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The multiconsensus problem of double-integrator dynamic multiagent systems has been investigated. Firstly, the dynamic
multiconsensus, the static multiconsensus, and the periodic multiconsensus are considered as three cases of multiconsensus,
respectively, in which the final multiconsensus convergence states are established by using matrix analysis. Secondly, as for the
multiagent system with input delays, the maximal allowable upper bound of the delays is obtained by employing Hopf bifurcation
of delayed networks theory. Finally, simulation results are presented to verify the theoretical analysis.

1. Introduction

Recently, distributed coordination control of multiagent sys-
tems has drawn an increasing attention of researchers.This is
mainly due to the fact that its broad applications have ranged
from cooperative control of unmanned air vehicles, forma-
tion control ofmobile robots, and design of sensor network to
swarm-based computing. The main objective of the consen-
sus problem, which is one of the most fundamental issues in
coordination control, is to design an appropriate control pro-
tocol tomake a group of agents reach an agreement on certain
quantities of interest by negotiating with their neighbors.

As we all know, the earlier study on consensus problem
is primarily about single-integrator dynamic multiagent sys-
tems [1–6]. In this case, the task of the consensus algorithm
is to guarantee that positions of all the agents converge to a
constant value. Moreover, the consensus problem of double-
integrator dynamic multiagent systems has also aroused
growing concern [7–10], which is more challenging than the
first case. It is worth to point out that the control goal of all the
aforementioned studies is to drive the states of all the agents
in a network to a consistent value.

However, in reality, sometimes the agreements are dif-
ferent because of the changes of environment, situation, or
cooperative tasks. For example, in nature, a flock of foraging

birds may incorporate or evolve into different subgroups
for the sake of resisting foreign intrusion. In the study of
formation control problem, the formation is split into several
subformations in order to fulfill total task or avoid obstacles,
which results in different agreements. Hence, it is of vital
significant to study multiconsensus and to design algorithms
so that the agents in each subnetwork achieve consensus
while there is no consensus among different subnetworks.
To illustrate, by using pinning control technology, the mul-
ticonsensus problem of multiagent systems was investigated
in [11, 12], where the pinned agents were chosen in accordance
with the topological structure of the underlying graphs. The
multiconsensus of first-order multiagent systems was dis-
cussed under fixed topology and switching topology, inwhich
the interaction between the two subnetworks was assumed
to be balanced [13, 14]. Under the same assumptions, two
different kinds of multiconsensus protocols of second-order
multiagent systems for networks with fixed communication
topology were presented [15]. Under moremild assumptions,
the authors proposed necessary and sufficient conditions
of group consensus of first-order multiagent systems with
directed and fixed topology [16]. Inspired by the progress in
the field, this paper tries to further investigatemulticonsensus
problem and propose a more general control protocol for
second-order multiagent systems.
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In addition, we found that time delay is inevitable in
consensus convergence ofmultiagent systems.This is because
both the movements of the agents and the congestion of
the communication and connected controllers by networks
may cause time delay. Hence, it is necessary to consider the
effect of the time delay. Based on the frequency domain
analysis, the consensus of first-order discrete-timemultiagent
systems with diverse input and communication delays was
discussed in [17], which showed that the consensus condition
was dependent on input delays but independent of com-
munication delays. The leader following consensus problem
with diverse input delays and symmetric coupling weights
was explored [18]. Besides, the consensus of heterogeneous
multiagent systems with symmetric coupling weights under
identical input delays and different input delays was analyzed
in [19], respectively. The finite-time consensus problem of
multiagent systems with delays was studied, in which the
nonsmooth protocol was proposed to make the system reach
agreement in finite time [20]. So far, few works have been
performed on multiconsensus of second-order multiagent
systems with input delays.

Motivated by all the above results, we focus on the multi-
consensus of second-order multiagent systems without delay
and with delays, respectively. The network is divided into
multiple subnetworks, and all the agents in it are divided into
multiple groups consequently. We assume that information
exchange exists between not only two agents in a group but
also in different groups. Based on stability theory, three sorts
of multiconsensus, namely, the dynamic multiconsensus, the
static multiconsensus, and the periodic multiconsensus, are
considered, in which the final multiconsensus convergence
states are obtained for the case without delay. As for the
case with input delays, we establish a sufficient condition by
employing Hopf bifurcation of delayed networks theory, in
whichmulticonsensus can be achieved if the time delay is less
than a certain critical value.

The remainder of this paper is shown as follows. In Sec-
tion 2, we present some concepts in graph theory and formu-
late the model to be studied. In Section 3, the multiconsensus
problem of second-order multiagent system without delay
and with input delays is discussed for the directed network,
respectively. Meanwhile, the simulation results are presented
to illustrate the effectiveness of the theoretical results in
Section 4. Finally, we draw the conclusion in Section 5.

Notation. Throughout this paper, we let 𝑅 be the set of real
number. 1

𝑛
is denoted as an 𝑛-dimensional column with all

the elements being one and 0
𝑛
is denoted as an 𝑛-dimensional

column with all the elements being zero. 0
𝑚×𝑛

denotes the
𝑚×𝑛matrix with all zero entries and 𝐼

𝑛
denotes 𝑛×𝑛 identity

matrix. Re(𝜇) and Im(𝜇) denote the real part and imaginary
part of a complex number 𝜇, respectively. det(𝐴) denotes
determinant of matrix 𝐴.

2. Preliminaries and Problem Formulation

Let G = (V, 𝜀,A) be a weighted directed graph with the
vertex set V = {]

1
, ]
2
, . . . , ]

𝑛
}, the edge set 𝜀 ⊆ V × V, and

a nonsymmetric matrix A = (𝑎
𝑖𝑗
)
𝑛×𝑛

. An edge 𝜀
𝑖𝑗

= (]
𝑗
, ]
𝑖
)

means that agent 𝑖 can receive information from agent 𝑗.A =

(𝑎
𝑖𝑗
)
𝑛×𝑛

is defined as 𝑎
𝑖𝑗

̸= 0 if 𝜀
𝑖𝑗

∈ 𝜀 and 𝑎
𝑖𝑗

= 0, otherwise.
Moreover, we assume that 𝑎

𝑖𝑖
= 0 for all 𝑖.The set of neighbors

of agent 𝑖 is denoted byN
𝑖
= {]
𝑗
| 𝜀
𝑖𝑗
∈ 𝜀}.

In this paper, we consider a complex network (G, 𝑥) con-
sisting of 𝑛+𝑚 agents. All the agents are divided into two parts
and the agents in each part build up a subnetwork.Therefore,
it consists of two subnetworks (G

1
, 𝑥
1

) and (G
2
, 𝑥
2

). We
denote 𝑙

1
= {1, 2, . . . , 𝑛}, 𝑙

2
= {𝑛+ 1, . . . , 𝑛 +𝑚}, and 𝑙 = 𝑙

1
∪ 𝑙
2
.

Furthermore, we denote V
1

= {]
1
, ]
2
, . . . , ]

𝑛
} and V

2
=

{]
𝑛+1

, . . . , ]
𝑛+𝑚

}. Finally, we let N
1𝑖

= {]
𝑗
∈ V
1
: 𝜀
𝑖𝑗

∈ 𝜀},
N
2𝑖
= {]
𝑗
∈ V
2
: 𝜀
𝑖𝑗
∈ 𝜀}, andN

𝑖
= N
1𝑖
∪N
2𝑖
.

Consider vehicles with double-integrator dynamics given
by

�̇�
𝑖
= V
𝑖
,

V̇
𝑖
= 𝑢
𝑖
,

𝑖 = 1, 2, . . . , 𝑛 + 𝑚, (1)

where 𝑥
𝑖
∈ 𝑅, V

𝑖
∈ 𝑅 is the state and the velocity of the agent

𝑖, respectively, and 𝑢
𝑖
∈ 𝑅 is the control input.

Definition 1. For second-order multiagent system (1), three
sorts of multiconsensus are defined.

(i)The system (1) is said to reach a dynamic multiconsen-
sus asymptotically, if for any initial conditions, we have

lim
𝑡→∞


𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)


= 0,

lim
𝑡→∞


V
𝑖
(𝑡) − V

𝑗
(𝑡)


= 0, ∀𝑖, 𝑗 ∈ 𝑙

𝑘
, 𝑘 = 1, 2.

(2)

(ii) The system (1) is said to reach a static multiconsensus
asymptotically if, for any initial conditions, we have

lim
𝑡→∞


𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)


= 0, ∀𝑖, 𝑗 ∈ 𝑙

𝑘
, 𝑘 = 1, 2,

lim
𝑡→∞

V
𝑖
(𝑡) = 0.

(3)

(iii)The system (1) is said to reach a periodicmulticonsen-
sus asymptotically if, for any initial conditions, all the agents
in the same subnetwork can reach periodic consensus and the
agents in different subnetwork can not coincide.

Motivated by consensus protocol in [9, 13], the following
multiconsensus protocol is proposed:

𝑢
𝑖
=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

∑

V𝑗∈N1𝑖

𝑎
𝑖𝑗
[𝛾
0
(𝑥
𝑗
− 𝑥
𝑖
) + 𝛾
1
(V
𝑗
− V
𝑖
)]

+ ∑

V𝑗∈N2𝑖

𝑎
𝑖𝑗
[𝛾
0
𝑥
𝑗
+ 𝛾
1
V
𝑗
] − 𝛽𝑥

𝑖
− 𝛼V
𝑖
, ∀𝑖 ∈ 𝑙

1
,

∑

V𝑗∈N1𝑖

𝑎
𝑖𝑗
[𝛾
0
𝑥
𝑗
+ 𝛾
1
V
𝑗
]

+ ∑

V𝑗∈N2𝑖

𝑎
𝑖𝑗
[𝛾
0
(𝑥
𝑗
− 𝑥
𝑖
) + 𝛾
1
(V
𝑗
− V
𝑖
)]

−𝛽𝑥
𝑖
− 𝛼V
𝑖
, ∀𝑖 ∈ 𝑙

2
,

(4)

where 𝛾
0
, 𝛾
1
, 𝛼, and𝛽 are nonnegative constants, 𝑎

𝑖𝑗
≥ 0 for all

𝑖, 𝑗 ∈ 𝑙
1
, 𝑎
𝑖𝑗
≥ 0 for all 𝑖, 𝑗 ∈ 𝑙

2
, and 𝑎

𝑖𝑗
∈ 𝑅 for all 𝑖 ∈ 𝑙

1
, 𝑗 ∈ 𝑙

2

or 𝑖 ∈ 𝑙
2
, 𝑗 ∈ 𝑙

1
.
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Remark 2. Obviously, the protocol (4) is a more general case,
which contains protocol (3) in [9] as a special case. The
consensus is achieved by designing protocol (3) in [9]. But
our idea is to establish criteria, which can make the first
𝑛 agents reach a consistent state while the last 𝑚 agents
reach another consistent state. Therefore, the protocol (4) is
proposed.

Let 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛+𝑚
]
𝑇 and V = [V

1
, V
2
, . . . , V

𝑛+𝑚
]
𝑇.

The systems (1) with protocol (4) can be written as follows:

[
�̇�

V̇] = [

[

0
(𝑛+𝑚)×(𝑛+𝑚)

𝐼
(𝑛+𝑚)

−𝛽𝐼
(𝑛+𝑚)

− 𝛾
0
𝐿 −𝛼𝐼

(𝑛+𝑚)
− 𝛾
1
𝐿

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

[

[

𝑥

V
]

]

Γ

, (5)

where 𝐿 = [𝑙
𝑖𝑗
] is defined as

𝑙
𝑖𝑗
=

{{{

{{{

{

𝑚+𝑛

∑

𝑘=1,𝑘 ̸= 𝑖

𝑎
𝑖𝑘
, 𝑗 = 𝑖,

−𝑎
𝑖𝑗
, 𝑗 ̸= 𝑖.

(6)

Before moving on, we make the following assumption as
in [12, 13]:

Assumption 3. (i)∑𝑛+𝑚
𝑗=𝑛+1

𝑎
𝑖𝑗
= 0 for all 𝑖 ∈ 𝑙

1
and (ii)∑𝑛

𝑗=1
𝑎
𝑖𝑗
=

0 for all 𝑖 ∈ 𝑙
2
.

Assumption 3 means that the effect between two subnet-
works is balanced. As a result, each row sum of the matrix 𝐿

is zero. Therefore, 0 is an eigenvalue of 𝐿.

3. Main Results

In this section, we deal with multiconsensus problem of
second-order multiagent system (1).

3.1. Multiconsensus of Second-Order Multiagent System. For
the linear model (5), eigenvalues of matrix Γ are discussed
first because they count a lot in stability analysis. Suppose that
𝜆
𝑖𝑗
(𝑖 = 1, . . . , 𝑛 + 𝑚, 𝑗 = 1, 2) and 𝜇

𝑖
are eigenvalues of Γ and

−𝐿, respectively.
Let 𝜆 be an eigenvalue of matrix Γ. Then, we have

det(𝜆𝐼
2(𝑛+𝑚)

− Γ) = 0.
Note that

det (𝜆𝐼
2(𝑛+𝑚)

− Γ)

= det([ 𝜆𝐼
(𝑛+𝑚)

−𝐼
(𝑛+𝑚)

𝛽𝐼
(𝑛+𝑚)

+ 𝛾
0
𝐿 𝜆𝐼
(𝑛+𝑚)

+ 𝛼𝐼
(𝑛+𝑚)

+ 𝛾
1
𝐿
])

= det (𝜆2𝐼
(𝑛+𝑚)

+ (𝛼𝐼
(𝑛+𝑚)

+ 𝛾
1
𝐿) 𝜆 + 𝛽𝐼

(𝑛+𝑚)
+ 𝛾
0
𝐿)

=

𝑛+𝑚

∏

𝑖=1

[𝜆
2

+ (𝛼 − 𝛾
1
𝑢
𝑖
) 𝜆 + (𝛽 − 𝛾

0
𝑢
𝑖
)] = 0.

(7)

Hence,

𝜆
𝑖1
=

− (𝛼 − 𝛾
1
𝜇
𝑖
) + √(𝛼 − 𝛾

1
𝜇
𝑖
)
2

− 4 (𝛽 − 𝛾
0
𝜇
𝑖
)

2
,

𝜆
𝑖2
=

− (𝛼 − 𝛾
1
𝜇
𝑖
) − √(𝛼 − 𝛾

1
𝜇
𝑖
)
2

− 4 (𝛽 − 𝛾
0
𝜇
𝑖
)

2
.

(8)

Lemma 4 (see [15]). Under Assumption 3, 𝐿 has a zero
eigenvalue whose geometric multiplicity is at least two.

Proof. It is easy to verify that 𝑝
1

= (1
𝑇

𝑛
, 0
𝑇

𝑚
)
𝑇 and 𝑝

2
=

(0
𝑇

𝑛
, 1
𝑇

𝑚
)
𝑇 are two linearly independent right eigenvectors of

matrix 𝐿 associated with zero eigenvalues.This completes the
proof.

Theorem 5. Suppose that −𝐿 has two simple zero eigenvalues;
multiagent system (1) achieves multiconsensus if

Re (𝜆
𝑖𝑗
) < 0, (𝑖 = 3, . . . , 𝑛 + 𝑚; 𝑗 = 1, 2) , (9)

where 𝜆
𝑖𝑗
(𝑖 = 3, . . . , 𝑛 + 𝑚, 𝑗 = 1, 2) are eigenvalues of matrix

Γ.

Proof. From Lemma 4, suppose that 𝑞
1

= (𝑞
𝑇

11
, 𝑞
𝑇

12
)
𝑇 and

𝑞
2
= (𝑞
𝑇

21
, 𝑞
𝑇

22
)
𝑇 are two linearly independent left eigenvectors

of matrix 𝐿 corresponding to zero eigenvalues which satisfy
𝑝
𝑇

1
𝑞
1
= 1 and 𝑝

𝑇

2
𝑞
2
= 1.

For 𝜇
1
= 𝜇
2
= 0, the corresponding eigenvalues of matrix

Γ are

𝜆
11

= 𝜆
21

=

−𝛼 + √𝛼2 − 4𝛽

2
,

𝜆
12

= 𝜆
22

=

−𝛼 − √𝛼2 − 4𝛽

2
.

(10)

For convenience, one denotes 𝜆
11

= 𝜆
21

≜ 𝜆
1
, 𝜆
12

=

𝜆
22

≜ 𝜆
2
.

Case 1 (𝛼2−4𝛽 ̸= 0). Let𝑤
1𝑟
be the right eigenvector of matrix

Γ associated with eigenvalue 𝜆
1
. By Lemma 4, one has 𝐿𝑝

1
=

0.
Note that

Γ(
𝑝
1

𝜆
1
𝑝
1

) = (
𝜆
1
𝑝
1

−𝛽𝑝
1
− 𝛾
0
𝐿𝑝
1
− 𝛼𝜆
1
𝑝
1
− 𝛾
1
𝜆
1
𝐿𝑝
1

)

= (
𝜆
1
𝑝
1

−𝛽𝑝
1
− 𝛼𝜆
1
𝑝
1

) ,

𝜆
1
(

𝑝
1

𝜆
1
𝑝
1

) = (
𝜆
1
𝑝
1

𝜆
2

1
𝑝
1

) = (
𝜆
1
𝑝
1

−𝛽𝑝
1
− 𝛼𝜆
1
𝑝
1

) .

(11)

Thus,

Γ(
𝑝
1

𝜆
1
𝑝
1

) = 𝜆
1
(

𝑝
1

𝜆
1
𝑝
1

) . (12)

It follows from (12) that 𝑤
1𝑟

= (𝑝
𝑇

1
, 𝜆
1
𝑝
𝑇

1
)
𝑇. It is

straightforward to verify that 𝑤
2𝑟

= (𝑝
𝑇

2
, 𝜆
1
𝑝
𝑇

2
)
𝑇 is right
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eigenvector ofmatrix Γ associatedwith eigenvalue𝜆
1
which is

linearly independent of𝑤
1𝑟
. Similarly, 𝜔

3𝑟
= (𝑝
𝑇

1
, 𝜆
2
𝑝
𝑇

1
)
𝑇 and

𝜔
4𝑟

= (𝑝
𝑇

2
, 𝜆
2
𝑝
𝑇

2
)
𝑇 can be verified to be linearly independent

right eigenvectors of matrix Γ corresponding to eigenvalue
𝜆
2
.
Denote

𝜆


1
=

𝛼 + √𝛼2 − 4𝛽

2
= −

𝛽

𝜆
1

,

𝜆


2
=

𝛼 − √𝛼2 − 4𝛽

2
= −

𝛽

𝜆
2

.

(13)

It can be verified that 𝜔
1𝑙

= (𝜆


1
𝑞
𝑇

1
, 𝑞
𝑇

1
)
𝑇 and 𝜔

2𝑙
=

(𝜆


1
𝑞
𝑇

2
, 𝑞
𝑇

2
)
𝑇 are two linearly independent left eigenvectors

of matrix Γ associated with eigenvalue 𝜆
1
. Similarly, one

can obtain that 𝜔
3𝑙

= (1/√𝛼2 − 4𝛽)(𝜆


2
𝑞
𝑇

1
, 𝑞
𝑇

1
)
𝑇 and 𝜔

4𝑙
=

(1/√𝛼2 − 4𝛽)(𝜆


2
𝑞
𝑇

2
, 𝑞
𝑇

2
)
𝑇 are two linearly independent left

eigenvectors of matrix Γ corresponding to eigenvalue 𝜆
2
. It

can be seen that 𝜔
𝑇

𝑖𝑟
𝜔
𝑖𝑙

= 1 (𝑖 = 1, 2, 3, 4) after simple
calculation.

Let 𝐽 be the Jordan canonical form associated with Γ.
Then, there exists a nonsingular matrix 𝑃 such that

Γ = 𝑃𝐽𝑃
−1

= (𝜔
1𝑟
, . . . , 𝜔

2(𝑛+𝑚)𝑟
)

× (

𝜆
1

0 0 0 0
1×(2𝑛+2𝑚−4)

0 𝜆
1

0 0 0
1×(2𝑛+2𝑚−4)

0 0 𝜆
2

0 0
1×(2𝑛+2𝑚−4)

0 0 0 𝜆
2

0
1×(2𝑛+2𝑚−4)

0
(2𝑛+2𝑚−4)×1

0
(2𝑛+2𝑚−4)×1

0
(2𝑛+2𝑚−4)×1

0
(2𝑛+2𝑚−4)×1

𝐽
1

)

×
(
(

(

𝜔
𝑇

1𝑙

𝜔
𝑇

2𝑙

𝜔
𝑇

3𝑙

...
𝜔
𝑇

2(𝑛+𝑚)𝑙

)
)

)

,

(14)

where 𝐽
1
is the Jordan upper diagonal block matrix corre-

sponding to the eigenvalues 𝜆
𝑖𝑗
(𝑖 = 3, . . . , 𝑛 + 𝑚; 𝑗 = 1, 2).

Since Re(𝜆
𝑖𝑗
) < 0 (𝑖 = 3, . . . , 𝑛 + 𝑚; 𝑗 = 1, 2), it follows

that 𝑒𝐽1𝑡 → 0
[2(𝑛+𝑚)−4]×[2(𝑛+𝑚)−4]

as 𝑡 → ∞.
Thus,

lim
𝑡→∞

𝑒
Γ𝑡

= lim
𝑡→∞

𝑃𝑒
𝐽𝑡

𝑃
−1

=
(
(
(

(

(𝑒
𝜆1𝑡𝜆


1
+ 𝑒
𝜆2𝑡𝜆


2
) 1
𝑛
𝑞
𝑇

11
(𝑒
𝜆1𝑡𝜆


1
+ 𝑒
𝜆2𝑡𝜆


2
) 1
𝑚
𝑞
𝑇

12
(𝑒
𝜆1𝑡 + 𝑒

𝜆2𝑡) 1
𝑛
𝑞
𝑇

11
(𝑒
𝜆1𝑡 + 𝑒

𝜆2𝑡) 1
𝑚
𝑞
𝑇

12

(𝑒
𝜆1𝑡𝜆


1
+ 𝑒
𝜆2𝑡𝜆


2
) 1
𝑛
𝑞
𝑇

21
(𝑒
𝜆1𝑡𝜆


1
+ 𝑒
𝜆2𝑡𝜆


2
) 1
𝑚
𝑞
𝑇

22
(𝑒
𝜆1𝑡 + 𝑒

𝜆2𝑡) 1
𝑛
𝑞
𝑇

21
(𝑒
𝜆1𝑡 + 𝑒

𝜆2𝑡) 1
𝑚
𝑞
𝑇

22

2𝛽 (𝑒
𝜆1𝑡 + 𝑒

𝜆2𝑡) 1
𝑛
𝑞
𝑇

11
2𝛽 (𝑒
𝜆1𝑡 + 𝑒

𝜆2𝑡) 1
𝑚
𝑞
𝑇

12
(𝑒
𝜆1𝑡𝜆
1
+ 𝑒
𝜆2𝑡𝜆
2
) 1
𝑛
𝑞
𝑇

11
(𝑒
𝜆1𝑡𝜆
1
+ 𝑒
𝜆2𝑡𝜆
2
) 1
𝑚
𝑞
𝑇

12

2𝛽 (𝑒
𝜆1𝑡 + 𝑒

𝜆2𝑡) 1
𝑛
𝑞
𝑇

21
2𝛽 (𝑒
𝜆1𝑡 + 𝑒

𝜆2𝑡) 1
𝑚
𝑞
𝑇

22
(𝑒
𝜆1𝑡𝜆
1
+ 𝑒
𝜆2𝑡𝜆
2
) 1
𝑛
𝑞
𝑇

21
(𝑒
𝜆1𝑡𝜆
1
+ 𝑒
𝜆2𝑡𝜆
2
) 1
𝑚
𝑞
𝑇

22

)
)
)

)

.

(15)

It follows from (5) that [𝑥(𝑡), V(𝑡)]𝑇 =

𝑒
Γ𝑡

[𝑥(0), V(0)]𝑇. Then, one has lim
𝑡→∞

[𝑥(𝑡), V(𝑡)]𝑇 =

lim
𝑡→∞

𝑒
Γ𝑡

[𝑥(0), V(0)]𝑇. After some calculations, one can
obtain the consensus state.

Denote 𝑥
1

= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇, 𝑥2 = (𝑥

𝑛+1
, 𝑥
𝑛+2

, . . . ,

𝑥
𝑛+𝑚

)
𝑇, V1 = (V

1
, V
2
, . . . , V

𝑛
)
𝑇, and V2 = (V

𝑛+1
, . . . , V

𝑛+𝑚
)
𝑇.

For the special case of 𝛼 = 0, 𝛽 > 0, it follows that 𝑒𝜆1𝑡 =
cos(√𝛽𝑡) + 𝑖 sin(√𝛽𝑡). In light of (15), one has

𝑥
𝑖
→ sin(√𝛽𝑡) 𝑞

𝑇

11
𝑥
1

(0) + sin(√𝛽𝑡) 𝑞
𝑇

12
𝑥
2

(0)



Mathematical Problems in Engineering 5

+ cos(√𝛽𝑡) 𝑞
𝑇

11
V1 (0) + cos(√𝛽𝑡) 𝑞

𝑇

12
V2 (0) ,

∀𝑖 ∈ 𝑙
1
,

𝑥
𝑖
→ sin(√𝛽𝑡) 𝑞

𝑇

21
𝑥
1

(0) + sin(√𝛽𝑡) 𝑞
𝑇

22
𝑥
2

(0)

+ cos(√𝛽𝑡) 𝑞
𝑇

21
V1 (0) + cos(√𝛽𝑡) 𝑞

𝑇

22
V2 (0) ,

∀𝑖 ∈ 𝑙
2
,

V
𝑖
→ 2𝛽 cos(√𝛽𝑡) 𝑞

𝑇

11
𝑥
1

(0) + 2𝛽 cos(√𝛽𝑡) 𝑞
𝑇

12
𝑥
2

(0)

+ sin(√𝛽𝑡) 𝑞
𝑇

11
V1 (0) + sin(√𝛽𝑡) 𝑞

𝑇

12
V2 (0) ,

∀𝑖 ∈ 𝑙
1
,

V
𝑖
→ 2𝛽 cos(√𝛽𝑡) 𝑞

𝑇

21
𝑥
1

(0) + 2𝛽 cos(√𝛽𝑡) 𝑞
𝑇

22
𝑥
2

(0)

+ sin(√𝛽𝑡) 𝑞
𝑇

21
V1 (0) + sin(√𝛽𝑡) 𝑞

𝑇

22
V2 (0) ,

∀𝑖 ∈ 𝑙
2
,

(16)

as 𝑡 → ∞. It can be seen that system (1) reaches periodic
multiconsensus from the convergence state.

For 𝛽 = 0, 𝛼 > 0, it follows that 𝜆
1
= 0, 𝜆

2
= −𝛼, 𝜆

1
= 𝛼,

and 𝜆


1
= 0. Then from (15), one obtains

𝑥
𝑖
→ 𝛼𝑞

𝑇

11
𝑥
1

(0) + 𝛼𝑞
𝑇

12
𝑥
2

(0) + 𝑞
𝑇

11
V1 (0) + 𝑞

𝑇

12
V2 (0) ,

∀𝑖 ∈ 𝑙
1
,

𝑥
𝑖
→ 𝛼𝑞

𝑇

21
𝑥
1

(0) + 𝛼𝑞
𝑇

22
𝑥
2

(0) + 𝑞
𝑇

21
V1 (0) + 𝑞

𝑇

22
V2 (0) ,

∀𝑖 ∈ 𝑙
2
,

V
𝑖
→ 0, ∀𝑖 ∈ 𝑙,

(17)

as 𝑡 → ∞. It means that static multiconsensus of the system
(1) can be reached.

Case 2 (𝛼2−4𝛽 = 0). It follows from (10) that 𝜆
1
= 𝜆
2
= −𝛼/2.

It implies that matrix Γ has an eigenvalue −𝛼/2with algebraic
multiplicity four. Similar to Case 1, we need to solve the
eigenvectors and generalized eigenvectors of Γ corresponding
to eigenvalues −𝛼/2.

One can easily obtain two right eigenvectors 𝜔
1𝑟

= (𝑝
𝑇

1
,

−(𝛼/2)𝑝
𝑇

1
)
𝑇 and 𝜔

3𝑟
= (𝑝
𝑇

2
, −(𝛼/2)𝑝

𝑇

2
)
𝑇 and two generalized

right eigenvectors 𝜔
2𝑟

= [𝛼𝑝
𝑇

1
, (1 − (𝛼

2

/2))𝑝
𝑇

1
]
𝑇 and 𝜔

4𝑟
=

[𝛼𝑝
𝑇

2
, (1−(𝛼

2

/2))𝑝
𝑇

2
]
𝑇 ofmatrix Γ associatedwith eigenvalues

−𝛼/2. Accordingly, 𝜔
1𝑙

= [(1 + (𝛼
2

/2))𝑞
𝑇

1
, 𝛼𝑞
𝑇

1
]
𝑇, 𝜔
3𝑙

= [(1+

(𝛼
2

/2))𝑞
𝑇

2
, 𝛼𝑞
𝑇

2
]
𝑇 and 𝜔

2𝑙
= [(𝛼/2)𝑞

𝑇

1
, 𝑞
𝑇

1
]
𝑇, 𝜔
4𝑙

= [(𝛼/2)𝑞
𝑇

2
,

𝑞
𝑇

2
]
𝑇 are the generalized left eigenvectors and the left eigen-

vectors of matrix Γ associated with eigenvalues −𝛼/2. Obvi-
ously, it can be seen that 𝜔𝑇

𝑖𝑟
𝜔
𝑖𝑙
= 1, 𝑖 = 1, 2, 3, 4. Then, −𝛼/2

is an eigenvalue of matrix Γ with geometric multiplicity 2.
Note that Γ can be written in Jordan canonical form as

Γ = 𝑃𝐽𝑃
−1

= (𝜔
1𝑟
, 𝜔
2𝑟
, . . . , 𝜔

2(𝑛+𝑚)𝑟
)

×

(
(
(
(
(

(

𝜆
1

1 0 0 0
1×(2𝑛+2𝑚−4)

0 𝜆
1

0 0 0
1×(2𝑛+2𝑚−4)

0 0 𝜆
1

1 0
1×(2𝑛+2𝑚−4)

0 0 0 𝜆
1

0
1×(2𝑛+2𝑚−4)

0
(2𝑛+2𝑚−4)×1

0
(2𝑛+2𝑚−4)×1

0
(2𝑛+2𝑚−4)×1

0
(2𝑛+2𝑚−4)×1

𝐽
1

)
)
)
)
)

)

×

(
(
(
(
(
(
(
(

(

𝜔
𝑇

1𝑙

𝜔
𝑇

2𝑙

𝜔
𝑇

3𝑙

...

𝜔
𝑇

2(𝑛+𝑚)𝑙

)
)
)
)
)
)
)
)

)

,

(18)



6 Mathematical Problems in Engineering

where 𝜆
1
= −𝛼/2 and 𝐽

1
is the Jordan upper diagonal block

matrix corresponding to the eigenvalues 𝜆
𝑖𝑗
(𝑖 = 3, . . . , 𝑛 +𝑚;

𝑗 = 1, 2).
Then,

lim
𝑡→∞

𝑒
Γ𝑡

= 𝑃 lim
𝑡→∞

𝑒
𝐽𝑡

𝑃
−1

= 𝑒
𝜆1𝑡 (𝜔

1𝑟
𝜔
𝑇

1𝑙
+ 𝑡𝜔
1𝑟
𝜔
𝑇

2𝑙
+ 𝜔
2𝑟
𝜔
𝑇

2𝑙

+𝜔
3𝑟
𝜔
𝑇

3𝑙
+ 𝑡𝜔
3𝑟
𝜔
𝑇

4𝑙
+ 𝜔
4𝑟
𝜔
𝑇

4𝑙
) .

(19)

For the special case of 𝛼 = 0, by noting that 𝛼2 − 4𝛽 = 0,
it is clear that 𝛽 = 0. Then, it follows from (19) that

𝑥
𝑖
→ 𝑞
𝑇

11
𝑥
1

(0) + 𝑞
𝑇

12
𝑥
2

(0) + 𝑡𝑞
𝑇

11
V1 (0) + 𝑡𝑞

𝑇

12
V2 (0) ,

∀𝑖 ∈ 𝑙
1
,

𝑥
𝑖
→ 𝑞
𝑇

21
𝑥
1

(0) + 𝑞
𝑇

22
𝑥
2

(0) + 𝑡𝑞
𝑇

21
V1 (0) + 𝑡𝑞

𝑇

22
V2 (0) ,

∀𝑖 ∈ 𝑙
2
,

V
𝑖
→ 𝑞
𝑇

11
V1 (0) + 𝑞

𝑇

12
V2 (0) , ∀𝑖 ∈ 𝑙

1
,

V
𝑖
→ 𝑞
𝑇

21
V1 (0) + 𝑞

𝑇

22
V2 (0) , ∀𝑖 ∈ 𝑙

2

(20)

as 𝑡 → ∞. It implies that the systems (1) reach dynamic
multiconsensus.

For 𝛼 > 0, one has 𝑒𝜆1𝑡 → 0 (𝑡 → ∞). Then, it follows
from (19) that 𝑥

𝑖
→ 0 and V

𝑖
→ 0 for all 𝑖 ∈ 𝑙 as 𝑡 → ∞.

Remark 6. InTheorem 5, we mainly analyze the eigenvectors
and generalized eigenvectors of matrix Γ associated with
eigenvalues 𝜆

1
and 𝜆

2
. Then, we obtain the ultimate consen-

sus state based on matrix theory.

Lemma7 (see [9]). Assume thatRe(𝜇) < 0, 𝛾
0
≥ 0, and𝛼 ≥ 0,

the two roots of the polynomial

𝑓
𝜇
(𝜆) = 𝜆

2

+ (𝛼 − 𝛾
1
𝜇) 𝜆 + 𝛽 − 𝛾

0
𝜇 (21)

lie in the open left-half complex plane if and only if

𝛾
0
>

𝛽Re (𝜇)
Re2 (𝜇) + Im2 (𝜇)

,

𝛾
1
>

𝛼

Re (𝜇)

+

𝛾
0

Im (𝜇)
 (𝛼

Im (𝜇)
 +

√𝛼2Im2 (𝜇) + 4𝛽∗ Re (𝜇))

2𝛽∗ Re (𝜇)
,

(22)

where 𝛽∗ = 𝛽Re(𝜇
𝑖
) − 𝛾
0
(Re2(𝜇

𝑖
) + Im2(𝜇

𝑖
)).

Theorem 8. Suppose that −𝐿 has two simple zero eigenvalues
and all the other eigenvalues have negative real parts, system
(1) achieves multiconsensus if

𝛾
0
> max
𝑖=3,...,𝑛+𝑚

𝛽Re (𝜇
𝑖
)

Re2 (𝜇
𝑖
) + Im2 (𝜇

𝑖
)
,

𝛾
1
> max
𝑖=3,...,𝑛+𝑚

(
𝛼

Re (𝜇
𝑖
)

+ 𝛾
0

Im (𝜇
𝑖
)


× (𝛼
Im (𝜇

𝑖
)
 +

√𝛼2Im2 (𝜇
𝑖
) + 4𝛽∗ Re (𝜇

𝑖
))

×(2𝛽
∗Re (𝜇

𝑖
))
−1

) ,

(23)

where 𝑢
𝑖
are the nonzero eigenvalues of−𝐿 and𝛽∗ = 𝛽Re(𝜇

𝑖
)−

𝛾
0
(Re2(𝜇

𝑖
) + Im2(𝜇

𝑖
)).

Proof. From Lemma 7, it can be seen that Re(𝜇) < 0 and (22)
holds if and only if the roots of𝜆2+(𝛼−𝛾

1
𝜇)𝜆+𝛽−𝛾

0
𝜇 = 0have

negative real parts. Therefore, one knows that Re(𝜆
𝑖𝑗
) < 0

(𝑖 = 3, . . . , 𝑛 + 𝑚, 𝑗 = 1, 2) if and only if Re(𝜇
𝑖
) < 0 and (9)

holds, where𝜆
𝑖𝑗
and𝜇
𝑖
are eigenvalues of Γ and𝐿, respectively.

ByTheorem 5, it is easy to get the conclusion.

Corollary 9. For 𝛼 = 𝛽 = 0, 𝛾
0
> 0, and 𝛾

1
> 0, suppose that

−𝐿 has two simple zero eigenvalues and all the other eigenvalues
have negative real parts, second-order dynamicmulticonsensus
of system (1) can be achieved if

𝛾
1
> max
3≤𝑖≤𝑛+𝑚

√𝛾
0

Im (𝜇
𝑖
)


𝜇𝑖

√−Re (𝜇

𝑖
)

, (24)

where 𝑢
𝑖
are the nonzero eigenvalues of −𝐿. In addition, if the

second-order dynamic multiconsensus is reached, one has

𝑥
𝑖
→ 𝑞
𝑇

11
𝑥
1

(0) + 𝑞
𝑇

12
𝑥
2

(0) + 𝑡𝑞
𝑇

11
V1 (0) + 𝑡𝑞

𝑇

12
V2 (0) ,

∀𝑖 ∈ 𝑙
1
,

𝑥
𝑖
→ 𝑞
𝑇

21
𝑥
1

(0) + 𝑞
𝑇

22
𝑥
2

(0) + 𝑡𝑞
𝑇

21
V1 (0) + 𝑡𝑞

𝑇

22
V2 (0) ,

∀𝑖 ∈ 𝑙
2
,

V
𝑖
→ 𝑞
𝑇

11
V1 (0) + 𝑞

𝑇

12
V2 (0) , ∀𝑖 ∈ 𝑙

1
,

V
𝑖
→ 𝑞
𝑇

21
V1 (0) + 𝑞

𝑇

22
V2 (0) , ∀𝑖 ∈ 𝑙

2
,

(25)

as 𝑡 → ∞, where 𝑞
1

= (𝑞
𝑇

11
, 𝑞
𝑇

12
)
𝑇 and 𝑞

2
= (𝑞
𝑇

21
, 𝑞
𝑇

22
)
𝑇

are the two linearly independent left eigenvectors of matrix 𝐿

associated with zero eigenvalues which satisfy 𝑝
𝑇

1
𝑞
1
= 1 and

𝑝
𝑇

2
𝑞
2
= 1.

Corollary 10. For 𝛽 = 0, 𝛾
1

> 0, 𝛾
0

= 1, and 𝛼 > 0,
suppose that −𝐿 has two simple zero eigenvalues and all the
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other eigenvalues have negative real parts, second-order static
multiconsensus of system (1) is achieved if

𝛾
1

> max
3≤𝑖≤𝑛+𝑚

(
𝛼

Re (𝜇
𝑖
)

+

𝛼

Im2 (𝜇

𝑖
)

√𝛼2

Im
2
(𝜇
𝑖
)
−4Re (𝜇𝑖)

𝑢𝑖


2

−2Re (𝜇
𝑖
)
𝜇𝑖



2
),

(26)

where 𝑢
𝑖
are the nonzero eigenvalues of −𝐿. Moreover, if the

static second-order multiconsensus is achieved, one obtains

𝑥
𝑖
→ 𝛼𝑞

𝑇

11
𝑥
1

(0) + 𝛼𝑞
𝑇

12
𝑥
2

(0) + 𝑞
𝑇

11
V1 (0) + 𝑞

𝑇

12
V2 (0) ,

∀𝑖 ∈ 𝑙
1
,

𝑥
𝑖
→ 𝛼𝑞

𝑇

21
𝑥
1

(0) + 𝛼𝑞
𝑇

22
𝑥
2

(0) + 𝑞
𝑇

21
V1 (0) + 𝑞

𝑇

22
V2 (0) ,

∀𝑖 ∈ 𝑙
2
,

V
𝑖
→ 0, ∀𝑖 ∈ 𝑙,

(27)

as 𝑡 → ∞, where 𝑞
1
= (𝑞
𝑇

11
, 𝑞
𝑇

12
)
𝑇 and 𝑞

2
= (𝑞
𝑇

21
, 𝑞
𝑇

22
)
𝑇 are the

two linearly independent left eigenvectors of L corresponding to
eigenvalues 0 which satisfy 𝑝𝑇

1
𝑞
1
= 1 and 𝑝

𝑇

2
𝑞
2
= 1.

Remark 11. In Corollary 9, inequality (24) is equivalent to the
following form:

𝛾
2

1

𝛾
0

> max
𝑖=3,...,𝑛+𝑚

Im2 (𝜇
𝑖
)

𝜇𝑖


2

(−Re (𝜇
𝑖
))

, (28)

which is consistent with the results of Theorem 1 in [16]. For
the special case of 𝛽 = 0, 𝛾

1
= 0, 𝛾

0
= 1, and 𝛼 > 0, one

obtains a sufficient condition from Corollary 10:

𝛼 > max
𝑖=3,...,𝑛+𝑚

Im (𝜇
𝑖
)


√−Re (𝜇
𝑖
)

, (29)

which is consistent with Theorem 3 in [16]. Therefore, the
case in [16] can be seen as a special case, and Theorem 8
presents more general results for multiconsensus of second-
order multiagent systems in this paper.

Corollary 12. For 𝛼 = 0 and 𝛽 > 0, if −𝐿 has two simple
zero eigenvalues and all the other eigenvalues have negative real
parts, system (1) achieves periodic multiconsensus if

𝛾
0
> max
𝑖=3,...,𝑛+𝑚

𝛽Re (𝜇
𝑖
)

Re2 (𝜇
𝑖
) + Im2 (𝜇

𝑖
)
,

𝛾
1
> max
𝑖=3,...,𝑛+𝑚

𝛾
0

Im (𝜇
𝑖
)


√[𝛽 − 𝛾
0
(Re2 (𝜇

𝑖
) + Im2 (𝜇

𝑖
))]Re (𝜇

𝑖
)

,

(30)

where 𝑢
𝑖
are the nonzero eigenvalues of −𝐿. In addition, if

the second-order periodic multiconsensus is reached, one can
obtain

𝑥
𝑖
→ sin(√𝛽𝑡) 𝑞

𝑇

11
𝑥
1

(0) + sin(√𝛽𝑡) 𝑞
𝑇

12
𝑥
2

(0)

+ cos(√𝛽𝑡) 𝑞
𝑇

11
V1 (0) + cos(√𝛽𝑡) 𝑞

𝑇

12
V2 (0) ,

∀𝑖 ∈ 𝑙
1
,

𝑥
𝑖
→ sin(√𝛽𝑡) 𝑞

𝑇

21
𝑥
1

(0) + sin(√𝛽𝑡) 𝑞
𝑇

22
𝑥
2

(0)

+ cos(√𝛽𝑡) 𝑞
𝑇

21
V1 (0) + cos(√𝛽𝑡) 𝑞

𝑇

22
V2 (0) ,

∀𝑖 ∈ 𝑙
2
,

V
𝑖
→ 2𝛽 cos(√𝛽𝑡) 𝑞

𝑇

11
𝑥
1

(0) + 2𝛽 cos(√𝛽𝑡) 𝑞
𝑇

12
𝑥
2

(0)

+ sin(√𝛽𝑡) 𝑞
𝑇

11
V1 (0) + sin(√𝛽𝑡) 𝑞

𝑇

12
V2 (0) ,

∀𝑖 ∈ 𝑙
1
,

V
𝑖
→ 2𝛽 cos(√𝛽𝑡) 𝑞

𝑇

21
𝑥
1

(0) + 2𝛽 cos(√𝛽𝑡) 𝑞
𝑇

22
𝑥
2

(0)

+ sin(√𝛽𝑡) 𝑞
𝑇

21
V1 (0) + sin(√𝛽𝑡) 𝑞

𝑇

22
V2 (0) ,

∀𝑖 ∈ 𝑙
2
,

(31)

as 𝑡 → ∞, where 𝑞
1

= (𝑞
𝑇

11
, 𝑞
𝑇

12
)
𝑇 and 𝑞

2
= (𝑞
𝑇

21
, 𝑞
𝑇

22
)
𝑇

are the two linearly independent left eigenvectors of matrix 𝐿

associated with zero eigenvalues which satisfy 𝑝
𝑇

1
𝑞
1
= 1 and

𝑝
𝑇

2
𝑞
2
= 1.

Corollary 13. For 𝛼 > 0, 𝛽 > 0, 𝛾
1
> 0, and 𝛾

2
> 0, if −𝐿 has

two simple zero eigenvalues and all the other eigenvalues have
negative real parts, one has 𝑥

𝑖
→ 0 and V

𝑖
→ 0 as 𝑡 → ∞

for all 𝑖 ∈ 𝑙.

Remark 14. If 𝛼 > 0, 𝛽 = 𝛼
2

/4 > 0, 𝛾
0
> 0, and 𝛾

1
> 0, all

the eigenvalues ofmatrix Γ have negative parts, which implies
that lim

𝑡→∞
𝑒
Γ𝑡

= 0
2(𝑛+𝑚)×2(𝑛+𝑚)

. Therefore, the system is
asymptotically stabilized.

3.2. Second-Order Multiconsensus with Input Delays. In this
subsection, the second-order multiconsensus with input
delays is considered. We study the following system:

�̇�
𝑖
= V
𝑖
,

V̇
𝑖
= 𝑢
𝑖
(𝑡 − 𝜏) ,

𝑖 = 1, . . . , 𝑛 + 𝑚, (32)

where 𝜏 > 0 is the time-delay constant.
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Figure 1: Topology graph of a network with seven agents.

Denote 𝑧 = [𝑥
𝑇

, V𝑇]𝑇, with algorithm (4), systems (32)
can be rewritten in matrix form as follows:

�̇� (𝑡) = Γ
1
𝑧 + Γ
2
𝑧 (𝑡 − 𝜏) , (33)

where Γ
1

= (
0(𝑛+𝑚)×(𝑛+𝑚) 𝐼(𝑛+𝑚)

0(𝑛+𝑚)×(𝑛+𝑚) 0(𝑛+𝑚)×(𝑛+𝑚)
) and Γ

2
=

(
0(𝑛+𝑚)×(𝑛+𝑚) 0(𝑛+𝑚)×(𝑛+𝑚)

−𝛽𝐼(𝑛+𝑚)−𝛾0𝐿 −𝛼𝐼(𝑛+𝑚)−𝛾1𝐿
).

The characteristic equation of system (33) is det(𝜆𝐼
2(𝑛+𝑚)

−

Γ
1
− 𝑒
−𝜆𝜏

Γ
2
) = 0

det (𝜆𝐼
2(𝑛+𝑚)

− Γ
1
− 𝑒
−𝜆𝜏

Γ
2
)

= det (𝜆2𝐼
2(𝑛+𝑚)

+ ((𝛼𝐼 + 𝛾
1
𝐿) 𝜆 + (𝛽𝐼 + 𝛾

0
𝐿)) 𝑒
−𝜆𝜏

)

=

𝑛+𝑚

∏

𝑖=1

{𝜆
2

+ [(𝛼 − 𝛾
1
𝜇
𝑖
) 𝜆 + (𝛽 − 𝛾

0
𝜇
𝑖
)] 𝑒
−𝜆𝜏

} .

(34)

Let 𝑔
𝑖
(𝜆) = 𝜆

2

+ [(𝛼 − 𝛾
1
𝜇
𝑖
)𝜆 + (𝛽 − 𝛾

0
𝜇
𝑖
)]𝑒
−𝜆𝜏 and 𝑔(𝜆) =

∏
𝑛+𝑚

𝑖=1
𝑔
𝑖
(𝜆).

In order to obtain the maximal allowable upper bound of
the delays, stability theory and Hopf bifurcation analysis are
introduced. Then, we give the following lemmas.

Lemma 15. Suppose that −𝐿 has two simple zero eigenvalues
and all the other eigenvalues have negative real parts, then
𝑔(𝜆) = 0 has a purely imaginary root if

𝜏 ∈ 𝜓 = {
2𝑁𝜋 + 𝜃

𝑖

𝑤
𝑖

| 𝑖 = 3, . . . , 𝑛 + 𝑚,𝑁 = 0, 1, . . .} , (35)

where 𝜃
𝑖
∈ [0, 2𝜋], which satisfies

sin 𝜃
𝑖
=

𝛼𝑤
𝑖
− 𝛾
0
Im (𝜇
𝑖
) − 𝛾
1
Re (𝜇
𝑖
) 𝑤
𝑖

𝑤
2

𝑖

,

cos 𝜃
𝑖
=

𝛽 − 𝛾
0
Re (𝜇
𝑖
) + 𝛾
1
Im (𝜇
𝑖
) 𝑤
𝑖

𝑤
2

𝑖

,

(36)

𝑤
4

𝑖
= {𝛾
1
Im2 (𝜇

𝑖
) + [𝛼 − 𝛾

1
Re (𝜇
𝑖
)]
2

}𝑤
2

𝑖

+ 2 (𝛽𝛾
1
− 𝛼𝛾
0
) Im (𝜇

𝑖
) 𝑤
𝑖
+ [𝛽 − 𝛾

0
Re (𝜇
𝑖
)]
2

+ 𝛾
2

0
Im2 (𝜇

𝑖
) ,

(37)

and 𝜇
𝑖
(𝑖 = 3, . . . , 𝑛 + 𝑚) are the nonzero eigenvalues of −𝐿.

Proof. Let 𝜆 = 𝑖𝑤
𝑖
(𝑤
𝑖

̸= 0), from 𝑔
𝑖
(𝜆) = 0, one has

𝑤
2

𝑖
= (𝛼 − 𝛾

1
𝜇
𝑖
) 𝑒
−𝑖𝑤𝑖𝜏𝑤

𝑖
𝑖 + (𝛽 − 𝛾

0
𝜇
𝑖
) 𝑒
−𝑖𝑤𝑖𝜏. (38)

Let 𝜇
𝑖
= Re(𝜇

𝑖
) + Im(𝜇

𝑖
)𝑖 and 𝑒

−𝑖𝑤𝑖𝜏 = cos(𝑤
𝑖
𝜏) + 𝑖 sin(𝑤

𝑖
𝜏),

taking modulus on both sides of (38) and separating the real
and imaginary parts of (38), we obtain

𝑤
4

𝑖
= [𝛽 − 𝛾

0
Re (𝜇
𝑖
) + 𝛾
1
Im (𝜇
𝑖
) 𝑤
𝑖
]
2

+ [𝛼𝑤
𝑖
− 𝛾
0
Im (𝜇
𝑖
) − 𝛾
1
Re (𝜇
𝑖
) 𝑤
𝑖
]
2

,

𝑤
2

𝑖
= cos (𝑤

𝑖
𝜏) [𝛽 − 𝛾

0
Re (𝜇
𝑖
) + 𝛾
1
Im (𝜇
𝑖
) 𝑤
𝑖
]

+ sin (𝑤
𝑖
𝜏) [𝛼𝑤

𝑖
− 𝛾
0
Im (𝜇
𝑖
) − 𝛾
1
Re (𝜇
𝑖
) 𝑤
𝑖
] ,

0 = cos (𝑤
𝑖
𝜏) [𝛼𝑤

𝑖
− 𝛾
0
Im (𝜇
𝑖
) − 𝛾
1
Re (𝜇
𝑖
) 𝑤
𝑖
]

− sin (𝑤
𝑖
𝜏) [𝛽 − 𝛾

0
Re (𝜇
𝑖
) + 𝛾
1
Im (𝜇
𝑖
) 𝑤
𝑖
] .

(39)

By simple calculations, one obtains

cos (𝑤
𝑖
𝜏) =

𝛼𝑤
𝑖
− 𝛾
0
Im (𝜇
𝑖
) − 𝛾
1
Re (𝜇
𝑖
) 𝑤
𝑖

𝑤
2

𝑖

,

sin (𝑤
𝑖
𝜏) =

𝛽 − 𝛾
0
Re (𝜇
𝑖
) + 𝛾
1
Im (𝜇
𝑖
) 𝑤
𝑖

𝑤
2

𝑖

,

𝑤
4

𝑖
= {𝛾
1
Im2 (𝜇

𝑖
) + [𝛼 − 𝛾

1
Re (𝜇
𝑖
)]
2

}𝑤
2

𝑖

+ 2 (𝛽𝛾
1
− 𝛼𝛾
0
) Im (𝜇

𝑖
) 𝑤
𝑖

+ [𝛽 − 𝛾
0
Re (𝜇
𝑖
)]
2

+ 𝛾
2

0
Im2 (𝜇

𝑖
) .

(40)

For 𝑖 = 3, . . . , 𝑛 + 𝑚, we can conclude that there exists a
single 𝑤

𝑖
> 0 such that (37) is satisfied. Then, 𝜏 > 0, 𝑤

𝑖
𝜏 =

𝜃
𝑖
+ 2𝑁𝜋, and 𝑁 = 1, 2, . . ., for 𝜃

𝑖
∈ [0, 2𝜋], which satisfies

(36). We have that 𝑔
𝑖
(𝜆) = 0 has purely imaginary toots if

(35) is satisfied. This completes the proof.
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Figure 2: Position and velocity states of agents in a network, where 𝛾
1
= 0.48 and 𝛾

1
= 0.49.

Lemma 16 (see [21]). Consider the exponential polynomial

𝑝 (𝜆, 𝑒
−𝜆𝜏1 , . . . , 𝑒

−𝜆𝜏𝑚) = 𝜆
𝑛

+ 𝑝
(0)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(0)

𝑛

+ [𝑝
(1)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(1)

𝑛
] 𝑒
−𝜆𝜏1

+ ⋅ ⋅ ⋅ + [𝑝
(𝑚)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(𝑚)

𝑛
] 𝑒
−𝜆𝜏𝑚 ,

(41)

where 𝜏
𝑖
≥ 0 (𝑖 = 1, . . . , 𝑚) and 𝑝

(𝑖)

𝑗
(𝑖 = 0, 1, . . . , 𝑚; 𝑗 =

1, . . . , 𝑛) are constants. As (𝜏
1
, . . . , 𝜏

𝑚
) vary, the sum of the

orders of the zero of𝑝(𝜆, 𝑒−𝜆𝜏1 , . . . , 𝑒−𝜆𝜏𝑚) on the open right-half
plane can change only if a zero appears or crosses the imaginary.

Theorem 17. Suppose that −𝐿 has two simple zero eigenvalues
and all the other eigenvalues have negative real parts and (24)
is satisfied. Then, second-order multiconsensus in system (32)
is achieved if

𝜏 < 𝜏
0
= min
3≤𝑖≤𝑛+𝑚

{
𝜃
𝑖

𝑤
𝑖

} , (42)

where 𝜃
𝑖
∈ [0, 2𝜋], which satisfies

sin 𝜃
𝑖
=

𝛼𝑤
𝑖
− 𝛾
0
Im (𝜇
𝑖
) − 𝛾
1
Re (𝜇
𝑖
) 𝑤
𝑖

𝑤
2

𝑖

,

cos 𝜃
𝑖
=

𝛽 − 𝛾
0
Re (𝜇
𝑖
) + 𝛾
1
Im (𝜇
𝑖
) 𝑤
𝑖

𝑤
2

𝑖

,

𝑤
4

𝑖
= {𝛾
1
Im2 (𝜇

𝑖
) + [𝛼 − 𝛾

1
Re (𝜇
𝑖
)]
2

}𝑤
2

𝑖

+ 2 (𝛽𝛾
1
− 𝛼𝛾
0
) Im (𝜇

𝑖
) 𝑤
𝑖
+ [𝛽 − 𝛾

0
Re (𝜇
𝑖
)]
2

+ 𝛾
2

0
Im2 (𝜇

𝑖
)

(43)

and 𝜇
𝑖
(𝑖 = 3, . . . , 𝑛 + 𝑚) are the nonzero eigenvalues of −𝐿.

Proof. Since −𝐿 has two simple zero eigenvalues and all the
other eigenvalues have negative real parts and inequality
(24) holds, it follows from Theorem 8 that the second-order
consensus can be achieved in system (32) when 𝜏 = 0, where
all the roots of ∏

𝑛+𝑚

𝑖=3
𝑔
𝑖
(𝜆) = ∏

𝑛+𝑚

𝑖=3
{𝜆
2

+ (𝛼 − 𝛾
1
𝜇
𝑖
)𝜆 +

(𝛽 − 𝛾
1
𝜇
𝑖
)} = 0 have negative real parts and the roots
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Figure 3: Position and velocity states of agents in a network, where 𝛼 = 0.68 and 𝛼 = 0.66.
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Figure 4: State trajectories of seven agents with 𝛼 = 0, 𝛾
0
= 1, 𝛾

1
= 1, and 𝛽 = 1.
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Figure 5: Position and velocity states of agents with 𝛼 = 4, 𝛽 = 1, 𝛾
0
= 1, and 𝛾

1
= 0.5.
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Figure 6: Position and velocity states of agents in a network with input delays, where 𝜏 = 0.20 and 𝜏 = 0.21.



12 Mathematical Problems in Engineering

0 10 20 30 40 50 60 70

Po
sit

io
n

Time k

5

0

−5

−10

(a)

0 10 20 30 40 50 60 70

Ve
lo

ci
ty

10

8

6

4

2

0

−2

−4

−6

Time k

(b)

0 10 20 30 40 50 60 70
−10

−8

−6

−4

−2

0

2

4

6

8

Po
sit

io
n

Time k

(c)

0 10 20 30 40 50 60 70
−25

−20

−15

−10

−5

0

5

10

15

20

25

Ve
lo

ci
ty

Time k

(d)

Figure 7: Position and velocity states of agents in a network with input delays, where 𝜏 = 0.27 and 𝜏 = 0.28.

of 𝜆2 + 𝛼𝜆 + 𝛽 = 0 (𝛼 ≥ 0, 𝛽 ≥ 0) are located in the closed
left-half plane. It means that all the roots of 𝑔(𝜆) = 0 are
located in the closed left-half planewhen 𝜏 = 0.When 𝜏 varies
from 0 to 𝜏

0
, by Lemmas 15 and 16, a purely imaginary root

emerges and the sum of order of zero of 𝑔(𝜆) on the open
right-half plane can change.Therefore, the stability of system
(32) is not satisfied and multiconsensus cannot be achieved
when 𝜏 ≥ 𝜏

0
.

Remark 18. The idea of delays has been inspired by the idea
used in [8, 21, 22]. Consensus problem for double-integrator
multiagent systems under delays has been also investigated in
[8, 22], where the input delays were regarded as bifurcation
parameters. It can be seen that Hopf bifurcation occurs when
time delays pass through some critical values where the
conditions for local asymptotical stability of the equilibrium
are not satisfied.

4. Simulation

In this section, we present numerical simulations to illustrate
the effectiveness of the proposed theoretical analysis.

4.1. Second-Order DynamicalMulticonsensus. Considermul-
tiagent systems with the directed communication graph
shown in Figure 1. It can be seen that information exchange
exists between two subnetworks.

The Laplacian matrix is given by

𝐿 =

[
[
[
[
[
[
[
[
[

[

3 −3 0 1 0 0 −1

−2 3 −1 −1 0 0 1

−1 0 1 0 0 0 0

1 −1 0 2 0 0 −2

0 0 0 −1 1 0 0

0 0 0 0 −1 1 0

−1 1 0 −2 0 −1 3

]
]
]
]
]
]
]
]
]

]

. (44)

The eigenvalues of the matrix −𝐿 are

𝜇
1
= 𝜇
2
= 0, 𝜇

3
= −6.9987, 𝜇

4
= −2.8370,

𝜇
5
= −1.8014, 𝜇

6
= −1.1815 + 0.7303𝑖,

𝜇
7
= −1.1815 − 0.7303𝑖.

(45)

Let 𝛼 = 𝛽 = 0 and 𝛾
0

= 1; from Corollary 9,
it can be found that the dynamic multiconsensus can be



Mathematical Problems in Engineering 13

0 5 10 15 20 25 30

−150

−100

−50

0

50

100

150

Time k

Po
sit

io
n

(a)

0 5 10 15 20 25 30

Time k

−150

−100

−50

0

50

100

150

Ve
lo

ci
ty

(b)

0 5 10 15 20 25 30

Time k

Po
sit

io
n

−1000

−500

0

500

1000

1500

(c)

0 5 10 15 20 25 30

Time k

Ve
lo

ci
ty

−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

(d)

Figure 8: Position and velocity states of agents in a network with input delays, where 𝜏 = 0.19 and 𝜏 = 0.21.

achieved if 𝛾
1
> 0.4837. The position and velocity of all the

agents are shown in Figure 2, where systems (1) can achieve
dynamic multiconsensus when 𝛾

1
= 0.49 but cannot achieve

multiconsensus when 𝛾
1
= 0.48.

Let 𝛽 = 0, 𝛾
0
= 1, and 𝛾

1
= 0; from Corollary 10, one

can calculate𝛼 > 0.6719.Therefore, the staticmulticonsensus
can be achieved when 𝛼 = 0.68 but cannot be achieved when
𝛼 = 0.66 as shown in Figure 3.

When 𝛼 = 0, 𝛾
0

= 1, 𝛾
1

= 1, and 𝛽 = 1, one has
that the inequality in Corollary 12 holds. Then, the periodic
multiconsensus can be achieved as shown in Figure 4. When
𝛼 = 4, 𝛽 = 1, 𝛾

0
= 1, and 𝛾

1
= 0.5, the condition in Corollary

13 is satisfied.The consensus of multiagent systems (1) can be
reached, which are shown in Figure 5.

4.2. Second-Order Statical Multiconsensus with Input Delays.
When 𝛼 = 𝛽 = 0, 𝛾

0
= 1, and 𝛾

1
= 1, with simple

computations, one has that the inequality (24) holds and
multiconsensus can be reached if 𝜏 < 0.2023. The position
and velocity states of all the agents are shown in Figure 6,
where systems (1) can achieve multiconsensus when 𝜏 = 0.20

but cannot achieve multiconsensus when 𝜏 = 0.21.
Let 𝛽 = 0, 𝛾

0
= 1, 𝛾
1
= 0, and 𝛼 = 3; it can be verified that

inequality (24) holds and multiconsensus can be achieved

if 𝜏 < 0.2774. Figure 7 shows that multiconsensus can be
reached when 𝜏 = 0.27 but cannot be reached when 𝜏 = 0.28.

Let𝛼 = 0,𝛽 = 1, 𝛾
0
= 1, and 𝛾

1
= 1; fromTheorem 17, one

can obtain that multiconsensus can be achieved if 𝜏 < 0.1990.
Therefore,multiconsensus can be achievedwhen 𝜏 = 0.19 but
cannot be achieved when 𝜏 = 0.21 as shown in Figure 8.

5. Conclusions

In this paper, we consider multiconsensus problems for
multiple agents with double integrator. A sufficient condition
is obtained for ensuring multiconsensus, in which different
multiconsensus including the dynamic multiconsensus, the
static consensus, and the periodic multiconsensus can be
reached by choosing different gains. Furthermore, by using
Hopf bifurcation theory, we obtain a sufficient condition of
multiconsensus with a delayed multiagent system. Finally,
some simulation results are presented to illustrate the theoret-
ical results. In future, we should further consider the effects
of time-varying delays and switching interactions graphs.
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