
Supplementary Materials for EVD Dualdating based Online Subspace Learning
In many online applications, it is impossible to store the original data because of the limitation of the physical medium

and the consideration about efficiency. Described in a mathematical form, this means that the original data matrix A is

unobtainable and replaced by its best rank-k approximation which can be calculated by Uk and Λk. Theorem 2 proofs that

under the low-rank-plus-shift structure, when A is replaced by bestk(A), the information discarded will also be discarded

after EVD dualdating. In other words, EVD dualdating is an optimal rank-k estimator in the sequential usage.

Theorem 2. Given a matrix A ∈ Rd×n, with its best-k approximation Â, the deleted data D ∈ Rd×p from A, the added data

B ∈ Rd×m, d > n > p. Let C = [ A D ] be the remained data from A, F = [ C D B ] be the full data, E = [ C B ]

be the final data, where the underline means deletion. Let Ĉ = [ bestk(A) D ] be the remained matrix after deleting columns

corresponds to D from A’s best-k approximation, Ê = [ Ĉ B ] be the final data from Â. Assume F satisfies the low-rank-plus-

shift structure, i.e.

FTF = XF + σ2In, σ > 0,

where XF is symmetric and positive semidefinite with rank(XF ) = k, then

bestk(SE) = bestk(ŜE).

Proof.

FTF =


CTC CTD CTB

DTC DTD DTB

BTC BTD BTB

 = XF + σ2In+m.

Then,

XF = FTF − σ2In+m =


CTC − σ2In−p CTD CTB

DTC DTD − σ2Ip DTB

BTC BTD BTB − σ2Im

 .

Since rank(XF ) = k, it follows that:

rank(CTC − σ2In−p) = kC ≤ k,

rank(DTD − σ2Ip) = kD ≤ k,

rank(BTB − σ2Im) = kB ≤ k.

Let the EVDs of CTC − σ2In−p, DTD − σ2Ip, and BTB − σ2Im are:

CTC − σ2In−p = VC

 Λ′
C

0

V T
C ,

DTD − σ2Ip = VD

 Λ′
D

0

V T
D ,

BTB − σ2Im = VB

 Λ′
B

0

V T
B ,

where Λ′
C = Σ2

C − σ2IkC , Λ′
D = Σ2

D − σ2IkD , Λ′
B = Σ2

B − σ2IkB and ΣC ∈ RkC×kC , ΣD ∈ RkD×kD , ΣB ∈ RkB×kB are from

the singular values of C, D and B.
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So the SVDs of C, D, and B can be written as:

C = UC

 ΣC

σItC

V T
C =

[
UCkC

UCl

] ΣC

σItC

[
VCkC

VCl

]T
,

D = UD

 ΣD

σItD

V T
D =

[
UDkD

UDl

] ΣD

σItD

[
VDkD

VDl

]T
,

B = UB

 ΣB

σItB

V T
B =

[
UBkB

UBl

] ΣB

σItB

[
VBkB

VBl

]T
,

where UCkC ∈ Rd×kC , UCl ∈ Rd×tC , UDkD ∈ Rd×kD , UDl ∈ Rd×tD , UBkB ∈ Rd×kB , UBl ∈ Rd×tB , tC = rank(C) − kC ,

tD = rank(D)− kD, tB = rank(B)− kB .

Then, 
VC

VD

VB


T

XF


VC

VD

VB



=



 Λ′
C

0

 V T
C CTDVD V T

C CTBVB

V T
DDTCVC

 Λ′
D

0

 V T
DDTBVB

V T
B BTCVC V T

B BTDVD

 Λ′
B

0




=



Λ′
C 0 S1 S2 S5 S6

0 0 S3 S4 S7 S8

ST
1 ST

3 Λ′
D 0 S9 S10

ST
2 ST

4 0 0 S11 S12

ST
5 ST

7 ST
9 ST

11 Λ′
B 0

ST
6 ST

8 ST
10 ST

12 0 0


.

Because XF is symmetric positive semidefinite and rank(XF ) = k, according the determination condition of a sym-

metric positive semidefinite matrix, there exists a k-order principal minor is positive, and the determinant of arbitrary

(k + 1)-order principal minor is zero. It follows that S2 = 0, S3 = 0, S4 = 0, S6 = 0, S7 = 0, S8 = 0, S10 = 0, S11 = 0,

S12 = 0, and kC + kD + kB = k.

Thus, we have [
UCkCΣC σUCl

]T [
UDkDΣD σUDl

]
=

 S1 0

0 0

 ,

[
UCkC

ΣC σUCl

]T [
UUkB

ΣB σUBl

]
=

 S5 0

0 0

 ,

[
UDkD

ΣC σUDl

]T [
UBkB

ΣB σUBl

]
=

 S9 0

0 0

 ,

which lead to

UCkC ⊥ UDl, UCl ⊥ UDkD , UCl ⊥ UDl,

UCkC ⊥ UBl, UCl ⊥ UBkB , UCl ⊥ UBl,

UDkD ⊥ UBl, UDl ⊥ UBkB , UDl ⊥ UBl.

Let ÛA be an orthonormal basis of

L
(
[ UCkC

UDkD
]
)
∩ L⊥

(
[ UCl UDl ]

)
,
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where L(·) denotes the column space of a matrix, and L⊥(·) denotes the orthonormal complement.

Obviously, rank(ÛA) ≤ k, so in order to construct the first k eigen vectors, we append a few mutually orthogonal

vectors from UCl and UDl to ÛA. Divide UCl and UDl into two parts, UCl =
[
UA1
Cl UA2

Cl

]
, UDl =

[
UA1
Dl UA2

Dl

]
,

satisfying that the first k eigen vectors of A are

UAk =
[
ÛA UA1

Cl UA1
Dl

]
.

Then, we have

AAT = ÂÂT + σ2UA2
Cl U

A2
Cl

T
+ σ2UA2

Dl U
A2
Dl

T
,

which leads to

EET = ÊÊT + σ2UA2
Cl U

A2
Cl

T
+ σ2UA2

Dl U
A2
Dl

T
,

Similarly, let ÛE be an orthonormal basis of L
(
[ UCkC

UBkB
]
)
L⊥

(
[ UCl UBl ]

)
, divide UCl and UBl into two

parts, UCl =
[
UE1
Cl UE2

Cl

]
, UBl =

[
UE1
Bl UE2

Bl

]
, then the first k singular vectors of E are

UEk =
[
ÛE UE1

Cl UE1
Bl

]
.

Assuming that the intersection of of UA2
Cl and UE1

Cl is U I
Cl (null or non-null), it can be written that UA2

Cl =
[
U I
Cl UA

Cl

]
,

UE1
Cl =

[
U I
Cl UE

Cl

]
. Let rank(UC

Cl) = ks, the following holds

UT
EkU

A2
Cl U

A2
Cl

T
UEk

=
[
ÛE UE1

Cl UE1
Bl

]T
UA2
Cl U

A2
Cl

T
[
ÛE UE1

Cl UE1
Bl

]
=

 0

 U I
Cl

T

UA
Cl

T

[
U I
Cl UE

Cl

]
0

T  0

 U I
Cl

T

UA
Cl

T

[
U I
Cl UE

Cl

]
0



=


0

Iks

0


k×k

,

UT
EkU

A2
Dl U

A2
Dl

T
UEk

=
[
ÛE UE1

Cl UE1
Bl

]T
UA2
Dl U

A2
Dl

T
[
ÛE UE1

Cl UE1
Bl

]
= 0k×k.

So

UT
EkEETUEk = UT

EkÊÊTUEk + σ2


0

Iks

0


k×k

.

Finally, we can conclude that

bestk(SE) = bestk(ŜE).

completing the proof.
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