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We investigate the numerical solution of linear fractional integro-differential equations by least squares method with aid of shifted
Chebyshev polynomial. Some numerical examples are presented to illustrate the theoretical results.

1. Introduction

Many problems can be modeled by fractional Integro-
differential equations from various sciences and engineering
applications. Furthermore most problems cannot be solved
analytically, and hence finding good approximate solutions,
using numerical methods, will be very helpful.

Recently, several numerical methods to solve frac-
tional differential equations (FDEs) and fractional Integro-
differential equations (FIDEs) have been given. The authors
in [1, 2] applied collocation method for solving the follow-
ing: nonlinear fractional Langevin equation involving two
fractional orders in different intervals and fractional Fred-
holm Integro-differential equations. Chebyshev polynomials
method is introduced in [3–5] for solving multiterm frac-
tional orders differential equations and nonlinear Volterra
and Fredholm Integro-differential equations of fractional
order.The authors in [6] applied variational iterationmethod
for solving fractional Integro-differential equations with
the nonlocal boundary conditions. Adomian decomposition
method is introduced in [7, 8] for solving fractional diffu-
sion equation and fractional Integro-differential equations.
References [9, 10] used homotopy perturbation method for
solving nonlinear Fredholm Integro-differential equations of
fractional order and system of linear Fredholm fractional
Integro-differential equations. Taylor series method is intro-
duced in [11] for solving linear integrofractional differential
equations of Volterra type. The authors in [12, 13] give an

application of nonlinear fractional differential equations and
their approximations and existence and uniqueness theorem
for fractional differential equations with integral boundary
conditions.

In this paper least squares method with aid of shifted
Chebyshev polynomial is applied to solving fractional
Integro-differential equations. Least squaresmethodhas been
studied in [14–18].

In this paper, we are concerned with the numerical
solution of the following linear fractional Integro-differential
equation:

𝐷
𝛼

𝜑 (𝑥) = 𝑓 (𝑥) + ∫

1

0

𝐾 (𝑥, 𝑡) 𝜑 (𝑡) 𝑑𝑡, 0 ≤ 𝑥, 𝑡 ≤ 1, (1)

with the following supplementary conditions:

𝜑
(𝑖)

(0) = 𝛿
𝑖
, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N, (2)

where 𝐷𝛼𝜑(𝑥) indicates the 𝛼th Caputo fractional derivative
of 𝜑(𝑥); 𝑓(𝑥), 𝐾(𝑥, 𝑡) are given functions, 𝑥 and 𝑡 are real
variables varying in the interval [0, 1], and 𝜑(𝑥) is the
unknown function to be determined.

2. Basic Definitions of Fractional Derivatives

In this section some basic definitions and properties of
fractional calculus theory which are necessary for the formu-
lation of the problem are given.
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Definition 1. A real function 𝑓(𝑥), 𝑥 > 0, is said to be in the
space 𝐶

𝜇
, 𝜇 ∈ R, if there exists a real number 𝑝 > 𝜇 such that

𝑓(𝑥) = 𝑥
𝑝

𝑓
1
(𝑥), where 𝑓

1
(𝑥) ∈ 𝐶[0, 1).

Definition 2. A function𝑓(𝑥), 𝑥 > 0, is said to be in the space
𝐶
𝑚

𝜇
, 𝑚 ∈ N ∪ {0}, if 𝑓(𝑚) ∈ 𝐶

𝜇
.

Definition 3. The left sided Riemann-Liouville fractional
integral operator of order 𝛼 ≥ 0 of a function𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1,

is defined as [19]

𝐽
𝛼

𝑓 (𝑥) =
1

Γ (𝛼)
∫

𝑥

0

𝑓 (𝑡)

(𝑥 − 𝑡)
1−𝛼

𝑑𝑡, 𝛼 > 0, 𝑥 > 0, (3)

𝐽
0

𝑓 (𝑥) = 𝑓 (𝑥) . (4)

Definition 4. Let 𝑓 ∈ 𝐶
𝑚

−1
1, 𝑚 ∈ N ∪ {0}. Then the Caputo

fractional derivative of 𝑓(𝑥) is defined as [20–22]

𝐷
𝛼

𝑓 (𝑥) =

{

{

{

𝐽
𝑚−𝛼

𝑓
𝑚

(𝑥) , 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N,
𝐷
𝑚

𝑓 (𝑥)

𝐷𝑥𝑚
, 𝛼 = 𝑚.

(5)

Hence, we have the following properties:

(1) 𝐽
𝛼

𝐽
]
𝑓 = 𝐽
𝛼+]

𝑓, 𝛼, ] > 0, 𝑓 ∈ 𝐶
𝜇
, 𝜇 > 0,

(2) 𝐽
𝛼

𝑥
𝛾

=
Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑥
𝛼+𝛾

, 𝛼 > 0, 𝛾 > −1, 𝑥 > 0,

(3) 𝐽
𝛼

𝐷
𝛼

𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑

𝑘=0

𝑓
(𝑘)

(0
+

)
𝑥
𝑘

𝑘!
,

𝑥 > 0, 𝑚 − 1 < 𝛼 ≤ 𝑚,

(4)𝐷
𝛼

𝐽
𝛼

𝑓 (𝑥) = 𝑓 (𝑥) , 𝑥 > 0, 𝑚 − 1 < 𝛼 ≤ 𝑚,

(5)𝐷
𝛼

𝐶 = 0, 𝐶 is a constant,

(6)𝐷
𝛼

𝑥
𝛽

=

{{

{{

{

0, 𝛽 ∈ N
0
, 𝛽 < [𝛼] ,

Γ (𝛽 + 1)

Γ (𝛽 − 𝛼 + 1)
𝑥
𝛽−𝛼

, 𝛽 ∈ N
0
, 𝛽 ≥ [𝛼] ,

(6)

where [𝛼] denoted the smallest integer greater than or equal
to 𝛼 and N

0
= {0, 1, 2, . . .}.

3. Solution of Linear Fractional
Integro-Differential Equation

In this section the least squares method with aid of shifted
Chebyshev polynomial is applied to study the numerical
solution of the fractional Integro-differential (1).

This method is based on approximating the unknown
function 𝜑(𝑥) as

𝜑
𝑛
(𝑥) ≅

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑥) , 0 ≤ 𝑥 ≤ 1, (7)

where𝑇∗
𝑖
(𝑥) is shifted Chebyshev polynomial of the first kind

which is defined in terms of the Chebyshev polynomial 𝑇
𝑛
(𝑥)

by the following relation [23]:

𝑇
∗

𝑛
(𝑥) = 𝑇

𝑛
(2𝑥 − 1) , (8)

and the following recurrence formulae:

𝑇
∗

𝑛
(𝑥) = 2 (2𝑥 − 1) 𝑇

∗

𝑛−1
(𝑥) − 𝑇

∗

𝑛−2
(𝑥) , 𝑛 = 2, 3, . . . ,

(9)

with initial conditions

𝑇
∗

0
(𝑥) = 1, 𝑇

∗

1
(𝑥) = 2𝑥 − 1, (10)

𝑎
𝑖
, 𝑖 = 0, 1, 2, . . ., are constants.
Substituting (7) into (1) we obtain

𝐷
𝛼

(

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑥)) = 𝑓 (𝑥) + ∫

1

0

𝐾 (𝑥, 𝑡) [

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑡)] 𝑑𝑡.

(11)

Hence the residual equation is defined as

𝑅 (𝑥, 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
)

=

𝑛

∑

𝑖=0

𝑎
𝑖
𝐷
𝛼

𝑇
∗

𝑖
(𝑥) − 𝑓 (𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡) [

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑡)] 𝑑𝑡.

(12)

Let

𝑆 (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
) = ∫

1

0

[𝑅 (𝑥, 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
)]
2

𝑤 (𝑥) 𝑑𝑥,

(13)

where 𝑤(𝑥) is the positive weight function defined on the
interval [0, 1]. In this work we take 𝑤(𝑥) = 1 for simplicity.
Thus

𝑆 (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
)

= ∫

1

0

{

𝑛

∑

𝑖=0

𝑎
𝑖
𝐷
𝛼

𝑇
∗

𝑖
(𝑥) − 𝑓 (𝑥)

− ∫

1

0

𝐾 (𝑥, 𝑡) [

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑡)] 𝑑𝑡}

2

𝑑𝑥.

(14)

So, finding the values of 𝑎
𝑖
, 𝑖 = 0, 1, . . . , 𝑛, which minimize

𝑆 is equivalent to finding the best approximation for the
solution of the fractional Integro-differential equation (1).

The minimum value of 𝑆 is obtained by setting
𝜕𝑆

𝜕𝑎
𝑗

= 0, 𝑗 = 0, 1, . . . , 𝑛. (15)

Applying (15) to (14) we obtain

∫

1

0

{

𝑛

∑

𝑖=0

𝑎
𝑖
𝐷
𝛼

𝑇
∗

𝑖
(𝑥) − 𝑓 (𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡) [

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑡)] 𝑑𝑡}

×{𝐷
𝛼

𝑇
∗

𝑗
(𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡) 𝑇
∗

𝑗
(𝑡) 𝑑𝑡} 𝑑𝑥.

(16)
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By evaluating the above equation for 𝑗 = 0, 1, . . . , 𝑛 we can
obtain a system of (𝑛 + 1) linear equations with (𝑛 + 1)

unknown coefficients 𝑎
𝑖
’s. This system can be formed by

using matrices form as follows:

𝐴

=

(
(
(

(

∫

1

0

𝑅 (𝑥, 𝑎
0
) ℎ
0
𝑑𝑥 ∫

1

0

𝑅 (𝑥, 𝑎
1
) ℎ
0
𝑑𝑥 . . . ∫

1

0

𝑅 (𝑥, 𝑎
𝑛
) ℎ
0
𝑑𝑥

∫

1

0

𝑅 (𝑥, 𝑎
0
) ℎ
1
𝑑𝑥 ∫

1

0

𝑅 (𝑥, 𝑎
1
) ℎ
1
𝑑𝑥 . . . ∫

1

0

𝑅 (𝑥, 𝑎
𝑛
) ℎ
1
𝑑𝑥

...
... d

...

∫

1

0

𝑅 (𝑥, 𝑎
0
) ℎ
𝑛
𝑑𝑥 ∫

1

0

𝑅 (𝑥, 𝑎
1
) ℎ
𝑛
𝑑𝑥 . . . ∫

1

0

𝑅 (𝑥, 𝑎
𝑛
) ℎ
𝑛
𝑑𝑥

)
)
)

)

,

𝐵 =
(
(

(

∫

1

0

𝑓 (𝑥) ℎ
0
𝑑𝑥

∫

1

0

𝑓 (𝑥) ℎ
1
𝑑𝑥

...

∫

1

0

𝑓 (𝑥) ℎ
𝑛
𝑑𝑥

)
)

)

,

(17)

where

ℎ
𝑗
= 𝐷
𝛼

𝑇
∗

𝑗
(𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡) 𝑇
∗

𝑗
(𝑡) 𝑑𝑡, 𝑗 = 0, 1, . . . , 𝑛,

𝑅 (𝑥, 𝑎
𝑖
) =

𝑛

∑

𝑖=0

𝑎
𝑖
𝐷
𝛼

𝑇
∗

𝑖
(𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡) [

𝑛

∑

𝑖=0

𝑎
𝑖
𝑇
∗

𝑖
(𝑡)] 𝑑𝑡,

𝑖 = 0, 1, . . . , 𝑛.

(18)

By solving the above system we obtain the values of the
unknown coefficients and the approximate solution of (1).

4. Numerical Examples

In this section, some numerical examples of linear fractional
Integro-differential equations are presented to illustrate the
above results. All results are obtained by using Maple 15.

Example 1. Consider the following fractional Integro-
differential equation:

𝐷
1/2

𝜑 (𝑥) =
(8/3) 𝑥

3/2

− 2𝑥
1/2

√𝜋
+
𝑥

12
+ ∫

1

0

𝑥𝑡𝜑 (𝑡) 𝑑𝑡,

0 ≤ 𝑥, 𝑡 ≤ 1,

(19)

subject to 𝜑(0) = 0 with the exact solution 𝜑(𝑥) = 𝑥2 − 𝑥.
Applying the least squares method with aid of

shifted Chebyshev polynomial of the first kind 𝑇
∗

𝑖
(𝑥),

𝑖 = 0, 1, . . . , 𝑛 at 𝑛 = 5, to the fractional Integro-differential

Column Ro
w

1 1

3 3

2 2

4 4

5 5

6 6

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

1

×10
6

Figure 1: The matrix inverse of Example 1.

0

10.2 0.4 0.6 0.8

Exact
Approximate

−0.25

−0.20

−0.10

−0.15

−0.05

x

Figure 2: Numerical results of Example 1.

equation (19) we obtain a system of (6) linear equations
with (6) unknown coefficients 𝑎

𝑖
, 𝑖 = 0, 1, . . . , 5. This system

can be transformed into a matrix equation and by solving
this matrix equation we obtain the inverse which is given
in Figure 1 and we obtain the values of the coefficients.
Substituting the values of the coefficients into (7) we obtain
the approximate solution which is the same as the exact
solution and the results are shown in Figure 2.
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Column Ro
w

1 1

3 3

2 2

4 4

5 5

6 6

100000

200000

300000

400000

500000

600000

Figure 3: The matrix inverse of Example 2.

0

0

0.1

0.2

0.3

0.2 0.4 0.6 0.8 1

Exact
Approximate

x

Figure 4: Numerical results of Example 2.

Example 2. Consider the following fractional Integro-
differential equation:

𝐷
5/6

𝜑 (𝑥) = 𝑓 (𝑥) + ∫

1

0

𝑥𝑒
𝑡

𝜑 (𝑡) 𝑑𝑡, 0 ≤ 𝑥, 𝑡 ≤ 1, (20)

subject to 𝜑(0) = 0, where

𝑓 (𝑥) = −
3

91

𝑥
1/6

Γ (5/6) (−91 + 216𝑥
2

)

𝜋
+ (5 − 2𝑒) 𝑥 (21)

with the exact solution 𝜑(𝑥) = 𝑥 − 𝑥3.

Column
Ro
w

11

3
3

0

2
2

4 4

5 5

6 6

−5

5

10

15

×10
9

Figure 5: The matrix inverse of Example 3.

Similarly as in Example 1 applying the least squares
method with aid of shifted Chebyshev polynomial of the first
kind 𝑇∗

𝑖
(𝑥), 𝑖 = 0, 1, . . . , 𝑛 at 𝑛 = 5, to the fractional Integro-

differential equation (20) the numerical results are shown in
Figures 3 and 4 andwe obtain the approximate solutionwhich
is the same as the exact solution.

Example 3. Consider the following fractional Integro-
differential equation:

𝐷
5/3

𝜑 (𝑥) =
3√3Γ (2/3) 𝑥

1/3

𝜋
−
1

5
𝑥
2

−
1

4
𝑥

+ ∫

1

0

(𝑥𝑡 + 𝑥
2

𝑡
2

) 𝜑 (𝑡) 𝑑𝑡, 0 ≤ 𝑥, 𝑡 ≤ 1,

(22)

subject to 𝜑(0) = 𝜑̀(0) = 0 with the exact solution 𝜑(𝑥) = 𝑥2.
Similarly as in Examples 1 and 2 applying the least squares

method with aid of shifted Chebyshev polynomial of the first
kind 𝑇∗

𝑖
(𝑥), 𝑖 = 0, 1, . . . , 𝑛 at 𝑛 = 5, to the fractional Integro-

differential equation (22) the numerical results are shown in
Figures 5 and 6 andwe obtain the approximate solutionwhich
is the same as the exact solution.

5. Conclusion

In this paper we study the numerical solution of three
examples by using least squares method with aid of shifted
Chebyshev polynomial which derives a good approximation.
We show that this method is effective and has high conver-
gency rate.
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0

0

0.2

0.2

0.4

0.4

0.6
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0.8

1

1

Exact
Approximate

x

Figure 6: Numerical results of Example 3.
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