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This paper studies linear systems under sustained additive random perturbations. The stable operating point of an electric power
system is replaced by an attracting stationary solution if the system is subjected to (small) random additive perturbations. The
invariant distribution of this stationary solution gives rise to several performance indices that measure how well the system copes
with the randomness. These indices are introduced, showing how they can be used for the optimal tuning of system parameters in
the presence of noise. Results on a four-generator two-area system are presented and discussed.

1. Introduction

During operation, power systems encounter a variety of per-
turbations, most of which are properly modeled as random.
This includes randomness due to consumer behavior as well
as faults that produce generator outages, changes in the topol-
ogy of networks, and equipment behavior. Today basically
all probabilistic analyses of power system behavior address
contingency and security/reliability analysis. A few papers
deal with small signal analysis under random perturbations,
studying stability criteria or noise-induced chaos [1].

Random perturbations act on power systems in different
ways (see [2, 3]), depending on whether they occur in gen-
eration, transmission, or load components. Mathematically,
this means that a random process may act additively or
multiplicatively on the system. For example, when loads vary
in a random fashion, the system may be modelled with an
additive perturbation. On the other hand, perturbations at
generators lead to random factors, that is, to multiplicative
noises which can be analyzed via small stability studies [4].
In this paper we show that additive noise destroys the stable
operating point, replacing it with an attracting stationary and

ergodic solution.The invariant distribution of this “stationary
state” gives rise to performance assessments that indicate how
well the system copes with the randomness. These indices
include the diameter of the “loss range” (the set over which
the system response varies), the total deviation of the rotor
angles due to randomness, and the loss of power generation.

The goal of this assessment is to optimally tune the
system parameters (such as gains and time constants of
exciters or power system stabilizers) so that the loss due to
random perturbations is minimized. Although the proposed
technique is described in general terms, this paper con-
centrates on power system stabilizer (PSS) gain parameters.
We base our assessment on the system linearized about a
(stable) operating point, which is a good approximation to the
full nonlinear model for small perturbations. For a realistic
and flexible noise model we consider bounded, stationary
functions of a Markov diffusion process and analyze the
system response as the statistics and size of the noise vary.The
applications studied here involve a four-generator two-area
test system [5]. Of course, in applications to actual systems,
the statistics of the noise process have to be estimated from
actual system data, such as flow at load buses.
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2. Indicators of System Performance

2.1. Mathematical Background. In this section we describe
a general methodology to assess the influence of (additive)
random perturbations on the performance of a (linearized)
power system. We start from the nonlinear system equations

̇𝑦 = 𝑓 (𝑦, 𝑝) (1)

in the state space R𝑁, where 𝑁

1
states describe the (relative)

rotor angles (𝛿

1
, . . . , 𝛿

𝑛
) and velocities (𝜔

1
, . . . , 𝜔

𝑛
), and 𝑁

2

states describe the controls (𝑁

1
+ 𝑁

2
= 𝑁). The vector 𝑝 ∈

R𝑟 is the vector of control parameters that can be tuned to
provide optimal system performance.

Let 𝑦

∗
∈ R𝑁 be a fixed point (operating point) of system

(1), and denote the linearized system at 𝑦

∗ by

�̇� = 𝐴 (𝑝) 𝑥. (2)

Throughout this section we assume that the system param-
eters are set such that the origin is an (exponentially) stable
point of the linear system equation (2).

Persistent stochastic disturbances that lead to an additive
perturbation result in the system model:

�̇� = 𝐴 (𝑝) 𝑥 + 𝐵𝜉

𝑡
, (3)

where 𝜉

𝑡
is a random process with values in some set𝑈 ⊂ R𝑚,

and 𝐵 is an 𝑁 × 𝑚 matrix describing how the noise affects
the system states. For a realistic and flexible noise model we
consider the following.

(A) The background noise 𝜂

𝑡
is a given stationary, ergodic

Markov diffusion process defined on a suitable proba-
bility space (Ω, ϝ,P)with values in a smoothmanifold
𝑀 of finite dimension. The parameters of 𝜂

𝑡
must

be estimated from actual noise data, for example,
via its stationary distribution, power spectrum, or
autocorrelation function. A typical example of a
background noise is, for example, a multidimensional
Ornstein-Uhlenbeck process as follows:

𝑑𝜂

𝑡
= 𝐶𝜂

𝑡
𝑑𝑡 + 𝐷𝑑𝑊

𝑡
in R
𝑘
,

(4)

where 𝐶 is a stable 𝑘 × 𝑘 matrix, 𝑊

𝑡
is a standard

Wiener process, and 𝐷 is a matrix of suitable dimen-
sion.

(B) The system perturbation 𝜉

𝑡
is a smooth, bounded

function 𝑓(𝜂

𝑡
) of the background noise, and 𝑈 is a

compact, convex neighborhood of the origin 0 ∈ R𝑚.
The function 𝑓 : 𝑀 → 𝑈 ⊂ R𝑚 allows us to
adjust the statistics and range of the background noise
𝜂

𝑡
so that one can test the system (3) with various

different random perturbations. A typical example of
the function 𝑓 is, for example, 𝑓(𝜂

𝑡
) = sin(𝜂

𝑡
), where

𝜂

𝑡
is a one-dimensional Ornstein Uhlenbeck process,

and sin(𝜂

𝑡
) is its projection onto [−1, 1].

(C) Tomeasure the influence of the size of the noise range
on system performance, we introduce a parameter
𝜌 ≥ 0 and consider the family of functions 𝑓

𝜌
: 𝑀 →

𝑈

𝜌
⊂ R𝑚 defined by 𝑓

𝜌
(𝜂) = 𝜌 ⋅ 𝑓(𝜂). For 𝜌 = 0 this

corresponds to the unperturbed system (2).

For the following analysis we assume the following.

(1) Matrix 𝐴(𝑝) is stable for all relevant values of the
tuning parameter 𝑝; that is, all eigenvalues of 𝐴(𝑝)

have negative real parts.
(2) Matrix (𝐵, 𝐴𝐵, 𝐴

2
𝐵, . . . , 𝐴

𝑁−1
𝐵) has full rank 𝑁.

(3) The background noise 𝜂

𝑡
is the stationary solution of

a stochastic differential equation on the 𝐶

∞-manifold
𝑀 given by

𝑑𝜂

𝑡
= 𝑌

0
(𝜂

𝑡
) 𝑑𝑡 +

𝑙

∑

𝑖=1

𝑌

𝑖
(𝜂

𝑡
) ∘ 𝑑𝑊

𝑡
(5)

with 𝐶

∞-vector fields 𝑌

0
, . . . , 𝑌

𝑙
. Here “∘” denotes the

Stratonovic stochastic differential.We assume that (5)
has a unique stationary and ergodic solution with
invariant distribution ] on 𝑀, which is guaranteed,
for example, by the weak nondegeneracy condition

dimLA {𝑌

𝑖
, 𝑖 = 1, . . . , 𝑙} (𝑦) = dim𝑀, (6)

for all 𝑦 ∈ 𝑀, where LA denotes the Lie algebra
generated by the 𝑌

𝑖
vectors fields.

(4) The function 𝑓 : 𝑀 → 𝑈 is a continuous map
onto the set 𝑈 ⊂ R𝑚 such that there exists a closed,
connected subset 𝐿 ⊂ 𝑀 on which the restriction 𝑓|

𝐿

is𝐶

1 and the Jacobian𝐷𝑓(𝜂) has full rank for all 𝜂 ∈ 𝐿

with 𝑓(𝜂) ∈ int𝑈, the interior of 𝑈. As before, we
assume that 𝑈 is a convex, compact neighborhood of
the origin 0 ∈ R𝑚.

Under these conditions one obtains the following result.

Theorem 1. Consider the linear stochastic system (3) under
assumptions (1)–(4).

(1) The system has a unique stationary and ergodic solu-
tion 𝑥

∗
(𝑡, 𝑝, 𝜔) for all 𝑡 ≥ 0. Its invariant distribution

𝜇

𝑝
has support in a compact set 𝐶

𝑝
⊂ R𝑁.

(2) The stationary distribution is globally attracting; that
is, let 𝑥

0
∈ R𝑁 be an initial value for (3); then the

corresponding solution 𝑥

∗
(𝑡, 𝑝, 𝜔, 𝑥

0
) will enter into set

𝐶

𝑝
in finite time and then converge in distribution to

the invariant distribution 𝜇

𝑝
.

The proof of this Theorem is shown in the appendix.
The stationary distribution of the linearized system (3) as

described inTheorem 1 is, together with the ergodic theorem,
the basis for the performance indicators developed in the next
section. This distribution 𝜇

𝑝
and its support 𝐶

𝑝
are related

to the dynamics of the nonlinear system ̇𝑦 = 𝑓(𝑦, 𝑝) +

𝐵𝜉

𝑡
around the operating point 𝑦

∗
∈ R𝑁 in the following

way: since the fixed point 𝑦

∗ is assumed to be exponentially
stable, a small additive perturbation will result (under mild
conditions) in a unique stationary and ergodic solution of
the nonlinear stochastic system around 𝑦

∗, compared with
Theorem 4.7.11 in [6]. This means that global bifurcations of
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Figure 1: Deviation and accumulated angular deviation range.

supports of invariant measures that can occur in nonlinear
stochastic systems of the type ̇𝑦 = 𝑓(𝑦, 𝑝)+𝐵𝜉

𝑡
do not happen

for random perturbations with sufficiently small range, and
hence the dynamic behavior of the nonlinear system around
𝑦

∗ resembles that of (3) around the origin.

2.2. Indicators of Power System Performance. Theorem 1
shows the existence of a stationary solution for the entire
stochastic system (3). In practice, however, the machine
variables (rotor angles and velocities) play the major role
in system assessment. Note that projections of stationary
solution 𝑥

∗
(𝑡, 𝑝, 𝜔) on subspaces result in stationary com-

ponents of the entire system, whose invariant measures are
the marginals of 𝜇

𝑝
on these subspaces. Let (𝛿

1
, . . . , 𝛿

𝑛
) be

the (relative) rotor angles of the machines in system (1). To
simplify notation, in what follows we will also use (𝛿

1
, . . . , 𝛿

𝑛
)

to denote the incremental angles of the linearized stochastic
system (3), and 𝛿

∗

𝑖
(𝑡, 𝑝, 𝜔) are the (stationary) trajectories for

𝑖 = 1, . . . , 𝑛 under the random excitation 𝜉

𝑡
.

Our approach to assess the influence of random pertur-
bations on power system performance uses the deviation of
the rotor angles from their reference states.More precisely, we
will look at the average total deviation of the rotor angles, the
range of deviation of these angles, and the loss of generated
power per time unit as indicators of system performance.

2.2.1. Deviation of Rotor Angles. The deviation of the rotor
angles from the steady state 𝛿

1
= 𝛿

2
= ⋅ ⋅ ⋅ = 𝛿

𝑛
= 0 on the

time interval [0, ∞) is measured by

𝑑

𝑖
(𝑝, 𝜔) = ∫

∞

0









𝛿

∗

𝑖
(𝑡, 𝑝, 𝜔)









𝑑𝑡, 𝑖 = 1, . . . , 𝑛. (7)

Figure 1 shows a typical evolution of a linear system
which is stable. In this figure 𝐶

𝑝
is the range of the angle

after transient oscillations have faded away. Note that angle
deviations are directly related to power losses in the trans-
mission systems which have to be minimized for an efficient
operation.

Now the design goal is tominimize the expected value for
these deviations, that is,

min
𝑝

E(

𝑛

∑

𝑖=1

𝑑

𝑖
(𝑝)) , (8)

where the expectation E is taken with respect to the under-
lying measure P of the background noise. In practice, the
infinite time interval [0, ∞) has to be replaced by a finite
interval [𝑡

0
, 𝑇], where 𝑡

0
indicates the transient time until the

system, from an initial perturbation, reaches the stationary
set𝐶

𝑝
(𝛿), the projection of the invariant set𝐶

𝑝
on the angular

coordinates 𝛿

1
, . . . , 𝛿

𝑛
. According to the ergodic theorem,

compare, for example, [7] and we have

P{

1

𝑇

∫

𝑇

0

𝜒

𝐴
(𝛿

∗

𝑖
(𝑡, 𝑝, 𝜔)) 𝑑𝑡→

𝑇→∞

𝜇

𝑖

𝑝
(𝐴)} = 1,

(9)

for all 𝑖 = 1, . . . , 𝑛, where 𝐴 ⊂ 𝐶

𝑖

𝑝
is any Borel set in the

𝛿

𝑖
-component 𝐶

𝑖

𝑝
, of the invariant set 𝐶

𝑝
, and 𝜒

𝐴
(⋅) is the

characteristic function of set 𝐴. So we get

E(

𝑛

∑

𝑖=1

∫

𝑇

𝑡0









𝛿

∗

𝑖
(𝑡, 𝑝, 𝜔)









𝑑𝑡)

≈ (𝑇 − 𝑡

0
)

𝑛

∑

𝑖=1

∫

𝐶
𝑖

𝑝
∩[0,∞)

𝑦 𝑑𝜇

𝑖

𝑝
(𝑦)

+ (𝑇 − 𝑡

0
)

𝑛

∑

𝑖=1

∫

𝐶
𝑖

𝑝
−∞,∩[0)

(−𝑦) 𝑑𝜇

𝑖

𝑝
(𝑦)

(10)

as an approximation to (8) on the time interval [𝑡

0
, 𝑇]. In

this case (10) corresponds to the shaded area of Figure 1.
The right side in (10) is the typical mean value of area
under |𝛿

∗

𝑖
(𝑡, 𝑝, 𝜔)| trajectories. These elements are obtained

by solving the stochastic linear system described in (3), where
𝛿

𝑖
vector are chosen.
In practice, expression (10) is evaluated by numerically

computing the invariant distribution 𝜇

𝑝
(𝛿) on 𝐶

𝑝
and then

integrating ± functions with respect to the marginals 𝜇

𝑖

𝑝
, 𝑖 =

1, . . . , 𝑛 of this invariant distribution. Optimal parameter
tuning is then achieved by minimizing the results over
the appropriate parameter set 𝑝 ∈ R𝑟. The invariant
distribution 𝜇

𝑖

𝑝
guarantees existence of 𝐶

𝑝
and allows to

compute E(∑

𝑛

𝑖=1
∫

𝑇

𝑡0

|𝛿

∗

𝑖
(𝑡, 𝑝, 𝜔)|𝑑𝑡) considering the range of

trajectories 𝛿

𝑖
in permanent regimen, avoiding computing

high numbers of simulations.

2.2.2. Range of Rotor Angles. An approximation to the prob-
lem (8) is provided by

min
𝑝

diam (𝐶

𝑝 (𝛿)) , (11)

where diam(𝐶

𝑝
(𝛿)) is the diameter of the invariant set

in its angular components. Since 𝐶

𝑝
(𝛿) is the support of

the invariant measure 𝜇

𝑝
(𝛿), the angular trajectories will
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Figure 2: IEEE-Type I exciter model.

reach any open set in 𝐶

𝑝
(𝛿) with probability 1. Therefore

diam(𝐶

𝑝
(𝛿)) determines themaximum deviation of an angu-

lar trajectory from its steady state, while (8) describes the
expected deviation. Hereinafter we call 𝐶

𝑝
the “loss range”

of the system.
In practice, expression (11) is evaluated by numerically

computing the invariant distribution 𝜇

𝑝
(𝛿) on 𝐶

𝑝
and then

integrating the functions ± with respect to the marginals
𝜇

𝑖

𝑝
, 𝑖 = 1, . . . , 𝑛 of this invariant distribution using (10).

Optimal parameter tuning is then achieved by minimizing
the results over the appropriate parameter set 𝑝 ∈ R𝑟.

2.2.3. Loss of Generated Power. An indicator of system
performance that translates directly into financial variables
is the loss of generated power due to persistent additive
perturbations in a system. Using again the ergodic theorem,
the power 𝑃𝑔

𝑖 generated per time unit for each machine 𝑖 =

1, . . . , 𝑛 can be expressed (in the linearized system (3)) as

𝑃𝑔

𝑖

𝑝
= ∫

𝐶
𝑖

𝑝

𝑃𝑔 (𝛿) 𝜇

𝑖

𝑝
(𝛿) , (12)

where

𝑃𝑔 = 𝐼

𝑑
⋅ 𝑉

𝑖
⋅ sin (𝛿

𝑖
− 𝜃

𝑖
) + 𝐼

𝑞
⋅ 𝑉

𝑖
⋅ cos (𝛿

𝑖
− 𝜃

𝑖
) , (13)

and

(i) 𝐼

𝑑
and 𝐼

𝑞
are the currents in the 𝑑-𝑞 axes,

(ii) 𝑉 is the voltage of the generator bus,
(iii) 𝜃 is the corresponding angle of voltage.

Note. We have chosen Machine 1 as the reference, but it is
possible to consider the center of mass.

3. Power System Model with Additive
Random Perturbation

Let us consider the typical exciter model presented in [4]
(see Figure 2).

To illustrate the model let us consider the linearized state
equation of a system with constant exciter [4] as follows:

𝑇

𝐴
Δ

̇

𝐸

𝑓𝑑
= −Δ

̇

𝐸

𝑓𝑑
+ 𝐾

𝐴
(Δ𝑉ref − Δ𝑉

𝑡
) . (14)

1

2

3

4

5 6

XT1

XT2

XT3

XT4

Machine 1

Machine 2

Machine 3

Machine 4

Load 1 Load 2

Figure 3: Four-machine system.

According to themodel presented in [4], we can write the
deterministic system as follows:

�̇� = 𝐴𝑥 + 𝐸𝑢. (15)

In classical stability studies with small perturbation,
the input vector 𝛿𝑢 is considered null, and therefore the
eigenvalues of the matrix of (15) are evaluated.

If it is considered that there are instrumental errors in the
telemeasuring systems of the reference voltage of the control
system and that those variations are of a random nature and
sustained in time, the vector is no longer null. In particular, in
this case component Δ𝑉ref will not be null and can be written
as follows:

Δ𝑉ref = Δ𝑉

0

ref + 𝜉

𝑡
, (16)

where the term Δ𝑉

0

ref corresponds to the situation without
perturbation, which in general is assumed to be zero, and 𝜉

𝑡
is

the stochastic process that represents themeasurement errors
introduced in the excitation systems of the machines.

According to the above, the linear system (15) is trans-
formed into a stochastic model that takes the form of (3) as
follows:

�̇� = 𝐴𝑥 + 𝐵𝑢 (𝜉

𝑡
) . (17)

The results in Section 5.1 were obtained with the back-
ground noise 𝜂

𝑡
modeled by a one-dimensional Ornstein-

Uhlenbeck process (see, e.g., [8] for the properties of this
process) as follows:

𝑑𝜂

𝑡
= −𝛼𝜂

𝑡
𝑑𝑡 + 𝛽𝑑𝑊

𝑡
, (18)

where 𝑊

𝑡
is a standard Wiener process and 𝛼 and 𝛽 are

positive constants. (For the results in Section 5.1 the constants
are set to 𝛼 = 𝛽 = 1.) The random system perturbation is
given by

𝜉

𝑡
= 𝜌 sin (𝜂

𝑡
) 𝜌 ≥ 0. (19)

4. Case Studies

The results in the following sections were obtained in a four-
generator two-area system (cf. [5], as shown in Figure 3).
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Machine 1 is the reference where an additive random pertur-
bation is introduced in the frequency signal. Regarding the
PSS equipment two cases were considered as follows:

(1) two PSS, one in generator 2 and the other in generator
4,

(2) only one PSS at generator 4.

Parameter 𝑝 ∈ R2 in (3) reflects the gain constants of the
twoPSS, whichwere set to 𝑘⋅𝐾nom, where𝐾nom is the nominal
value and 𝑘 ∈ {0.6, 0.8, 1.0, 1.2, 1.4}.

The perturbation size 𝜌 ≥ 0 was varied between 0 (for the
unperturbed system) and 20.

The purpose of this analysis is to evaluate if, under normal
conditions, the parameters of PSS are the optimal.

5. Results

The results obtained by applying the proposed methodology
to the test systems are given below.

5.1. Invariant Distributions of the Angle Processes 𝛿

𝑖
. The

invariant distributions 𝜇

𝑝
of the system (3) are the key objects

for the performance assessment of the system under random
additive perturbations. The following results show some of
the simulated distributions for varying perturbation ranges.

5.1.1. Case 1: PSS at Generators 2 and 4. For Figures 4 and 5
the gain constants of the PSS are set to 1.4⋅𝐾nom for generator
2 and to 0.8 ⋅ 𝐾nom for generator 4. The figures show the
(marginal) invariant distribution of the angular behavior of
generator 2 for various perturbation ranges, based on the time
interval [0, 30 s].

The figures show that for increasing perturbation range
the distributions become increasingly skewed to the right,
and their support increases in size.

5.1.2. Case 2: PSS at Generator 4. For Figures 6 and 7 the gain
constant of the PSS is set to 1.4 ⋅ 𝐾nom for generator 4, and the
simulation time interval is again [0, 30 s].
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Figure 5: Invariant distribution of generator 2. Perturbation size 𝜌 =
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Figure 6: Invariant distribution of generator 2. Perturbation size𝜌 =
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The figures show that for increasing perturbation range
the distributions become increasingly skewed to the right,
and their support increases in size. Skewness is reduced
compared to Case 1 (with PSS at two generators), but the size
of the support of the invariant distributions is substantially
larger.

5.2. Selection of the Simulation Time Using Case 2. Reliable
computation of performance indices for power systembehav-
ior using the ergodic theorem depends on the accuracy with
which the invariant distribution of the system is computed.
Two quantities are crucial when using (10), the simulation
interval [0, 𝑇] and the choice of the initial value for the
computation of the trajectories 𝛿

∗

𝑖
(𝑡, 𝑝, 𝜔).This section shows

the dependence of the three indicators on the simulation
interval, which was chosen to be [0, 30 s] in Section 5.2.1 and
[0, 120 s] in Section 5.2.2.The results for 64 initial values were
computed and averaged, using 20 simulated trajectories of the
background noise 𝜂

𝑡
, 𝑡 ≥ 0.

The computations use Case 2 (PSS at generator 4) with the
gain constant factor set to 𝑘 ∈ {0.6, 0.8, 1.0, 1.2, 1.4}.
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Table 1: Diameter of the loss range 𝐶

𝑝
for generator 2.

𝜌 𝑘 = 0.6 𝑘 = 0.8 𝑘 = 1.0 𝑘 = 1.2 𝑘 = 1.4

0 0.00001 0.0001 0.0001 0.0001 0.0001
5 0.0613 0.0614 0.0615 0.0616 0.0617
10 0.1225 0.1227 0.1230 0.1232 0.1233
15 0.1995 0.1997 0.1999 0.2001 0.2002
20 0.2660 0.2663 0.2665 0.2667 0.2669

Table 2: Total angle deviation for generator 2.

𝜌 𝑘 = 0.6 𝑘 = 0.8 𝑘 = 1.0 𝑘 = 1.2 𝑘 = 1.4

0 0.00003 0.00004 0.00006 0.00007 0.0008
5 0.01609 0.01610 0.01610 0.01611 0.01612
10 0.03217 0.03219 0.03220 0.03222 0.03223
15 0.04656 0.04659 0.04662 0.04665 0.04668
20 0.06208 0.06212 0.06216 0.06220 0.06224

5.2.1. Simulation Time 30 s

(i) Size of the loss range 𝐶

𝑖

𝑝
(see Table 1).

These results show that the loss range increases with
the size of the perturbation, and that generator 2
exhibits a larger loss range than the two generators
in area 2, where the PSS is located. 𝐶

𝑝
is obtained at

𝑇 = 30 s.
(ii) Total angle deviation 𝑑

𝑖
(𝑝) (see Table 2).

These results show that the total angle deviation
increases with the size of the perturbation and that
generator 2 exhibits a larger deviation than the two
generators in area 2, where the PSS is located.

(iii) Generated power 𝑃𝑔

𝑖

𝑝
(see Table 3).

5.2.2. Simulation Time 120 s. This section shows the simula-
tion results when the time interval is increased to [0, 120 s].
𝐶

𝑝
in this case is obtained at 𝑇 = 120 s as follows:

(i) size of the loss range 𝐶

𝑖

𝑝
(see Table 4),

Table 3: Power generated at machine 2.

𝜌 𝑘 = 0.6 𝑘 = 0.8 𝑘 = 1.0 𝑘 = 1.2 𝑘 = 1.4

0 3.971 3.971 3.971 3.971 3.97
5 4.053 4.052 4.052 4.052 4.052
10 4.146 4.146 4.146 4.146 4.146
15 4.231 4.231 4.231 4.231 4.231
20 4.319 4.319 4.319 4.319 4.319

Table 4: Diameter of the loss range 𝐶

𝑝
for generator 2.

𝜌 𝑘 = 0.6 𝑘 = 0.8 𝑘 = 1.0 𝑘 = 1.2 𝑘 = 1.4

0 ≈0 ≈0 ≈0 ≈0 ≈0
5 0.0653 0.0653 0.0654 0.0654 0.0655
10 0.1306 0.1307 0.1308 0.1309 0.1310
15 0.1959 0.1960 0.1962 0.1964 0.1966
20 0.2612 0.2614 0.2616 0.2619 0.2621

Table 5: Total angle deviation for generator 2.

𝜌 𝑘 = 0.6 𝑘 = 0.8 𝑘 = 1.0 𝑘 = 1.2 𝑘 = 1.4

0 ≈0 ≈0 ≈0 ≈0 ≈0
5 0.0147 0.0147 0.0147 0.0147 0.0147
10 0.0295 0.0295 0.0295 0.0295 0.0295
15 0.0442 0.0442 0.0442 0.0443 0.0443
20 0.0589 0.0590 0.0590 0.0590 0.0591

Table 6: Power generated at machine 2.

𝜌 𝑘 = 0.6 𝑘 = 0.8 𝑘 = 1.0 𝑘 = 1.2 𝑘 = 1.4

0 3.9709 3.9705 3.9704 3.9708 3.9709
5 4.0552 4.0551 4.055 4.0549 4.0547
10 4.1414 4.1413 4.1413 4.1412 4.1412
15 4.2262 4.2263 4.2263 4.2262 4.2262
20 4.3097 4.3098 4.3098 4.3098 4.3098

(ii) total angle deviation 𝑑

𝑖
(𝑝) (see Table 5),

(iii) generated power 𝑃𝑔

𝑖

𝑝
(see Table 6).

The indices show basically the same behavior depending
on factor 𝑘 of the gain constant and on the perturbation range
𝜌 as for 𝑇 = 30 s. But note that, for example, the diameter
of the loss range is decreased because the transient behavior
has died down further at 𝑇 = 120 s. It appears that for this
system a simulation time of 𝑇 = 30 s is sufficient to evaluate
the different performance indices.

5.3. Analysis of Optimal Gain Tuning Using Case 1. This
section summarizes our findings for optimal gain tuning of
the PSS in Case 1, that is, two PSS, one in generator 2 and the
other in generator 4.The optimization criterion uses formula
(12), measuring the power generated at each of the machines.
The results are based on a simulation time of 𝑇 = 30 s.

In Table 7 𝑘

2
and 𝑘

4
are the factors of the gain constants

of the PSS at generators 2 and 4, respectively.
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Table 7: Average power generated at machines 2–4.

𝑘

2
𝑘

4
𝜌 = 0 𝜌 = 5 𝜌 = 10 𝜌 = 15 𝜌 = 20

0.6 0.6 4.2571 4.3195 4.3850 4.4525 4.5195
0.8 0.6 4.2574 4.3213 4.3886 4.4552 4.5216
1.0 0.6 4.2578 4.3204 4.3866 4.4528 4.5184
1.2 0.6 4.2581 4.3189 4.3843 4.4497 4.5143
1.4 0.6 4.2584 4.3176 4.3821 4.4465 4.5102
0.6 0.8 4.2573 4.3217 4.3872 4.4539 4.5205
0.8 0.8 4.2577 4.3230 4.3900 4.4569 4.5233
1.0 0.8 4.2580 4.3213 4.3871 4.4533 4.5188
1.2 0.8 4.2584 4.3197 4.3846 4.4497 4.5142
1.4 0.8 4.2586 4.3183 4.3824 4.4465 4.5100
0.6 1.0 4.2577 4.3220 4.3875 4.4548 4.5217
0.8 1.0 4.2580 4.3233 4.3908 4.4579 4.5242
1.0 1.0 4.2583 4.3219 4.3885 4.4547 4.5201
1.2 1.0 4.2587 4.3204 4.3860 4.4512 4.5156
1.4 1.0 4.2587 4.3191 4.3838 4.4480 4.5114
0.6 1.2 4.2579 4.3215 4.3869 4.4539 4.5207
0.8 1.2 4.2583 4.3228 4.3902 4.4571 4.5234
1.0 1.2 4.2586 4.3214 4.3879 4.4539 4.5192
1.2 1.2 4.2590 4.3201 4.3856 4.4505 4.5147
1.4 1.2 4.2589 4.3190 4.3834 4.4473 4.5105
0.6 1.4 4.2571 4.3210 4.3862 4.4532 4.5198
0.8 1.4 4.2579 4.3222 4.3896 4.4564 4.5224
1.0 1.4 4.2585 4.3210 4.3874 4.4532 4.5183
1.2 1.4 4.2591 4.3198 4.3850 4.4497 4.5137
1.4 1.4 4.2576 4.3186 4.3829 4.4466 4.5096

In order to obtain the optimum tuning for the gain
constants 𝑘

2
and 𝑘

4
, which should take into account the

overall system performance, we average the results over the
three machines, as shown in Table 7.

This table shows that optimal system tuning depends
strongly on the size of the random perturbation.

(1) For the unperturbed system (𝜌 = 0), optimal
performance is accomplished for 𝑘

2
= 0.6 and 𝑘

4
=

0.6 or 1.4.
(2) For all perturbation levels 𝜌 > 0, the optimal setting

for the gain constant of the PSS at machine 2 is 𝑘

2
=

1.4. For relatively small noise levels (𝜌 = 5 or 10),
the optimal setting for the gain constant of the PSS
at machine 4 is 𝑘

4
= 0.6.

(3) As the perturbation level increases, optimality is
achieved with larger gain constants for 𝑘

4
: at level

𝜌 = 15, 𝑘

4
= 0.6 and 0.8 perform equally well and the

performance for 𝑘

4
= 1.4 is very close. As the random

perturbation increases further to 𝜌 = 20, optimality
in the range studied here is achieved for 𝑘

2
= 1.4 and

𝑘

4
= 1.4.

6. Conclusions

Several performance indices for power systems with additive
random perturbations are presented. These indices are based

on the (unique) invariant distribution of the system under
Markovian noise. They measure the loss range, total angular
deviation, and generated power for each machine of a power
system. To obtain an optimality criterion that can be used
to tune system parameters, the use of system performance is
proposed and averaged over all machines.

The four-generator two-area test system is analyzed in
some detail under normal operating conditions, with PSS at
generators 2 and 4, or only at generator 4. Using a random
perturbation that affects the settings of generator 1, the power
generation criterion is used to obtain optimal settings for the
gain constants of the PSSs at generators 2 and 4. It turns out
that optimal tuning of the gain constants depends strongly
on the size of the random perturbation; in particular, the
optimal settings for noisy systems is different from that for
the unperturbed system.

To show the conceptual ideas leading to the new perfor-
mance indices, the test system is used under normal operating
conditions. We expect that the same system under stressed
conditions will show even larger differences in performance
depending on parameter settings and noise characteristics.

This paper considers power systems under additive
random perturbation, as they occur, for example, when
external reference signals display random variation. Hence
the methodology developed here will allow us to introduce
stochastic analysis into the framework of supervisory control
when random behavior is present.

Appendix

Proof of Theorem 1. Under condition 2 the associated linear
control system �̇� = 𝐴(𝑝)𝑥 + 𝐵𝑢 has a unique control set
𝐶

𝑝
with nonvoid interior and 0 ∈ int𝐶

𝑝
(see [6, 9]). Under

condition 1 set 𝐶

𝑝
is compact and invariant [6, page 61]. By

[10–12] this implies, under conditions 3 and 4, that stochastic
system (3) has a unique stationary and ergodic solution
𝑥

∗
(𝑡, 𝑝, 𝜔), whose invariant distribution 𝜇

𝑝
has as support the

set 𝐶

𝑝
.This proves part (1). Part (2) follows directly from [12]

using the exponential stability of 𝐴(𝑝).
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