Supplementary Materials for EVD-Dualdating based Online Subspace Learning

1. Proof of Theorem 1

Proof.
ctc c¢'p CTB
FT'F=| D¢ DTD DTB | =Xp+0*Lim.
BTC BTD BB
Then,
CTC - oI, _, CcTD CTB
Xp=FTF — 0%l = DTC DTD — 021, DB
BTC BTD BTB — oI,
Since rank(Xg) = k, it follows that:
rank(CTC —o*I,_,) = ko <k,
rank(D'D —o*1,) = kp <k,
rank(BTB — ¢%I,,) = kp<k.

Let the EVDs of CTC — ¢21,,_,, DT D — 621, and BT B — 521, are:
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where A, = X2, — 021}, N, = 34 — 021y, Ny = 3% — 021}, and X € RFexke 31, € Rhoxkp 375 € RF5XF5 are from
the singular values of C, D and B.
So the SVDs of C, D, and B can be written as:
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where Uck. € RkaC, Uey € RdXtC, Upk, € RkaD, Up; € RdXtD, Uiy € RkaB, Up € RdXtB, tc = Tank(C’) — ke,

tp =rank(D) — kp, tg = rank(B) — kp.



Then,
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Because X is symmetric positive semidefinite and rank(Xg) = k, according the determination condition of a sym-
metric positive semidefinite matrix, there exists a k-order principal minor is positive, and the determinant of arbitrary
(k + 1)-order principal minor is zero. It follows that Sy = 0, 53 =0, 54 =0, 5 = 0,57 =0, 55 =0, S10 =0, S11 =0,
S12=0,and k¢ + kp + kg = k.

Thus, we have
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which lead to

Ucke L Upi,Uci L Upiyp,Uct L Upy,
Ucke L Ul Uct L Upkp,Uct L Upy,

Upkp, L U, Up; L Upky,Upi L Up.

Let U4 be an orthonormal basis of

E([ Ucke Ubkp ]) nL* ([ Ui Upi D,

where £(-) denotes the column space of a matrix, and £ (-) denotes the orthonormal complement.
Obviously, rank(U4) < k, so in order to construct the first k eigen vectors, we append a few mutually orthogonal
vectors from Ug; and Up; to Ua. Divide Ug; and Up; into two parts, Ugy = { Ué“ll U(‘}‘f }, Up, = { U’Sll Ugl? ,

satisfying that the first k eigen vectors of A are
Uak=| Uy UL UA } :

Then, we have
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which leads to

EET = BET + 2ULU2T + Uiy’
Similarly, let Uz be an orthonormal basis of £ ([ Ucke Uiy ]) Lt ([ Uci Ug ]), divide Ug; and Up; into two

parts, Ucy = Ugll U 512 }, U = { U gll U gf ], then the first k singular vectors of E are
Upv=| Up UE UB ]

Assuming that the intersection of of UZ? and UE} is UZ, (null or non-null), it can be written that UA? = { vk, ug } ,

UGl = { UL, UE } Let rank(US;) = ks, the following holds
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Finally, we can conclude that

bestk(SE) = bestk (S};)

completing the proof.



