≤ 0.

(23)

The following theorem is a necessary and sufficient
condition for the existence of a unique solution to the infinite
horizon backward stochastic𝐻

2
/𝐻
∞

control problem.

Theorem 6. For system (8), the backward stochastic 𝐻
2
/𝐻
∞

control problem admits a solution if and only if the correspond-
ing uncontrolled system (18) has L

2
-gain less than or equal to 𝛾.

Moreover, if the backward stochastic 𝐻
2
/𝐻
∞

control problem
admits a solution, then the solution is unique with

𝑢
∗
=
𝐵
𝑇
𝑝
∗

2
, 𝑑

∗
= −
𝐶
𝑇
𝑝
∗

2𝛾
2
, (24)

where (𝑝∗, 𝑥∗, 𝑧∗) is the solution of the following FBSDE:

𝑑𝑝
∗

𝑡
= [2𝑄𝑥

∗

𝑡
− 𝐴
𝑇
𝑝
∗

𝑡
] 𝑑𝑡 + [2𝑆𝑧

∗

𝑡
− 𝐷
𝑇
𝑝
∗

𝑡
] 𝑑𝐵 (𝑡) ,

𝑑𝑥
∗

𝑡
= [𝐴𝑥

∗

𝑡
+
𝐵𝐵
𝑇
𝑝
∗

𝑡

2
−
𝐶𝐶
𝑇
𝑝
∗

𝑡

2𝛾
2
+ 𝐷𝑧
∗

𝑡
]𝑑𝑡 + 𝑧

∗

𝑡
𝑑𝐵 (𝑡) ,

𝑝
∗

0
= 2𝐻𝑥

∗

0
, 𝑥
∗

∞
= 𝜉, 𝑡 ∈ [0,∞) .

(25)

Proof. (1)The Sufficient Condition. To show that the backward
stochastic𝐻

2
/𝐻
∞

control problem admits a unique solution
(𝑢
∗
, 𝑑
∗
) if the corresponding uncontrolled system (18) hasL

2
-

gain less than or equal to 𝛾, we will show that (𝑢∗, 𝑑∗) is a
solution firstly.

Look at the above FBSDE; from [16], the FBSDE (25) has
a unique solution (𝑝∗

𝑡
, 𝑥
∗

𝑡
, 𝑧
∗

𝑡
). Now, we try to prove that 𝑑∗

is the worst case disturbance. For any given 𝑑 ∈ 𝐿2F(𝑅
+
; 𝑅
𝑛
𝑑),

suppose that 𝑥𝑑 is the trajectory corresponding to (𝑢∗, 𝑑) ∈
𝐿
2

F(𝑅
+
; 𝑅
𝑛
𝑢) × 𝐿

2

F(𝑅
+
; 𝑅
𝑛
𝑑). It is easy to see the trajectory

corresponding to

(0, 𝑑
∗
− 𝑑) (26)

is 𝑥∗−𝑥𝑑 with initial state 𝑥∗
0
−𝑥
𝑑

0
and terminal state 0. Hence,

(𝑥
∗
− 𝑥
𝑑
, 𝑧
∗
− 𝑧
𝑑
) is the solution corresponding to 𝑑∗ − 𝑑 for

system (18) with terminal state 0. Since system (18) has L
2
-

gain less than or equal to 𝛾, then

E [∫
∞

0

[−(𝑥
∗
− 𝑥
𝑑
)
𝑇

𝑄(𝑥
∗
− 𝑥
𝑑
) − (𝑧

∗
− 𝑧
𝑑
)
𝑇

𝑆 (𝑧
∗
− 𝑧
𝑑
)

+𝛾
2
(𝑑
∗
− 𝑑)
𝑇

(𝑑
∗
− 𝑑) ] 𝑑𝑡]

− (𝑥
∗

0
− 𝑥
𝑑

0
)
𝑇

𝐻(𝑥
∗

0
− 𝑥
𝑑

0
) ≥ 0,

(27)

𝐽
2
(𝑢
∗
, 𝑑
∗
) − 𝐽
2
(𝑢
∗
, 𝑑)

= E [∫
∞

0

[𝑥
∗𝑇
𝑄𝑥
∗
− 𝑥
𝑑𝑇
𝑄𝑥
𝑑
+ 𝑧
∗𝑇
𝑆𝑧
∗
− 𝑧
𝑑𝑇
𝑆𝑧
𝑑

−𝛾
2
𝑑
∗𝑇
𝑑
∗
+ 𝛾
2
𝑑
𝑇
𝑑] 𝑑𝑡]

+ 𝑥
∗𝑇

0
𝐻𝑥
∗

0
− 𝑥
𝑑𝑇

0
𝐻𝑥
𝑑

0
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= E [∫
∞

0

[(𝑥
∗
− 𝑥
𝑑
)
𝑇

𝑄(𝑥
∗
− 𝑥
𝑑
)

− 2𝑥
𝑑𝑇
𝑄(𝑥
𝑑
− 𝑥
∗
) + (𝑧

∗
− 𝑧
𝑑
)
𝑇

𝑆 (𝑧
∗
− 𝑧
𝑑
)

−2𝑧
𝑑𝑇
𝑆 (𝑧
𝑑
− 𝑧
∗
) − 𝛾
2
𝑑
∗𝑇
𝑑
∗
+ 𝛾
2
𝑑
𝑇
𝑑] 𝑑𝑡]

+ (𝑥
∗

0
− 𝑥
𝑑

0
)
𝑇

𝐻(𝑥
∗

0
− 𝑥
𝑑

0
) − 2𝑥

𝑑𝑇

0
𝐻(𝑥
𝑑

0
− 𝑥
∗

0
) .

(28)

Applying Itô’s formula to 𝑝∗𝑇(𝑥𝑑 − 𝑥∗),

− 2𝑥
∗𝑇

0
𝐻(𝑥
𝑑

0
− 𝑥
∗

0
)

= E [∫
∞

0

𝑑 [𝑝
∗𝑇
(𝑥
𝑑
− 𝑥
∗
)]

= E∫
∞

0

[2𝑥
∗𝑇
𝑄(𝑥
𝑑
− 𝑥
∗
)

+2𝑧
∗𝑇
𝑆 (𝑧
𝑑
− 𝑧
∗
) + (𝐶

𝑇
𝑝
∗
)
𝑇

(𝑑 − 𝑑
∗
)] 𝑑𝑡]

= E [∫
∞

0

[2𝑥
∗𝑇
𝑄(𝑥
𝑑
− 𝑥
∗
)

+2𝑧
∗𝑇
𝑆 (𝑧
𝑑
− 𝑧
∗
) − 2𝛾

2V∗𝑇 (𝑑 − 𝑑∗)] 𝑑𝑡] .

(29)

Substituting 2𝑥∗𝑇
0
𝐻(𝑥
𝑑

0
− 𝑥
∗

0
) into (28), we get

𝐽
2
(𝑢
∗
, 𝑑
∗
) − 𝐽
2
(𝑢
∗
, 𝑑)

= E [∫
∞

0

[−(𝑥
∗
− 𝑥
𝑑
)
𝑇

𝑄(𝑥
∗
− 𝑥
𝑑
)

− (𝑧
∗
− 𝑧
𝑑
)
𝑇

𝑆 (𝑧
∗
− 𝑧
𝑑
)

+ 𝛾
2
(𝑑
∗
− 𝑑)
𝑇

(𝑑
∗
− 𝑑) ] 𝑑𝑡]

− (𝑥
∗

0
− 𝑥
𝑑

0
)
𝑇

𝐻(𝑥
∗

0
− 𝑥
𝑑

0
) .

(30)

From (27), then

𝐽
2
(𝑢
∗
, 𝑑
∗
) − 𝐽
2
(𝑢
∗
, 𝑑) ≥ 0. (31)

So 𝑑∗ is the worst case disturbance.Moreover, for 𝑥
∞
= 0, the

FBSDE (25) admits a unique solution (𝑝∗, 𝑥∗, 𝑧∗) = (0, 0, 0);
then

𝐽
2
(𝑢
∗
, 𝑑) ≤ 𝐽

2
(𝑢
∗
, 𝑑
∗
) = 0. (32)

Hence, 𝑢∗ restrains the exogenous disturbance. In the
following, we will show that 𝑢∗ also minimizes that cost
function when the worst case disturbance 𝑑∗ is implemented
into system (8).

For any𝑢 ∈ 𝐿2F(R
𝑛
𝑢), let𝑥𝑢

𝑡
be the trajectory of the system

(8) corresponding to (𝑢, 𝑑∗). Let us first consider

𝐽
1
(𝑢
∗
, 𝑑
∗
) − 𝐽
1
(𝑢, 𝑑
∗
) = 𝐼
1
, (33)

where

𝐼
1
= −E [∫

∞

0

[𝑥
∗𝑇
𝑄 (𝑡) 𝑥

∗
− 𝑥
𝑢𝑇
𝑄𝑥
𝑢
+ 𝑧
∗𝑇
𝑆 (𝑡) 𝑧

∗

− 𝑧
𝑢𝑇
𝑆𝑧
𝑢
+ 𝑢
∗𝑇
𝑢
∗
− 𝑢
𝑇
𝑢] 𝑑𝑡]

+ 𝑥
∗𝑇

0
𝐻𝑥
∗

0
− 𝑥
𝑢𝑇

0
𝐻𝑥
𝑢

0

= E [∫
∞

0

[(𝑥
∗
− 𝑥
𝑢
)
𝑇

𝑄 (𝑥
∗
− 𝑥
𝑢
)

+ (𝑧
∗
− 𝑧
𝑢
)
𝑇

𝑆 (𝑧
∗
− 𝑧
𝑢
) + (𝑢

∗
− 𝑢)
𝑇

(𝑢
∗
− 𝑢)

+ 2𝑥
∗𝑇
𝑄 (𝑡) (𝑥

𝑢
− 𝑥
∗
) + 2𝑦

∗𝑇
𝑆 (𝑡) (𝑧

𝑢
− 𝑧
∗
)

+ 2𝑢
∗𝑇
(𝑢 − 𝑢

∗
)] 𝑑𝑡]

+ (𝑥
∗

0
− 𝑥
𝑢

0
)
𝑇

𝐻(𝑥
∗

0
− 𝑥
𝑢

0
) + 2𝑥

∗𝑇

0
𝐻(𝑥
𝑢

0
− 𝑥
∗

0
) .

(34)

From 𝑝∗
0
= 2𝐻𝑥

∗

0
, we use Itô’s formula to 𝑝∗𝑇

𝑡
(𝑥
𝑢

𝑡
− 𝑥
∗

𝑡
) and

get

2𝑥
∗𝑇

0
𝐻(𝑥
𝑢

0
− 𝑥
∗

0
)

= −E [∫
∞

0

[2𝑥
∗𝑇
𝑄 (𝑡) (𝑥

𝑢
− 𝑥
∗
)

+ 2𝑧
∗𝑇
𝑆 (𝑧
𝑢
− 𝑧
∗
) + 2𝑢

∗𝑇
(𝑢 − 𝑢

∗
)] 𝑑𝑡] .

(35)

Then because of 𝑄, 𝑆, and𝐻 being nonnegative, we have

𝐽
1
(𝑢
∗
, V∗) − 𝐽

1
(𝑢, V∗) = 𝐼

1
≥ 0. (36)

Therefore, 𝑑∗ minimizes the cost function when the worst
case disturbance 𝑑∗ is implemented into system (8).

So, (𝑢∗, 𝑑∗) = (𝐵𝑇𝑝∗/2, −𝐶𝑇𝑝∗/2𝛾2) is a solution of the
backward stochastic𝐻

2
/𝐻
∞

control problem.
We are now in a position to prove the uniqueness of

the solution. Assume that the backward stochastic 𝐻
2
/𝐻
∞

control has a solution (𝑢1, 𝑑1), (𝑥1, 𝑧1) is the corresponding
solution for (8), and 𝑝1 is the solution of the following BSDE:

𝑑𝑝
1
= [2𝑄𝑥

1
− 𝐴
𝑇
𝑝
1
] 𝑑𝑡 + [2𝑆𝑧

1
− 𝐷
𝑇
𝑝
1
] 𝑑𝐵 (𝑡) ,

𝑝
1

0
= 2𝐻𝑥

1

0
.

(37)

Implementing 𝑑1, having

inf
𝑢∈𝐿
2

F
(𝑅
𝑛𝑢 )

𝐽
1
(𝑢, 𝑑
1
) , (38)

is a standard LQ optimal control problem. By uniqueness,
𝑢
1
= 𝐵
𝑇
𝑝
1
/2.
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Let 𝑥 be the trajectory corresponding to (𝑢1, 𝑑) =
(𝑢
1
, −𝐶
𝑇
𝑝
1
/𝛾
2
); then

0 ≥ 𝐽
2
(𝑢
1
, 𝑑) − 𝐽

2
(𝑢
1
, 𝑑
1
)

= E [∫
∞

0

[𝑥
𝑇
𝑄𝑥 − 𝑥

1𝑇
𝑄𝑥
1
+ 𝑧
𝑇
𝑆𝑧 − 𝑧

1𝑇
𝑆𝑧
1

−𝛾
2
𝑑
𝑇
𝑑 + 𝛾
2
𝑑
1𝑇
𝑑
1
] 𝑑𝑡]

+ 𝑥
𝑇

0
𝐻𝑥
0
− 𝑥
1𝑇

0
𝐻𝑥
1

0

= E [∫
∞

0

[(𝑥
1
− 𝑥)
𝑇

𝑄(𝑥
1
− 𝑥)

− 2𝑥
1𝑇
𝑄(𝑥
1
− 𝑥) + (𝑧

1
− 𝑧)
𝑇

𝑆 (𝑧
1
− 𝑧)

−2𝑧
1𝑇
𝑆 (𝑧
1
− 𝑧) + 𝛾

2
𝑑
1𝑇
𝑑
1
− 𝛾
2
𝑑
𝑇
𝑑] 𝑑𝑡]

+ (𝑥
1

0
− 𝑥
0
)
𝑇

𝐻(𝑥
1

0
− 𝑥
0
) − 2𝑥

1𝑇

0
𝐻(𝑥
1

0
− 𝑥
0
) .

(39)

Applying Itô’s formula to 𝑝1𝑇(𝑥1 − 𝑥),

2𝑥
1𝑇

0
𝐻(𝑥
1

0
− 𝑥
0
)

= E∫
∞

0

𝑑 [𝑝
1𝑇
(𝑥
1
− 𝑥)]

= E [∫
∞

0

[2𝑥
1𝑇
𝑄(𝑥
1
− 𝑥)

+(𝐶
𝑇
𝑧
1
)
𝑇

(𝑑
1
− 𝑑) + 2𝑧

1𝑇
𝑆 (𝑧
1
− 𝑧)] 𝑑𝑡]

= E [∫
∞

0

[2𝑥
1𝑇
𝑄(𝑥
1
− 𝑥)

+ 2𝑧
1𝑇
𝑆 (𝑧
1
− 𝑧) − 2𝛾

2
𝑑
𝑇
(𝑑
1
− 𝑑)] 𝑑𝑡] .

(40)

Substituting −2𝑥1𝑇
0
𝐻(𝑥
1

0
− 𝑥
0
) into (39), then

0 ≥ 𝐽
2
(𝛾, 𝑥
0
; 𝑢
1
, 𝑑) − 𝐽

2
(𝛾, 𝑥
0
; 𝑢
1
, 𝑑
1
)

= E [∫
∞

0

[(𝑥
1
− 𝑥)
𝑇

𝑄(𝑥
1
− 𝑥)

+ (𝑧
1
− 𝑧)
𝑇

𝑆 (𝑧
1
− 𝑧)

+𝛾
2
(𝑧 − 𝑧

1
)
𝑇

(𝑧 − 𝑧
1
)] 𝑑𝑡] .

(41)

Because of 𝑄, 𝑆, and𝑀 being nonnegative, we get 𝑑1 = V =
𝐶
𝑇
𝑧
1
/𝛾
2.

Therefore, (𝑢1, 𝑑1) = (𝑢∗, 𝑑∗).

(2) The Necessary Condition. Here we assume that a solution
exists; then from the uniqueness of the solution, we get that

(𝑢
∗
, 𝑑
∗
) is the unique solution and we will show that system

(18) has L
2
-gain less than or equal to 𝛾.

For 𝑥
𝑇
= 0, the FBSDE (25) has a unique solution

(𝑝
∗
, 𝑥
∗
, 𝑧
∗
) = (0, 0, 0); then (𝑢∗, 𝑑∗) = (0, 0) and

𝐽
2
(𝑢
∗
, 𝑑) ≤ 𝐽

2
(𝑢
∗
, 𝑑
∗
) = 0, ∀𝑑 ∈ 𝐿

2

F (R
𝑛
𝑑

) . (42)

Therefore, system (18) has L
2
-gain less than or equal to 𝛾.

5. The Linear Feedback Solution

The main result of this section gives the equivalent linear
feedback solution. For the purpose of this section the coeffi-
cients𝐴

𝑡
, 𝐵
𝑡
, 𝐶
𝑡
,𝐷
𝑡
, 𝐸
𝑡
,𝑄
𝑡
, and 𝑆

𝑡
are assumed deterministic

functions; (18) has L
2
-gain less than or equal to 𝛾.

Let (𝑝, 𝑥, 𝑧) be the solution of (25); we first give the rela-
tions between𝑝, 𝑥, and 𝑧 using the undetermined coefficients
method.Now,we introduce the following generalizedmatrix-
valued Riccati equation (the variables 𝑡 are suppressed):

�̇� − 𝐴𝐾 − 𝐾𝐴
𝑇
+ 2𝐾𝑄𝐾 −

𝐵𝐵
𝑇

2

+
𝐶𝐶
𝑇

2𝛾
2
+ 𝐷(𝐼 − 2𝐾𝑆)

−1
𝐾𝐷
𝑇
= 0, 𝐾 (∞) = 0.

(43)

Similar to the line developed by Lim and Zhou [6], we can
prove that (43) admits a unique solution𝐾(⋅). Letting𝐾(⋅) be
the solution to (43), we define the following equations:

𝑑ℎ = [𝐴ℎ − 2𝐾𝑄ℎ + 𝐷(𝐼 − 2𝐾𝑆)
−1
𝜂] 𝑑𝑡 + 𝜂𝑑𝐵 (𝑡) ,

ℎ (∞) = 𝜉.

(44)

Equation (44) is a linear BSDE and admits a unique solution
(ℎ, 𝜂).

Theorem7. Suppose that (𝑝(⋅), 𝑥(⋅), 𝑧(⋅)),𝐾(⋅), and (ℎ(⋅), 𝜂(⋅))
are the solutions of (25), (43), and (44), respectively; then the
following relations are satisfied:

𝑥 (𝑡) = 𝐾 (𝑡) 𝑝 (𝑡) + ℎ (𝑡) ,

𝑧 (𝑡) = (𝐼 − 2𝐾(𝑡)𝑆(𝑡))
−1
(𝜂 (𝑡) − 𝐾 (𝑡)𝐷(𝑡)

𝑇
𝑝 (𝑡)) ,

𝑥 (0) = (𝐼 − 2𝐾(0)𝐻)
−1
ℎ (0) .

(45)

Proof. Let 𝑥(𝑡) = 𝐾(𝑡)𝑝(𝑡) + ℎ(𝑡). We apply Itô’s formula to
𝑥(𝑡), 𝐾(𝑡)𝑝(𝑡) + ℎ(𝑡), respectively, and it is easy to check that
𝐾(𝑡) and ℎ(𝑡) satisfy (43) and (44), respectively.

FromTheorem 7, we know that 𝑥(⋅) can be written to the
functions of𝐾(⋅), 𝑝(⋅), and ℎ(⋅). Now we would like to derive
the feedback solution using the undetermined coefficients
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method. First, we introduce the generalized matrix-valued
Riccati equation and a linear SDE:

Σ̇ + Σ𝐴 + 𝐴
𝑇
Σ

+ Σ[
𝐵𝐵
𝑇

2
−
𝐶𝐶
𝑇

2𝛾
2
− 𝐷(𝐼 − 2𝐾𝑆)

−1
𝐾𝐷
𝑇
]

× Σ − 2𝑄 = 0,

Σ (0) = 2𝐻,

(46)

𝑑𝑟

= [−𝐴
𝑇
𝑟 −
Σ𝐵𝐵
𝑇
𝑟

2
+
Σ𝐶𝐶
𝑇
𝑟

2𝛾
2
+ Σ𝐷(𝐼 − 2𝐾𝑆)

−1
𝐾𝐷
𝑇
𝑟

−Σ𝐷(𝐼 − 2𝐾𝑆)
−1
𝜂] 𝑑𝑡

+ [(2𝑆 − Σ) (𝐼 − 2𝐾𝑆)
−1
[𝜂 − 𝐾𝐷

𝑇
(𝐼 − Σ𝐾)

−1
(Σℎ + 𝑟)]

−𝐷
𝑇
(𝐼 − Σ𝐾)

−1
(Σℎ + 𝑟)] 𝑑𝐵 (𝑡) ,

𝑟 (0) = 0.

(47)

Similar to the line developed by Lim and Zhou [6], we can
prove that (46) admits a unique solution Σ(⋅). Equation (47)
is a linear SDE and has a unique solution 𝑟(⋅).

Theorem 8. The backward stochastic𝐻
2
/𝐻
∞
control problem

has a feedback solution (𝑢∗, V∗),

𝑢
∗
=
𝐵
𝑇
(Σ𝑥 + 𝑟)

2
, V∗ = −

𝐶
𝑇
(Σ𝑥 + 𝑟)

2𝛾
2

. (48)

Proof. Let 𝑝(𝑡) = Σ(𝑡)𝑥(𝑡) + 𝑟(𝑡). We apply Itô’s formula to
𝑝(𝑡) and Σ(𝑡)𝑥(𝑡) + 𝑟(𝑡), respectively, and it is easy to check
that Σ(𝑡) and 𝑟(𝑡) satisfy (46) and (47).

Remark 9. FromTheorem 8, we see that the solution involves
an additional random nonhomogeneous term 𝑟(⋅).This addi-
tion disqualifies (48) from a feedback control of the current
state, contrary to the deterministic or stochastic forward
𝐻
2
/𝐻
∞

(see [4, 5]) cases. The reason is because 𝑟(⋅) depends
on (ℎ(⋅), 𝜂(⋅)), which in turn depends on 𝜉, the terminal
condition of part of the state variable, 𝑥(⋅). This is one of the
major distinctive features of the backward stochastic𝐻

2
/𝐻
∞

problem.
Finally, it is important to recognize that the expressions

for the backward stochastic 𝐻
2
/𝐻
∞

control, as presented in
Theorems 6 and 8, are equivalent expressions of the same
process; that is, this does not contradict the uniqueness of the
solution.

We present an example to illustrate the above theoretical
results as follows.

Example 10. Consider the backward stochastic𝐻
2
/𝐻
∞

con-
trol problem of the following one-dimensional system:

𝑥 (𝑡)

= 𝜉 − ∫

∞

𝑡

[2𝑒
−𝑠
𝑥 (𝑠) + √4𝑒

−𝑠
+ 2𝑢 (𝑠)

+ √𝑒
−𝑠
+ 1𝑑 (𝑠) + 2𝑒

−𝑠/2
𝑧 (𝑠)] 𝑑𝑠

− ∫

∞

𝑡

𝑧 (𝑠) 𝑑𝑊 (𝑠) ,

(49)

with controlled output energy

‖𝑍‖
2

2
= E∫

∞

0

[
𝑒
−𝑡
𝑥
2

𝑡

2
+ 𝑢
2

𝑡
]𝑑𝑡. (50)

If we take 𝛾 = √2/2, then the Riccati equation (43) specializes
to

𝐾 (𝑡) = ∫

∞

𝑡

[𝑒
−𝑠
(𝐾(𝑠)

2
− 1)] 𝑑𝑠. (51)

Solving it yields 𝐾(𝑡) = (1 − 𝑒2𝑒
−𝑡

)/(1 + 𝑒
2𝑒
−𝑡

). Equation (44)
specializes to

ℎ (𝑡)

= 𝜉 − ∫

∞

𝑡

[{2𝑒
−𝑠
− 𝑒
−𝑠 1 − 𝑒

2𝑒
−𝑠

1 + 𝑒
2𝑒
−𝑠
}ℎ (𝑠) + 2𝑒

−𝑠/2
𝜂 (𝑡)] 𝑑𝑡

− ∫

∞

𝑡

𝜂 (𝑡) 𝑑𝑊 (𝑡) .

(52)

Then, fromTheorem 7, we get a unique solution

(𝑢
∗
, 𝑑
∗
)

= (√
2𝑒
−𝑡
+ 1

2
⋅
1 + 𝑒
2𝑒
−𝑡

1 − 𝑒
2𝑒
−𝑡
⋅ [𝑥 (𝑡) − ℎ (𝑡)] ,

− √𝑒
−𝑡
+ 1 ⋅

1 + 𝑒
2𝑒
−𝑡

1 − 𝑒
2𝑒
−𝑡
⋅ [𝑥 (𝑡) − ℎ (𝑡)]) ,

(53)

of the backward𝐻
2
/𝐻
∞

control problem.
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