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A novel fault detection method is proposed for detection process with nonlinearity and multimodal batches. Calculating the
Mahalanobis distance of samples, the data with the similar characteristics are replaced by the mean of them; thus, the number
of training data is reduced easily. Moreover, the super ball regions of mean and variance of training data are presented, which not
only retains the statistical properties of original training data but also avoids the reduction of data unlimitedly. To accurately identify
faults, two control limits are determined during investigating the distributions of distances and angles between training samples to
their nearest neighboring samples in the reduced database; thus, the traditional 𝑘-nearest neighbors (only considering distances)
fault detection (FD-kNN) method is developed. Another feature of the proposed detection method is that the control limits vary
with updating database such that an adaptive fault detection technique is obtained. Finally, numerical examples and case study are
given to illustrate the effectiveness and advantages of the proposed method.

1. Introduction

Fault detection has been one focus of recent efforts since
there existed a growing need for the quality monitoring
and safe operation in the practical process engineering [1–
4]. The objective existences of dynamic change, multiple
modes, and nonlinearity pose serious challenges for fault
detection proceeding in most of the process engineering,
such as semiconduction process [5–8]. Hence, an effective
and adaptive fault detection technology is worth investigating
in order to deal with these obstacles.

Note that nonlinear PCA method [9] dynamic PCA [10]
have been reported to be used for tackling dynamic and
nonlinear process. Following them, [11] investigated the fault
detection for nonlinear systems based on T-S fuzzy-modeling
theory. Reference [12] investigated the nonlinear systems
modeling and fault detection for electric power systems.
However, the aforementioned methods fail to work well for
the dynamic systemswith nonlinearity togetherwithmultiple
modes. Recently, [5, 6, 13–15] proposed some detection

techniques to jointly address the nonlinear, multimodal, and
dynamic behaviors of systems. References [5, 6] applied kNN
rule and improved PCA-kNN to fault detection for semicon-
ductor manufactory process with nonlinear and multimode
behaviors. Reference [14] proposed an adaptive local model
based on the monitoring approach for online monitoring of
nonlinear and multiple mode processes with non-Gaussian
information. Reference [15] proposed a data-based just-in-
time (JIT) SPC detection and identification technique, where
the distance was calculated and checked every time when
fault detection was conducted. Reference [13] reduced and
updated training database, and it presented JIT fault detection
method.

Note that it is the key how to determine the scale of
reduced database for precise fault detection. However, to the
best of the authors’ knowledge, how to reduce and update
the training samples set to lighten the computation load and
realize high detection performance has not been investigated
fully to date. Moreover, there are data drift and shift as
well as circumstance disturbance involved in the practical
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engineering application such that originally normal data may
be mistaken for fault, or vice versa. Time-varying control
limits design is a potential approach used to overcome the
above-mentioned negative factors, while few results have
been available in the literature so far, which motivates the
present study.

This paper is concerned with the two time-varying
control limits design used for online fault detection for
the multi-mode and nonlinear processes. The key idea is
that Mahalanobis distances among samples and super ball
domains of mean and variance of samples are first computed
by a JIT approach to reduce and update the training data
set as queries being detected. Then, two control limits are
computed in terms of both kNN distance and kNN angle
rules such that we can accurately identify whether the current
data is normal or not by on-line approach. It is worth pointing
out that two control limits vary according to the updating
database such that an adaptive fault detection technique that
can effectively eliminate the impact of data drift and shift
on the performance of detection process is obtained. Several
distinguished differences from the existing solutions to deal
with fault detection for industrial processes with nonlinear
and multi-mode behaviors are given below.

(1) Compared with [5, 6], FD-kNN method is improved
in the sense of the stochastic characteristic (mean) of
training samples’ angles to their 𝑘-nearest neighbor-
ing training samples being investigated to calculate
control limit. Thus, two control limits are derived,
which is the significant contribution in this paper.

(2) Different from [15], we propose a new fault detection
framework used to reduce and update database, as
well as vary control limits. Note that [5, 6] are not also
focused on this framework.

(3) There exist two significant differences from [13]. The
first one is that the method of reducing training
database. Here, two thresholds are proposed to con-
trol the reduction of data. The second one is that two
time-varying control limits used for detecting fault
are presented, while only one time-varying control
limit is derived in [13].

This paper is organized as follows. An algorithm of reduc-
ing training database is presented in Section 2. Section 3 is
dedicated to describe the on-line fault detection method.
Section 4 presents the results of experimental simulation.
Conclusions are stated in Section 5.

2. Reducing the Training Data Set

In this section, we will describe a technique of reducing the
training data set.

The need for reducing training samples in database
originates from the need to reduce calculation load and cost
expenditure for fault detection. However, the key is how
to control the reduction degree, while guaranteeing high
detection quality. Here, we try to utilize the property that the
closer the Mahalanobis distance between two samples is, the
more similar their basic features are. The basic idea is that

the two data with the closest Mahalanobis in database are
searched and substituted for the mean of them [16], and this
process is repeated until both mean of samples and variance
of samples exceed a specific threshold. Let X denote the
training data matrix with 𝑛 samples (rows) and 𝑚 variables
(columns), meanwhile, X also represents the raw data set
that consists of 𝑛 samples. The detailed algorithm is given as
follows.

Algorithm 1. One has the following.

Step 1.LetZ(𝑛×𝑚) = X(𝑛×𝑚) andV = (V
𝑖𝑗
) = ((𝑥

𝑖
− 𝑥
𝑖
)
󸀠
(𝑥
𝑗
−

𝑥
𝑗
)/(𝑛 − 1)) denote the covariance matrix of X, where 𝑥

𝑖
and

𝑥
𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑚) are the stochastic variables, and those

means are denoted by 𝑥
𝑖
and 𝑥

𝑗
, respectively.

Step 2. Calculate the variance and mean of samples as V
𝑋
=

[V
11

V
22
⋅ ⋅ ⋅ V
𝑚𝑚
]
T and M

𝑋
= [𝑥

1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑚
]
T, where

V
𝑖𝑖
denotes the sample variance corresponded to stochastic

variable 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑚).

Step 3. For each sample, we calculate the Mahalanobis dis-
tances between it and all of the other samples stored in data
set Z, and we define a Mahalanobis distance matrixMD(𝑛 ×
𝑛) = (𝑚𝑑

𝑖𝑗
), where 𝑚𝑑

𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛) represents the

Mahalanobis distance between sample 𝑖 and sample 𝑗.

Step 4.Theminimumand nonzero element in each raw in the
matrixMD is searched and all of them construct a row vector
v (1 × 𝑛). Moreover, we record the place (column number) of
each minimum element in each row, and they are placed in
a row vector 𝑝(1 × 𝑛). Based on it, finding out the minimum
value in v(1 × 𝑛), and if its place in v(1 × 𝑛) is 𝑖 and No. 𝑖
element is 𝑗 in vector 𝑝(1 × 𝑛), then 𝑚𝑑

𝑖𝑗
is the minimum

value in thematrixMD(𝑛×𝑛), whichmeans theMahalanobis
distance between the sample 𝑖 and the sample 𝑗 is the closest
in training data set.

Step 5. LetingM = Z, the sample 𝑖 is replaced by the mean of
the sample 𝑖 and the sample 𝑗, and the sample 𝑗 is deleted;
thus, the matrix Z is reduced a row. Similar to Step 2, the
variance V

𝑍
and mean M

𝑍
of samples Z are calculated,

respectively. Set a threshold 𝜖, if the variance and mean of
samples Z belong to the 𝜀 super ball domain of the variance
and mean of samples X; that is, ‖M

𝑍
−M
𝑋
‖ ≤ 𝜀 and ‖V

𝑍
−

V
𝑋
‖ ≤ 𝜀, return to Step 3, where 0 ≤ 𝜀 < 1; otherwise, M is

the simplified data SET. Exit.

Remark 2. Note that the two similar samples are replaced by
the mean of them based on Mahalanobis distance; however,
the statistical characteristics of samples will remain essen-
tially unchanged since the threshold 𝜀 that bounds the ranges
of mean and variance-centered super ball domains limits the
reduction degree of training data. Obviously, the smaller the
threshold 𝜀, the fewer the samples deleted, and then good
detection results may be obtained since mean and variance
of raw data change less. However, too much data will have
heavy load on both storage cost and computation. Therefore,
we advise that a proper small threshold should be determined
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based on the compromise of lower cost and higher detection
performance. Obviously, Algorithm 1 is a kind of logical and
promising way of reducing training data.

Remark 3. As a matter of fact, our approach has obviously
extended the methods used to reduce database in [13, 16] in
the sense that the changes of mean and variance of raw data
set are limited inside two specific super ball domains. Few
changes in mean and variance of raw data set guarantee that
the statistical characteristics of raw data are unchanged to
some level.

3. Detection Method

The basic principle of the proposed fault detection method
in this paper is that the trajectory of an incoming normal
sample is similar to the trajectories of training samples that
consist of normal data, which means that the trajectory
of an incoming fault sample must exhibit some deviations
from the trajectories of normal training samples [5, 6].
In other words, the distance between a fault sample and
the nearest neighboring training samples must be greater
than a normal sample’s distance to the nearest neighboring
training samples, and a fault sample’s angle with the nearest
neighboring training samples must also be greater than a
normal sample’s angle with the nearest neighboring training
samples. Therefore, if we can determine the distribution
of training samples’ distances to their nearest neighboring
training samples and the distribution of training samples’
angles with their nearest neighboring training samples, we
can define two control limits for given confidence levels. A
query is considered abnormal if its distance to its nearest
neighboring training samples is beyond the control limit CL

𝑑

or the control limit CL
𝜃
. Otherwise, the query is normal.

In this section, we will give two fault detection methods.
One is that queries are identified with fixed control limits as
shown in Figure 1. In Figure 2, the other scheme in which
control limits are updated along with normal query updating
database also can be seen.

3.1. Fault Detection with Fixed Control Limits

(A) Offline Model Building

Algorithm 4. One has the following.

Step 1. Set 𝑖 = 1 choose positive integers 𝑘
1
, 𝑘
2
, and 𝑠 denotes

the number of data in the reduced databaseΩ.

Step 2. Find 𝑘
1
neighbors with the nearest distance and 𝑘

2

neighbors with minimum angle for sample 𝑖 in the database
Ω, respectively.

Step 3. Calculate the squared distances between sample 𝑖 and
its 𝑘
1
nearest neighbors and the angles between sample 𝑖 and

its 𝑘
2
neighbors.

Step 4. Calculate the mean𝑋
𝑖
of these squared distances and

the mean 𝜃
𝑖
of these angles.

Normal

Fault

Process

Query

Control
limits

Detection

Database

Reduced
database

Figure 1: Fault detection with fixed control limits.

Normal
update

Process

Query

Control
limits

Database

Fault

Update

Reduced
database

Detection

Figure 2: Fault detection with varying control limits.

Step 5. Set 𝑖 = 𝑖 + 1. If 𝑖 ≤ 𝑠, go to Step 2; otherwise, go to Step
6.

Step 6. Estimate the cumulative distribution functions of 𝑋
𝑖

and 𝜃
𝑖
to obtain CL

𝑑
and CL

𝜃
.

Remark 5. At Step 2, Euclidean distance is used since it is
simple and easy, but any other distance is also suitable for the
method proposed. For the choice of 𝑘

1
and 𝑘
2
, an alternative

approach is to try several different values of 𝑘
1
and 𝑘

2
on

historical data and choose the values that give the best cross-
validation [5, 6].

Remark 6. Two control limits CL
𝑑
and CL

𝜃
proposed in this

paper are determined in terms of cumulative distribution
functions for given confidence levels, which means that the
mean values of vast majority squared distance and angles
based on kNN rule for the normal samples do not exceed it.
For example, 95% control limit means a value within which
95%of population of normal operation data (calculatedmean
values) are included. Here, 95% is called confidence level
based on probability and statistical theory.
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(B) Online Detection

Algorithm 7. One has the following.

Step 1. Calculate the squared distances between the query
𝑖 (𝑖 = 1, 2, . . .) and its 𝑘

1
-nearest neighbors and the angles

between it and its 𝑘
2
neighbors in the reduced data set Ω.

Step 2. Calculate the means of the above squared distances
and angles.

Step 3.The query is abnormal if the means are beyond either
CL
𝑑
or CL

𝑎
; otherwise, this query is normal. 𝑖 = 𝑖 + 1, return

to Step 1.

3.2. Fault Detection with Varying Control Limits. Firstly, we
performAlgorithm 4 to obtain two control limits CL

𝑑
or CL

𝑎

based on the reduced training data. Next, we continue to
carry outAlgorithm 8 that is obtained by rewritingAlgorithm
7.
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Figure 4: Training dataset (a) and left data under thresholds 𝜖 = 0.01 (b), 𝜖 = 0.015 (c), and 𝜖 = 0.02 (d).

Algorithm 8. One has the following.

Step 1. Calculate the distances between the query 𝑖 (𝑖 =
1, 2, . . .) and its 𝑘

1
-nearest neighbors and the angles between

it and its 𝑘
2
neighbors in the reduced data setΩ.

Step 2. Calculate the means of the above squared distances
and angles.

Step 3.The query is abnormal if the means are beyond either
CL
𝑑
or CL

𝑎
; then, 𝑖 = 𝑖 + 1, return to Step 1. Otherwise, this

query is normal and it can be put into the reduced database
to updated databaseΩ.

Step 4. Continuing to perform Algorithm 1 and Algorithm 4,
the new CL

𝑑
or CL

𝑎
are calculated. 𝑖 = 𝑖 + 1, return to Step 1.

More detailed implementation of Algorithm 8 is shown
in Figure 3.

Remark 9. Obviously, time-varying control limits obtained
by recalculating control limits when the new detected normal
data are added into database can reduce the effect of drift
and shift or circumstance disturbance on fault detection,
compared with the fix control limit [5, 6, 15]. However, it may
also increase computation complexity and cost expenditure.
It should be pointed out that Algorithm 1 is implemented
once the on-line detection process is completed as shown in
Algorithm 8.Thus the updated database can be reduced, such
that the low cost of storage and high fault detection quality
can be guaranteed simultaneously.

Remark 10. Comparedwith [5, 6, 9–13, 15], the technique that
reduces and updates training data set is a main contribution
in this paper. More importantly, as shown in Figure 3, the
varying control limits can be derived such that the adaptive
fault detection can eliminate the impact of data drift and shift
on the quality of fault detection to some extent. Moreover, we
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make use of two control limits to identify faults; it is natural
that detection performance is better by the method proposed
in this paper than that obtained in [5, 6].

Remark 11. Note that the database is updated by on-line
approach and confidence limits of statistics used for detecting
faults are also time-varying in [14]. For the sake of compari-
son, we give two differences. One is that the database is not
only updated but also reduced during detection process. The
other is that models of systems are not constructed, and two
controls limits are presented by investigating the statistical
characteristics.

Remark 12. In fact, the difficulties posed by nonlinearity,
dynamic changes, and multiple modes of control process on
fault detection have been addressed explicitly by the detection
method proposed, which comes as no great surprise, since
the kNN technique (handling nonlinearity and multiple
modes), the on-line detection, and update scheme (adapting
to dynamic changes) are integrated.

4. Numerical Examples

In this section, two examples are given to show the effective-
ness of the proposed fault detection technique. In Example 1,
firstly, we give the results of reducing training data set under
different thresholds and the main aim is to show the effect of
thresholds on the number of reducing training data; secondly,
we not only verify the effectiveness of the detection method
proposed in this paper for nonlinear process but also illustrate
that faults can be identified better under two control limits
than one control limit; in addition, comparative results are
given to show the advantages of this paper. In Example 2, we
verify the effectiveness of proposed detective technique under
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multiple modes.More importantly, the advantage of dynamic
and varying control limit can be shown.

Example 1. Consider the following dominant nonlinear and
single process mode:

𝑥
1
= 𝑥
3

2
+ noise. (1)

(A) Reduction of Training Data under Different Thresholds.
60 normal runs are operated for verifying the method of
reducing training data set. Here, three thresholds 𝜖 = 0.01,
𝜖 = 0.015, and 𝜖 = 0.02 are set, corresponding to which
Table 1 gives the number of left samples in the reduced data
set, and the upper bounds of distance deviations between
mean and variance of left data and those of the training data
can also be seen in Table 1. Figure 4 shows the training data
set and the reduced data set under different thresholds.

As shown in Table 1 and Figure 4, the left data become
less and less and distance deviations of mean and variance
increase with the threshold increasing. Then, a small thresh-
old is favorable in order that the characteristics of training
data is retained leading to better detection results. To clearly
describe the reducing data process, we give Figures 5–7. In
Figure 5, the red star denotes the mean of training data, and
blue stars with dashed line describe the changes of means of
training sample during reducing process under threshold 𝜖 =
0.02. Similarly, Figures 6 and 7 show the changes of variance
of sample under the aforementioned threshold.Moreover, the
circular regions (when the dimension of sample exceeds 3, we
use the supper ball regions) with radius of 0.02 are shown in
Figures 5 and 7, respectively.

(B) Verification of the Detection Method Proposed and
Comparison with Relevant Results. Continuing to operate
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Table 1: Reduction of Database.

Thresholds Left data ‖M
𝑍
−M
𝑋
‖ ‖V

𝑍
− V
𝑋
‖

0.01 57 0.0103 0.0015
0.015 48 0.0173 0.0036
0.02 34 0.0261 0.0092

the system (1), we obtain 300 normal data used for train-
ing data, 5 normal runs used for validation, and 10 faults
introduced and all of these data are shown in Figure 8.
Some necessary parameters used in Algorithms 1 and 4 and
obtained results are given in Table 2. Here, two confidence
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Table 2: Summary of parameters in Example 1.

𝜀 𝑘
1
𝑘
2

CL
𝑑

CL
𝜃

Left data
0.01 5 5 4.8628𝑒 − 004 0.5510 268

levels 99% and 85% are chosen to obtain the CL
𝑑
and CL

𝜃
.

The detection result by the method in this paper is presented
in polar coordinates shown in Figure 9. Clearly, the normal
data should belong to the area enclosed by the polar axis,
a ray with polar angle CL

𝜃
and polar radius CL

𝑑
based on
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Algorithm 7, and the data outside the area are faults. It should
be pointed out that faults that do not appear in Figure 9 have
exceeded the display extent. From Figure 9, all of faults are
accurately identified. Simulation results presented illustrate
that defection performance does not suffer degradation by
virtue of the reduced data set, which will contribute to saving
storage space and reducing the computational complexity.
Figures 10 and 11 show the detection results by the method
proposed in [5, 13], respectively. In Figure 10, fault 3 is
identified as normal and faults 1, 3, and 4 are mistaken
for normal data in Figure 11. The single control limit based
on the nearest distances is used in [5, 13] to detect data,
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Figure 13: Fault detection by the proposed method.
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while two control limits obtained by utilizing the distribu-
tions of 𝑘-nearest distances and smallest angles are used
in detective process in this paper. By comparison with the
methods in [5, 13], the advantage of the detective technique
with two control limits over one control limit is obvious.

Example 2. Considers the following bimodal cases [5, 6]:

(A) 𝑥1 = 2𝑥2 + noise,

(B) 𝑥1 = 1.5𝑥2 + 6 + noise.
(2)
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Figure 15: Fault detection by the proposed method.

The above two cases are operated to produce 200 normal
data, respectively, and continue to be operated to produce 10
faults that are used for the defection, respectively. Moreover,
the first case is operated to produce 10 normal data and 50
normal data are produced in operating the second case, then
the total 60 normal data are used for validation. All data are
given in Figure 12. Similar to Example 1, both 𝑘

1
and 𝑘

2
are

set to be 10, and the confidence level is chosen as 99% and
90% to calculate the CL

𝑑
and CL

𝜃
, respectively. Threshold

𝜖 = 0.03 is set. When validations are detected, data set is
updated and reduced, and control limits are also updated.
At last, 299 normal samples are left to use for fault detection.
The detection results by the proposed method in this paper
is presented in Figures 13 and 14. As shown in Figures 13 and
14, control limits CL

𝑑
and CL

𝜃
are updated as the validations

are identified and all of faults are identified correctly. Note
that the normal sample 13 used for validation is correctly
identified, while it is mistaken for fault under the fix control
limit (similar to [15]), which illustrates the advantage of the
varying control limits.

5. Case Study

In this section, all of data used for training and validation are
produced from an AL stack etch process that was performed

on a commercial scale Lam 9600 plasma etch tool at Texas
Instrument, Inc. [17]. It is well known that AL stack etch
process is characterized by the multiple modes and nonlin-
earity, and it is usually accompanied by data drift and shift. By
Algorithm 8, the control limits CL

𝑑
= 7.8537𝑒+09 andCL

𝜃
=

1.5165 are calculated, respectively. Changing training data, 5
faults are obtained. Figure 15 shows the detection results by
the proposed method in this paper. One can clearly see that
almost all of validations are identified as normal data and all
of faults exceed the control limit CL

𝑑
. This case illustrates the

effectiveness of the proposed method.

6. Conclusions

This paper studies an adaptive fault detectionmethod faced to
process engineering with nonlinear and multimodal behav-
iors. The main idea is as follows: firstly, the training database
is reduced and updated by on-line approach to lighten storage
load and obtain varying control limits; next, two control
limits are determined by investigating the distributions of
the kNN squared distances and kNN angles of normal
samples to guarantee high quality of detection.Thedeveloped
FD-kNN method based on local neighborhoods naturally
handles process nonlinearity and multimodal environment.
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We highlight that two control limits are actively adjusted by
on-line approach to overcome effect of drift and shift on the
quality of detection.Thus, queries can be identify as correctly
as possible. Finally, numerical examples and case study are
given to illustrate the effectiveness and advantages of the
proposedmethod.With the development of signal estimation
technology of networked nonlinear stochastic systems [18–
20], on-line and adaptive fault detection methods for these
systems based on updated database will be discussed in the
future.
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