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This paper presents a differential evolution with neighborhood based mutation (DE-NM) technique to solve Dynamic Economic
Dispatch (DED) problem with valve point effects and multiple fuel options. A new mutation scheme based on neighborhood
topology is presented with an aim to achieve the cost reduction together satisfying the dynamic behavior of the generating units
over the considered time period. The neighborhood based mutation (NM) balances the exploration and exploitation of the search
effort of differential evolution (DE) technique. The NM method enhances the convergence speed and the performance of the DE
technique. The performance of the DE-NM is tested on a 10-unit and a real public Indian utility system with 19 generating units.
Both the test systems are illustrated under different load patterns.The dispatch results obtained using the proposed method for the
Indian system have considerably reduced the operating cost and optimized its operation.

1. Introduction

Dynamic economic dispatch (DED) is a vital task in the
economic operation ofmodern power system [1, 2].TheDED
is defined as the optimal allocation of the predicted load
profile among the online generators for a specific period of
time. The objective of DED is to minimize the total fuel
cost over the whole scheduling period subjected to practical
and technical constraints. In DED the generation schedule is
greatly affected due to ramp rate limits [3]. This ramp rate
constraint sets a limit on the rate of change of electrical power
output for the safe operation of the generating units.Thus the
DED problem is a practical formulation in real-time power
system problem.

Actual DED formulation mainly depends on the repre-
sentation of the fuel cost curve of the generators. Several
conventional methods [4–6] such as lambda iteration, base
point participation factor, Newton method, gradient method
andDynamic programming (DP) [7] is used to solve theDED
problem by assuming the fuel cost curve of the generators
piecewise linear and non-monotonically increasing. But, in
practical generation the fuel cost curve is non-linear and
non-convex because of valve point effect [8], multiple fuel

option [9] and operational constraints such as prohibited
operating zones [10], spinning reserves [11]. Thus makes the
above conventional methods fail to solve for quality solution.

To overcome the drawback in the conventional methods,
heuristic techniques were introduced. Recently, artificial
intelligence techniques such as Artificial Neural Network
(ANN) [12], genetic algorithm (GA) [8], evolutionary pro-
gramming (EP) [13], simulated annealing (SA) [14], particle
swarm optimization (PSO) [15], differential evolution (DE)
[16], modified differential evolution (MDE) [17], and hybrid
algorithm (HA) [18, 19] are widely used to solve the DED
problem. All the techniques have yielded success to certain
extent, but they suffer from premature convergence, local
trapping of the problem, and setting the control parameter.

Combining deterministic techniques with evolutionary
algorithms (EAs) is a promising alternative to solve highly
nonlinear and nonconvex cost functions. Probabilistic meth-
ods do not always guarantee discovering the global opti-
mum solution in finite time since updating their candidate’s
position in the solution space requires probabilistic rules.
Therefore, fine tuning of the above techniques was applied for
every improvement in the solution. Plenty of literature work
has been done on the fine tuning of above methods. To be
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concise, a few are included in the reference. Hybridization of
EP with SQP (EP-SQP) [20], PSO with SQP (PSO-SQP) [21],
and chaotic differential evolution with SQP (DEC-SQP) [22]
are few examples.

Differential evolution proposed by Storn and Price is one
of the EA widely used in solving power system optimization
problems. DE has got many advantages such that it is simple
and easy to understand, and it can handle integer and discrete
optimization, ease of use, fast convergence and robustness.
In addition, DE is good at exploring the search space and
locating the region of global optimum. Like other EAs,
DE performance decreases as search space dimensionality
increases. Also, DE is sensitive to the choice of the control
parameters and it is difficult to adjust them for different
problems [23]. Such contradictions in adjusting the control
parameters can be overcome by self-adaptive techniques
[24]. Hybridization of DE with other heuristic or local
different algorithms is considered as an alternate direction of
improvement of classical DE.

From the literature [22–25], it can be observed that the
main modifications, improvements, and developments on
DE focus on adjusting control parameters in self-adaptive
manner and or hybridization with other local search tech-
niques. Very few enhancements have been implemented to
modify the standard mutation strategies or to propose new
mutation rules so as to enhance the total search ability of DE
and to overcome the problems of stagnation or premature
convergence [25]. In addition, DE is good at exploring the
search space but slow at exploitation of solution [26]. In this
paper DE algorithm with a neighborhood based mutation
(DE-NM) [27] is developed for solving theDEDproblem.The
new mutation scheme utilizes a concept of neighborhood of
each population member.The neighborhood based mutation
(NM) balances both the exploration and exploitation process
to enhance the search ability of DE.

The significant contribution of this paper is optimum
generation schedule of an Indian utility system for three
different load patterns. The Indian utility system consists
of 19 generating units with the fuel cost function taking
into account the valve-point effect and multiple fuel option.
The DED problem of the Indian utility system is solved
conventionally by priority list method where the gener-
ating units are allowed to run at full load to meet the
demand. Also, real time constraints, such as ramp rate
limits, prohibited operating zones, and so forth, are not
taken into account in the solution. In recent years pilot
attempts are taken to implement various artificial techniques
in the operation and control of Indian power system. One
such attempt is presented in this paper to solve the DED
problem with valve point loading, ramp rate limits, pro-
hibited operating zones, multiple fuel options, and spinning
reserve.

This paper is organized as follows: DED problem is
formulated in Section 2. Sections 3 and 4 give a detailed
description of the DE-NM. Section 5 describes the imple-
mentation of DE-NM to DED problem. Analysis of DE-
NM method with two systems is provided in Section 6 and
Section 7 outlines the conclusion.

2. Problem Formulation

The objective function of DED problem is to minimize the
total production cost of power over a given dispatch period,
while satisfying various constraints. The objective function is
formulated as
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Generally, the generator cost function is usually expressed
as a quadratic polynomial as
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For accurate nonconvexmodels of the objective function,
theDEDproblemwith valve point effects has to be considered
by superimposing a rectified sinusoid component in the
traditional quadratic fuel cost function as formulated in
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Similarly practical generating units are supplied with
multiple fuel sources and the cost functions of these units
are represented with few or several piecewise quadratic
functions. Such a cost function is called as a hybrid cost
function and each segment of the hybrid cost function gives
some information about the fuel burnt. The hybrid cost
function is formulated as
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For more accurate dispatch results, the valve point effect
and the multiple fuel options are integrated into the basic
quadratic cost function. Thus the basic quadratic cost func-
tion given in (2) with𝑁 generating units and𝑁

𝐹
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for each unit is formulated as
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(5)

The objective function as given in (1) is subjected to the
following equality and inequality constraints.

The power output from all the generating units must
satisfy the total demand and the transmission losses of the
system. The equality constraint is formulated as

𝑁
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The transmission loss is expressed in a quadratic form as
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The real power output of each generating unit is limited
by the maximum andminimum power limit of the units. It is
formulated as

𝑃

min
𝑖

≤ 𝑃
𝑖ℎ
≤ 𝑃

max
𝑖
. (8)

The operating range of the generating units is restricted
by their ramp rate limits. This is formulated as
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Physical limitations of power plant components restrict
the operation of generating units in certain operating regions
known as prohibited zones. The power generated by each
unit should lie either above or below the prohibited zones.
Thus the feasible operating zones for the generating units are
formulated as
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The spinning reserve constraint considering the prohib-
ited operating zones is formulated as
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From (12) it is shown that a unit with prohibited operating
zones does not contribute to the spinning reserve of the
system. This is because the prohibited zones severely restrict
the generating unit’s flexibility to regulate system load.

3. Neighborhood Based Mutation (NM)

The optimization process in DE involves three basic opera-
tions such as mutation, crossover, and selection. Mutation in
DE is a special kind of differential operator which is used to
generate mutant or donor vectors. Actually it is the process of
mutation, which demarcates one DE scheme from another.
The rate of convergence of DE as well as its accuracy can be

improved largely by applying different mutation strategies.
Storn and Price proposed many DE variants applicable to
different problems [28]. In this paper a new DE variant,
based on neighborhood topology of the parameter vectors,
is presented to improve the convergence characteristics of
DE [29].This concept of neighborhood topology is borrowed
from the PSO algorithm.

3.1. Neighborhood Model. A graph of interconnection of
vectors is called as neighborhood structure. The vectors in
the neighborhood structure are assumed to be arranged
in a circular fashion. Consider a DE population 𝑃 =

[
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. 𝐾 is
a nonzero integer from 0 to (NP − 1)/2. A proper balance
between exploration and exploitation is necessary for efficient
and effective operation of DE. Two kinds of neighborhood
mutation models are presented to control the exploration
and the exploitation process. One is local mutation model
which has a greater tendency to locate the optimal solution
of the objective function but needs more iteration. Second
is global mutation model which rapidly converges to the
optimal solution of the objective function but suffers from
premature convergence problem.

3.1.1. Local Neighborhood Mutation Model. For each vector
⃗
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employing the best vector in the neighborhood of that
member. In thismutationmodel each vector is mutated using
the best position found so far in the neighborhood of it and
not in the entire population. The local donor vector ⃗
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[𝑖 − 𝑘, 𝑖 + 𝑘] with 𝑝 ̸= 𝑞 ̸= 𝑖.

3.1.2. Global Neighborhood Mutation Model. Similarly, the
global donor vector is created by using the best vector of the
entire population. The global donor vector ⃗𝑔
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where the subscript 𝑔 best indicates the best vector in the
entire population at generation 𝐺 and ⃗
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The localmutationmodel favours exploration since all the
vectors of the population are biased by different individuals.
Global mutation model favours exploitation since all the
vectors of the population are biased by the same individual.
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The two mutation operators are then combined using a new
parameter called weight factor 𝑤 ∈ (0, 1) to form the actual
mutation model of the presented DE algorithm.

⃗
𝑉
𝑖,𝐺
= 𝑤 ⋅ ⃗𝑔

𝑖,𝐺
+ (1 − 𝑤) ⋅
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. (15)

4. DE with Neighborhood Based Mutation

DEbegins with a population ofNP𝐷-dimensional parameter
vectors representing the candidate solutions.The 𝑖th vector of
the population at the current generation is given as

⃗
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The vector ⃗
𝑋
𝑖,𝐺

is known as target or parent vector.
𝐺 represents the subsequent generation and it is given by
𝐺 = 1, 2, . . . , 𝐺max. The initial population (i.e., 𝐺 = 0)
is randomly created by covering the entire search space as
much as possible within prescribedminimum andmaximum
bounds.The 𝑗th component of the 𝑖th target vector is created
as

𝑥
𝑗,𝑖,0
= 𝑥
𝑗,min + rand (0, 1) ⋅ (𝑥𝑗,max − 𝑥𝑗,min) , (17)

where rand(0, 1) is a uniformly distributed random number
lying between 0 and 1 and is obtained independently for
each component of the 𝑖th vector. Each target vector of the
population is subjected to mutation, crossover, and selection
which are explained in the following subsections.

4.1. Mutation. After initialization, DE creates a donor vector
⃗
𝑉
𝑖,𝐺

corresponding to each target vector ⃗
𝑋
𝑖,𝐺

in the current
generation through mutation. In this method the actual
donor vector is created with the help of global and neighbor-
hood mutation models.

For each member a global and local donor vector is
created using (13) and (14). After creating the global and local
donor vector they are combined using a weight factor𝑤 using
(15).

4.2. Crossover. In crossover operation few components of
the donor vector are exchanged with target vector to form
a trial vector ⃗
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crossover schemes—exponential and binomial crossovers—
can be used in DE. In this paper, binomial crossover is
performed on each of the 𝐷 variables whenever a randomly
picked number between 0 and 1 is less than or equal to the Cr
value. The number of parameters inherited from the donor
has a binomial distribution. The scheme is outlined as

𝑢
𝑗,𝑖,𝐺

= {

V
𝑗,𝑖,𝐺
, if (rand

𝑖,𝑗 (
0, 1) ≤ Cr)

𝑥
𝑗,𝑖,𝐺
, otherwise,

(18)

where rand
𝑖,𝑗
(0, 1) ∈ [0, 1] is a uniformly distributed random

number for each 𝑗th component of the 𝑖th parameter vector.

4.3. Selection. To keep the population size constant over
subsequent generations, the next step of the algorithm calls

for selection to determine whether the target or the trial
vector survives to the next generation, that is, at 𝐺 = 𝐺 + 1.

The selection operation is given as
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where 𝑓( ⃗𝑋
𝑖
) is the function to be minimized. So if the new

trial vector yields an equal or lower value of the objective
function than that of target vector, then it replaces the
corresponding target vector in the next generation. Other-
wise the target vector is retained in the next generation.
Hence the population either gets better (with respect to the
minimization of the objective function) or remains the same
in fitness status but never deteriorates.

The three operations are repeated until a stopping crite-
rion is met which is usually the maximum generation, that is,
𝐺max.

5. Implementation of DE-NM for
DED Problem

Step 1 (initialization of the population). For a population of
size NP and dimension 𝐷, an initial vector (target vector)
𝑋
𝑖𝑗,𝐺

is randomly generated. 𝐷 represents the number of
decision variables to be optimized. In DED problem 𝐷

represents the number of generating units (i.e., 𝑁) to be
considered. The vector 𝑋

𝑖𝑗
is the real power output (i.e., 𝑃

𝑖𝑗
)

of 𝑗th unit of the 𝑖th population randomly generated within
the operating limits using (8). The population is represented
in a matrix form as
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...
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]

]

]

]

]

]

. (20)

Each component of the 𝑖th individual in the population
is randomly generated such that the component is uniformly
distributed within the minimum andmaximum power limits
of the generating units. The generation of the 𝑗th component
of the 𝑖th individual is given by (17).

Step 2 (handling the generation limit constraints). In Step 1
the power output from each generator is limited to be within
minimum and maximum power limits. For the generator
with ramp rate limits, the minimum and the maximum
power limits are adjusted by using (10). Also, during the
recombination andmutation operation, the power output of a
generator can go above or below themaximumandminimum
limits.Therefore, to restrict the 𝑃

𝑖
to be within the generating

limit, a strategy is defined as follow:

𝑃
𝑖𝑗
=

{
{

{
{
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𝑖
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𝑖
,

𝑃
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𝑖
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𝑖𝑗
> 𝑃
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𝑖
,

𝑃
𝑖𝑗

otherwise.
(21)
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Step 3 (mutation operation). Consider the following.

Step 3.1. A neighborhood structure of radius 𝐾 is created for
each𝑋

𝑖𝑗
vector.

Step 3.2 (local neighborhood model). In this model a donor
vector is created using the best position found so far in a small
neighborhood of it and not in entire population.Themutated
vector ⃗

𝐿
𝑖,𝐺

is known as local donor vector and it is obtained
using (13).

Step 3.3 (global neighborhood model). In this model a
globally best vector 𝑋best,𝐺 of the entire population is used
for mutating a population member. The global donor vector
⃗𝑔
𝑖𝐺
is obtained using (14).
Both the local and global donor vectors are combined

using (15) to obtain the actual donor vector 𝑉
𝑖,𝐺

of the
presented technique.

Step 4 (recombination (crossover)). Recombination is
employed to generate a trial vector 𝑈

𝑖
by replacing certain

components of 𝑋
𝑖
with corresponding components of donor

vector 𝑉
𝑖
. The trial vector by crossover operation is obtained

using (18).

Step 5 (evaluation of fitness function). The evaluation func-
tion is computed from (1) and the generator cost function
𝐹
𝑖
(𝑃
𝑖
) used is the cost function considering the valve point

effect and multiple fuel option as given in (5). The power
balance and the prohibited operating zone constraints are
included in the evaluation function by adding a penalty
term to the objective function. The power balance constraint
is considered without including the transmission losses for
simplicity.

Consider

𝑓 (𝑃
𝑖ℎ
) =

𝑁

∑

𝑖=1

𝐹
𝑖ℎ
(𝑃
𝑖ℎ
)

+ 𝜆 ⋅ [

𝑁

∑

𝑖=1

𝑃
𝑖ℎ
− 𝑃
𝐷ℎ
]

2

+ 𝛾 ⋅ [

𝑛

∑

𝑖=1

V𝑅
𝑖
] ,

(22)

where 𝜆 is the penalty parameter for not satisfying the load
demand and 𝛾 represents the penalty for a unit loading falling
within a prohibited operating zone. V𝑅

𝑖
is the violation of the

prohibited zone constraint for the 𝑖th unit which is defined as

V𝑅
𝑖
= {

1, if 𝑃
𝑖
violates the prohibited zones,

0.

(23)

Step 6 (selection). Members to constitute the population of
next generation (𝐺 + 1) are decided by (14). The new vector
𝑋
𝑖,(𝐺+1)

is selected based on the comparison of fitness value
of both𝑋

𝑖
and 𝑈

𝑖
.

Step 7 (verification of stopping criterion). Set the generation
count 𝐺 = 𝐺 + 1. Go to Step 3 until stopping criterion is met
which is usually maximum generation count 𝐺max.

No

Yes

Start

Setup the initial parameters

Initialization of population

Mutation

Local neighborhood model

Selection

Stop

Global neighborhood model

Recombination

Evaluation

Figure 1: Flowchart for DE-NM approach for DED.

5.1. Flowchart for DE-NM Approach for DED. See Figure 1.

6. Test Results and Analysis

6.1. Description of the Test Systems. In this section two case
systems are studied using DE-NM method. The fuel cost
functions of the two systems are nonconvex considering valve
point effect and multiple fuel option in its fuel cost.

Three different load patterns are applied for both these
systems to demonstrate the robustness of the proposed
solution technique as well as to show the effectiveness
in scheduling for different load patterns (situations). The
simulation horizon for all the three load patterns is taken as
24 hr with a dispatch interval of 1 hr. The coding is written
using the MATLAB 7 programming language and executed
in a personal computer machine.

6.2. Parameter Selection. DE-NM consists of four new
parameters in addition to 𝐹 and CR as in classical DE. They
are 𝛼, 𝛽,𝑤, and𝐾.The role of 𝛼 and 𝛽 same as that of 𝐹.Thus,
the number of parameters reduced by considering 𝛼 = 𝛽 = 𝐹.
Themost important parameter inDE-NM is theweight factor
𝑤, which controls the balance between the exploration and
exploitation capabilities. To obtain the balance, value of 𝑤
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Table 1: Best power generation schedule obtained by DE-NM for case study 1.

Hour Unit
1 (MW) 2 (MW) 3 (MW) 4 (MW) 5 (MW) 6 (MW) 7 (MW) 8 (MW) 9 (MW) 10 (MW)

1 168.862 177.000 250.000 250.000 240.000 166.000 250.000 180.570 243.000 250.000
2 163.886 177.000 250.000 250.000 234.691 163.000 250.000 173.854 253.000 250.000
3 165.705 177.000 250.000 250.000 235.047 160.543 250.000 178.591 253.000 250.000
4 165.826 177.000 250.000 250.000 240.000 163.000 250.000 181.576 249.509 250.000
5 172.019 177.000 250.000 250.000 457.000 150.375 250.000 183.538 252.999 247.372
6 192.564 177.000 269.658 265.000 451.287 196.324 250.000 249.687 302.656 254.658
7 181.538 177.000 253.465 253.465 446.999 180.580 250.000 246.700 218.376 250.000
8 172.014 177.000 250.000 250.000 457.000 163.000 250.000 176.040 249.509 250.000
9 171.935 177.000 250.000 250.000 240.000 153.000 250.000 183.521 253.000 250.000
10 170.438 177.000 250.000 250.000 240.000 163.000 250.000 176.607 253.000 246.927
11 179.939 177.000 253.528 253.528 457.000 174.322 250.000 191.455 273.573 250.000
12 165.807 177.000 250.000 250.000 234.616 163.000 250.000 180.585 251.231 247.169
13 178.362 177.000 251.413 251.413 457.000 161.753 250.000 190.465 270.278 250.000
14 205.211 177.000 250.000 250.000 457.000 163.000 282.078 254.494 345.626 264.559
15 205.220 177.000 310.646 265.000 457.000 224.225 277.774 254.494 406.509 273.310
16 194.144 177.000 274.350 265.000 457.000 199.127 262.903 250.463 304.055 246.630
17 178.354 177.000 261.510 261.510 457.000 162.985 250.000 247.775 266.450 246.924
18 167.277 177.000 250.000 250.000 233.617 163.000 250.000 179.579 253.000 246.382
19 163.876 177.000 250.000 250.000 451.287 163.000 250.000 177.557 248.712 250.000
20 171.953 177.000 250.000 250.000 235.047 160.543 250.000 184.512 253.000 250.000
21 168.889 177.000 250.000 250.000 234.691 163.000 250.000 181.563 253.000 250.000
22 178.361 177.000 252.512 252.512 240.000 171.466 250.000 192.440 263.232 246.630
23 165.864 177.000 250.000 250.000 240.000 156.074 250.000 183.479 253.000 246.925
24 176.904 177.000 250.000 250.000 457.000 158.553 250.000 181.986 251.996 250.000

is usually selected from the range [0, 1]. It is adapted online
during the execution of the algorithm by a linear increment
scheme; that is, it is initialized with 0 and increased up to 1.
Since𝑤 starts with 0, it favors the exploration process during
the initial stage and on getting promoted to 1 it favors the
exploitation process.The linear increment scheme is given by

𝑤
𝐺
=

𝐺

𝐺max
. (24)

In this paper, the neighborhood size equal to 10% of the
total population size of 100 is considered. The value for both
𝛼 and 𝛽 is taken as 0.8 and crossover rate Cr = 0.9. The DE-
NM is applied to both the case studies for 30 independent
trials (1000 iterations per trial) with the selected parameters.

6.3. Case Study 1. In this test case, a 10-unit system is
optimized to meet three different load patterns. The level of
fluctuation of the three different load patterns is given in
Figure 2. The peak demand for load pattern 1, pattern 2, and
pattern 3 is 3208MW, 2460MW, and 3210MW, respectively.
The system data and the related constraints for this case study
are given in [30]. The complete generation schedule for load
pattern 2 corresponding to the minimum generation cost
obtained by DE-NM is presented in Table 1. Table 2 gives
the fuel type chosen by the units for the corresponding best
generation schedule obtained. The fuel chosen by the units
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Figure 2: Load demand patterns for case study 1.

for all three load patterns is given in Table 2.The table format
represents the fuel type chosen by an unit for pattern 1 and it
is followed by fuel type for the same unit for patterns 2 and 3,
respectively.

The best cost obtained by the DE-NM method con-
sidering spinning reserve for pattern 1 is $10649.68, for
pattern 2 is $8103.326, and for pattern 3 is $11054.83. The
worst cost obtained by the DE-NM method for pattern 1 is
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Table 2: Fuel switching of generators for case study 1.

Hour Unit
1 2 3 4 5 6 7 8 9 10

1 2, 1, 1 1, 1, 1 1, 1, 1 3, 3, 2 3, 3, 1 3, 1, 1 2, 1, 1 3, 2, 2 3, 1, 1 1, 1, 1

2 2, 1, 1 1, 1, 1 1, 1, 1 3, 3, 2 3, 3, 1 3, 1, 1 1, 1, 1 3, 3, 2 3, 1, 1 1, 1, 1

3 1, 1, 1 1, 1, 1 1, 1, 1 2, 3, 2 1, 3, 1 1, 1, 1 1, 1, 1 2, 2, 2 1, 1, 1 1, 1, 1

4 1, 1, 1 1, 1, 1 1, 1, 1 2, 2, 2 1, 3, 1 1, 1, 1 1, 1, 1 2, 2, 2 1, 1, 1 1, 1, 1

5 1, 1, 1 1, 1, 1 1, 1, 1 3, 2, 2 1, 3, 3 1, 1, 1 1, 1, 1 3, 3, 2 1, 1, 1 1, 1, 1

6 1, 1, 2 1, 1, 1 1, 1, 1 3, 3, 3 1, 3, 3 1, 3, 1 1, 1, 1 2, 3, 3 1, 3, 1 1, 1, 1

7 1, 1, 2 1, 1, 1 1, 3, 1 3, 3, 3 3, 3, 3 1, 3, 1 1, 3, 1 2, 3, 3 1, 3, 1 1, 1, 1

8 1, 1, 2 1, 1, 1 1, 2, 1 2, 3, 2 3, 3, 3 1, 3, 1 1, 3, 1 2, 3, 2 1, 3, 1 1, 2, 1

9 2, 1, 2 1, 1, 1 1, 2, 1 3, 3, 2 1, 3, 1 3, 3, 1 1, 3, 1 3, 3, 2 3, 3, 1 1, 2, 1

10 2, 1, 2 1, 1, 1 1, 2, 1 3, 3, 2 3, 3, 1 3, 3, 1 1, 3, 1 3, 3, 2 1, 3, 1 1, 3, 1

11 2, 1, 2 1, 1, 1 1, 1, 1 3, 3, 1 3, 3, 3 3, 3, 1 1, 3, 1 3, 3, 2 1, 3, 1 1, 1, 1

12 2, 1, 2 1, 1, 1 1, 1, 1 3, 3, 2 3, 3, 1 3, 3, 1 1, 1, 1 3, 3, 2 1, 3, 1 1, 1, 1

13 2, 1, 2 1, 1, 1 1, 1, 1 3, 3, 3 3, 3, 3 3, 3, 1 1, 1, 1 3, 3, 2 3, 3, 1 1, 1, 1

14 2, 2, 1 1, 1, 1 1, 1, 1 3, 2, 3 3, 3, 3 3, 1, 1 1, 1, 1 3, 2, 3 3, 1, 1 1, 1, 1

15 2, 2, 1 1, 1, 1 1, 1, 1 3, 3, 3 3, 1, 3 3, 3, 3 1, 1, 1 3, 2, 3 3, 1, 1 1, 1, 1

16 2, 1, 1 1, 1, 1 2, 1, 1 3, 2, 3 3, 3, 3 3, 1, 1 2, 1, 1 3, 3, 3 3, 1, 1 1, 1, 1

17 2, 1, 1 1, 1, 1 2, 1, 1 3, 3, 2 3, 3, 3 3, 3, 1 3, 1, 1 3, 3, 3 3, 1, 1 1, 1, 1

18 2, 1, 2 1, 1, 1 2, 1, 1 3, 3, 2 3, 3, 1 3, 3, 1 3, 1, 1 3, 3, 2 3, 1, 1 2, 1, 1

19 2, 1, 2 11, 1 1, 3, 1 2, 3, 2 3, 3, 3 3, 3, 1 2, 3, 1 3, 3, 2 3, 3, 1 1, 1, 1

20 2, 1, 2 1, 1, 1 1, 1, 1 2, 3, 2 3, 3, 1 3, 3, 1 1, 1, 1 3, 3, 2 3, 3, 1 1, 1, 1

21 2, 1, 2 1, 1, 1 1, 1, 1 2, 3, 2 3, 3, 1 3, 3, 1 1, 1, 1 3, 3, 2 3, 3, 1 1, 1, 1

22 1, 1, 2 1, 1, 1 1, 1, 1 2, 3, 3 3, 3, 1 1, 3, 1 1, 1, 1 3, 3, 2 1, 3, 1 1, 1, 1

23 1, 1, 1 1, 1, 1 1, 1, 1 2, 3, 2 1, 3, 1 1, 3, 1 1, 1, 1 3, 3, 2 1, 1, 1 1, 1, 1

24 1, 1, 1 1, 1, 1 1, 1, 1 2, 3, 2 1, 3, 3 1, 1, 1 1, 1, 1 2, 3, 2 1, 1, 1 1, 1, 1

$11952.07, pattern 2 is $9163.973, and pattern 3 is $12036.89.
The average cost of pattern 1, pattern 2, and pattern 3
for all the 30 trials is $11451.82, $9711.448, and $11497.85.
Figures 3(a), 3(b), and 3(c) shows the distribution of the cost
obtained for load patterns 1, 2, and 3, respectively. A straight
line passing through each distribution area denotes the
average cost. The percentage of producing quality solutions
by DE-NM is above 60% as seen from Figure 4.

6.4. A Short Overview of the Indian Utility System. Indian
power system is a geographically dispersed network of gen-
erators. For ease of operation, the entire Indian power system
has been divided into five regions, namely, Northern Region
(NR), Western Region (WR), Southern Region (SR), Eastern
Region (ER), and North Eastern Region (NER). While NR,
WR, ER, and NER are interconnected as a single grid, the
SR had not been interconnected with the national grid. This
prevents the SR from receiving benefits from national power
market. The SR covering 6, 51,000 Sq. Km of area comprises
the states of Andhra Pradesh, Karnataka, Kerala, Pondicherry
and Tamil Nadu. The Indian utility system considered in this
paper belongs to the state of Tamil Nadu. The Electricity
Board of Tamil Nadu state was recently restructured and
the board is in the move of handing over transmission and
distribution to the private operators.

The South Indian network comprises of 19 thermal
units, located at various parts of the state of Tamil Nadu.
Since the system under consideration belongs to the state
department, the technical data of the system cannot be
published is available with the corresponding author, and will
be provided on request. Also the data of system network is
approximated neglecting several local feeder data this work
neglects estimation of transmission losses for simplicity. Even
then, as per the board’s advice, this work assumes a uniform
20% loss in the transmission and hence it is added to the 24-
hour load demand data for scheduling.

6.5. Case Study 2. This system involves a standard Indian
utility system with 19 units. All the 19 units include nonlinear
characteristics such as valve point effect, ramp rate limit,
multiple fuels, prohibited operating zones and spinning
reserve constraint. This system is applied for three different
load patterns as shown in Figure 5.The demand for each hour
includes approximately 20% of transmission losses. A gener-
ation schedule is obtained using the DE-NM method where
each unit contributes to the demand and the transmission
loss. The maximum demand for pattern 1 is 4400MW, for
pattern 2 is 4186MW, and for pattern 3 is 4173MW. Table 3
gives the best generation schedule obtained by the DE-NM
method for pattern 2. Few units in the system are provided
with multiple fuel option. The fuel types include 1, 2, 3, 4, 5
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Figure 3: (a) Cost distribution obtained by DE-NM for case study 1 with pattern 1. (b) Cost distribution obtained by DE-NM for case study
1 with pattern 2. (c) Cost distribution obtained by DE-NM for case study 1 with pattern 3.
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Figure 4: Frequency of convergence for case study 1.

and 6. Table 4 shows the fuel switching for units 3, 5, 7, 13,
and 19 and all the remaining units utilize fuel 1 for every hour
of time interval.

The best cost obtained by the DE-NMmethod for pattern
1, 2, and 3 is $404122.623, $324962.343, and $372140.528,
respectively. The worst cost for pattern 1 is $40565.659,
pattern 2 is $341440.818, and pattern 3 is $374405.694. Figures
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Figure 5: Load demand patterns for case study 2.

6(a), 6(b), and 6(c) shows the cost distribution for the
system with pattern 1, pattern 2, and pattern 3, respectively.
The straight line running through the cost distribution area
represents the average cost. The average cost for pattern1
is 405515.7524, pattern 2 is $334321.1071, and pattern 3 is
$33109.9977. The percentage of producing quality solutions
by DE-NM for the system is above 70% as seen from
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Table 3: Best power generation schedule obtained by DE-NM for case study 2.

Hour Power output (MW)
1 2 3 4 5 6 7 8 9 10

1 126.623 176.332 126.942 25.000 113.750 340.000 166.554 150.000 242.127 15.000
2 124.189 165.000 144.530 08.000 146.176 340.000 177.498 138.874 254.528 15.000
3 127.640 161.742 140.000 25.000 177.500 334.685 177.500 152.687 283.000 15.000
4 132.015 287.062 368.136 25.000 175.995 340.000 177.499 165.069 260.000 40.000
5 148.315 421.843 400.000 25.000 177.500 340.000 174.898 193.407 280.290 40.000
6 227.936 438.000 440.000 25.000 177.500 340.000 176.290 321.681 302.381 40.000
7 292.692 438.000 400.000 25.000 177.499 363.000 177.499 452.292 516.598 40.000
8 300.000 438.000 400.000 25.000 177.500 371.145 177.499 500.000 532.465 40.000
9 120.045 204.725 374.718 25.000 177.500 338.122 177.499 144.607 283.000 40.000
10 129.676 196.189 202.088 25.000 177.500 340.000 177.500 153.581 257.593 40.000
11 125.834 137.702 136.903 25.000 177.499 340.000 177.499 152.633 254.420 15.000
12 126.297 149.825 140.000 25.000 177.497 335.679 177.484 294.088 238.824 15.000
13 131.871 176.309 129.436 25.000 177.499 340.000 177.499 137.506 234.751 15.000
14 119.616 177.057 103.519 25.000 177.499 340.000 177.499 142.830 260.000 15.000
15 124.985 165.000 290.000 25.000 177.499 340.000 177.499 152.687 249.272 40.000
16 114.362 309.274 337.442 25.000 177.499 340.000 177.499 152.334 239.253 40.000
17 126.154 324.1193 377.603 25.000 177.499 340.000 177.499 158.274 254.610 40.000
18 126.332 308.015 275.423 25.000 166.567 340.000 177.499 152.908 258.483 40.000
19 125.370 187.353 288.980 25.000 177.499 340.000 177.499 123.743 260.000 15.000
20 129.077 185.934 140.000 22.658 177.499 338.663 177.499 129.939 260.000 15.000
21 103.540 154.576 301.215 25.000 167.760 332.659 177.500 149.915 267.546 15.000
22 128.134 151.202 140.000 08.000 177.499 340.000 157.499 151.103 250.829 15.000
23 118.221 165.000 140.000 08.000 177.499 331.385 168.524 147.996 291.043 15.000
24 131.233 165.000 140.000 25.000 176.952 340.000 177.493 142.536 250.797 15.000

Hour Unit (MW)
11 12 13 14 15 16 17 18 19

1 050.036 75.000 177.499 56.908 032.620 80.000 80.000 079.895 460.000
2 050.000 40.000 130.805 95.000 043.997 15.000 80.000 073.000 420.219
3 150.000 75.000 177.500 95.000 049.824 80.000 80.000 230.000 443.210
4 150.000 75.000 177.499 95.000 141.701 80.000 80.000 230.000 473.308
5 150.000 75.000 177.500 95.000 220.000 80.000 80.000 230.000 466.529
6 150.000 75.000 177.500 95.000 220.000 80.000 80.000 230.000 483.000
7 150.000 75.000 177.499 95.000 220.000 80.000 80.000 230.000 491.740
8 150.000 75.000 177.499 95.000 220.000 80.000 80.000 230.000 487.647
9 050.000 75.000 177.499 95.000 187.521 80.000 80.000 230.000 430.000
10 150.000 75.000 171.776 95.000 121.250 80.000 80.000 230.000 460.000
11 150.000 75.000 177.499 81.780 040.653 80.000 80.000 230.000 469.862
12 079.616 75.000 177.488 87.838 036.233 80.000 80.000 111.209 460.000
13 050.000 25.000 177.499 65.000 041.758 80.000 80.000 092.411 460.000
14 108.595 75.000 177.499 65.000 044.047 80.000 80.000 087.993 460.000
15 150.000 75.000 177.499 95.000 028.027 80.000 80.000 184.753 433.063
16 150.000 75.000 177.499 95.000 182.323 80.000 80.000 230.000 480.285
17 150.000 75.000 177.499 95.000 198.027 80.000 80.000 230.000 483.000
18 150.000 75.000 177.499 95.000 094.367 80.000 80.000 230.000 466.193
19 150.000 75.000 177.499 95.000 091.068 80.000 80.000 230.000 464.949
20 150.000 75.000 177.499 31.432 035.402 80.000 80.000 230.000 438.682
21 060.000 75.000 113.750 65.000 044.040 80.000 80.000 073.000 460.000
22 150.000 75.000 112.426 35.000 044.592 80.000 80.000 073.000 380.409
23 50.000 75.000 113.750 94.352 033.301 15.000 44.215 073.000 460.000
24 50.000 75.000 177.499 95.000 044.034 45.000 16.283 050.000 454.875
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Figure 6: (a) Cost distribution obtained by DE-NM for case study 2 with pattern 1. (b) Cost distribution obtained by DE-NM for case study
2 with pattern 2. (c) Cost distribution obtained by DE-NM for case study 2 with pattern 3.
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Figure 7: Frequency of convergence for case study 2.

Figure 7. Table 5 clearly shows the computational time of the
three patterns for both the test systems. Table 6 presents the
relationship between 𝑘, computation time, and result quality
for a 10-unit system.

7. Conclusion

A maiden attempt has been taken to apply Differential
Evolution with Neighborhood based Mutation (DE-NM)

method to solve Dynamic Economic Dispatch (DED) prob-
lem including ramp rate effects, prohibited operating zones,
spinning reserve, and multiple fuel options under a single
frame. To show the effectiveness of the DE-NM method, an
Indian utility system and a 10-unit system are presented to
solve the DED problem for a given load profile. The results
show that DE-NM is efficient in handling the constraints
and it is applicable to larger systems. Due to enormous
transmission lines in the Indian utility system, a propermodel
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Table 4: Fuel switching of generators for case study 2.

Hour Unit (MW)
3 5 7 13 19

1 1, 1, 2 2, 4, 2 2, 6, 2 2, 2, 2 1, 1, 2

2 2, 1, 2 2, 4, 2 2, 2, 2 2, 1, 2 1, 1, 1

3 1, 1, 2 2, 2, 2 2, 2, 2 2, 2, 2 1, 1, 1

4 1, 2, 2 2, 2, 2 2, 2, 2 6, 2, 2 1, 1, 1

5 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 1, 1, 1

6 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 1, 1, 1

7 2, 2, 2 2, 2, 2 6, 2, 2 2, 2, 6 1, 1, 1

8 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 1, 1

9 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 1, 1, 1

10 2, 1, 2 2, 2, 2 2, 2, 2 2, 2, 2 1, 1, 1

11 2, 1, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 1, 1

12 2, 1, 2 2, 2, 2 2, 2, 6 2, 2, 2 2, 1, 1

13 2, 1, 1 2, 2, 2 2, 2, 2 2, 2, 2 1, 1, 1

14 2, 1, 1 2, 2, 2 2, 2, 2 2, 2, 2 2, 1, 1

15 2, 2, 1 2, 2, 2 2, 2, 2 2, 2, 2 1, 1, 1

16 2, 2, 1 2, 2, 2 2, 2, 2 2, 2, 2 2, 1, 1

17 2, 2, 1 2, 2, 2 2, 2, 2 2, 2, 1 2, 1, 1

18 2, 2, 2 2, 6, 2 2, 2, 6 2, 2, 2 1, 1, 1

19 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 1, 1, 1

20 2, 1, 2 2, 2, 2 2, 2, 2 2, 2, 2 1, 1, 1

21 2, 2, 2 2, 2, 2 2, 2, 2 2, 1, 2 1, 1, 1

22 2, 1, 2 2, 2, 2 2, 6, 6 6, 1, 2 1, 1, 1

23 1, 1, 2 2, 2, 2 2, 6, 2 2, 1, 2 1, 1, 1

24 1, 1, 2 2, 2, 2 2, 2, 2 2, 2, 2 1, 1, 1

Table 5: Computation time for both systems for 1000 iterations with
a population size of 100.

10-unit system 19-unit system
Load pattern Sec Load pattern Sec
1 13.581 1 32.939
2 12.121 2 33.782
3 11.465 3 34.566

Table 6: Relationship between 𝑘, computation time, and result
quality for a 10-unit system.

𝑘 Time in Sec Cost range

Pattern 1
10% 13.581 11640–11500
20% 96.32 11583–11472
30% 1134.15 11953–11678

Pattern 2
10% 12.121 8600–8000
20% 89.56 8578–7926
30% 985.23 8927–8712

Pattern 3
10% 11.465 11600–11000
20% 73.42 11578–11215
30% 921.73 11827–11749

for including the losses is still under the search. The search
ability of the DE-NM is improved by striking proper balance
between exploration and exploitation process.The simulation
results show that the DE-NMmethod is capable of producing

solutions which are near optimal and has stable converging
characteristics.

Nomenclature

𝐹
𝑇
: Total fuel cost of the system ($)

𝐹
𝑖ℎ
(𝑃
𝑖ℎ
): Incremental fuel cost function ($/h)

𝑃
𝑖ℎ
: Real power output of the 𝑖th unit at the ℎth

interval (MW)
𝑁: Number of generating units
𝐻: Number of intervals in the given

time period
𝑎
𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
: Cost coefficients of the 𝑖th generating unit

𝑒
𝑖
and 𝑓

𝑖
: Constants from the valve point of the 𝑖th

generating unit
𝑃

min
𝑖ℎ
/𝑃

max
𝑖ℎ

: Minimum/maximum limit of the real power
of the 𝑖th unit at ℎth interval (MW)

𝑁
𝐹
: Number of fuel options for each generating

unit
𝑃
𝐷ℎ
: Power demand at the ℎth interval (MW)

𝑃loss,ℎ: Power loss at the ℎth interval (MW)
𝐵
𝑚𝑛
: Transmission loss coefficients

UR
𝑖
/DR
𝑖
: Up/down ramp rate limits of the 𝑖th unit

(MW)
𝑃
𝑖(ℎ−1)

: Power generated by the 𝑖th unit at the
(ℎ − 1)th interval (MW)

𝑛: Number of generators with prohibited
operating zones

𝑃

𝑢

𝑖,𝑛
/𝑃

𝑙

𝑖,𝑛
: Upper/lower limit of the 𝑛th prohibited zone

for 𝑖th generating unit
𝑆
𝑖ℎ
: Spinning reserve contribution of the 𝑖th

generating unit at the ℎth interval (MW)
𝑆
𝑅
: System spinning reserve requirement (MW)

𝑆

max
𝑖

: Maximum spinning reserve contribution of
the 𝑖th generating unit (MW)

NP: Total number of population
𝛼 and 𝛽: Scaling factors
𝑤: Scalar weight
𝐺max: Maximum generation count
Cr: Crossover rate.
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