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Similarity based link prediction algorithms become the focus in complex network research. Although endpoint degree as source of
influence diffusion plays an important role in link prediction, some noncontribution links, also called noncontribution relations,
involved in the endpoint degree serve nothing to the similarity between the two nonadjacent endpoints. In this paper, we propose
a novel link prediction algorithm to penalize those endpoints’ degrees including many null links in influence diffusion, namely,
noncontribution relations penalization algorithm, briefly called NRP. Seven mainstream baselines are introduced for comparison
on nine benchmark datasets, and numerical analysis shows great improvement of accuracy performance, measured by the Area
Under roc Curve (AUC). At last, we simply discuss the complexity of our algorithm.

1. Introduction

Many systems can be properly described as complex networks
with nodes representing individuals or organizations and
links mimicking the relations among them [1–3]. Link pre-
diction as a critical problem of forecasting potential relations
between nonadjacent nodes meaningfully provides strong
ability to explore the evolution of network and unveils the
development mechanism of network, attracting so many
researchers’ interests [4]. In real-world applications, link pre-
diction gives help to significantly discover potential network
links [5], bring in many striking applications of recommend-
ing friends in online social networks [6], explore protein-to-
protein interactions [7], reconstruct airline networks [8], and
boost e-commerce scales [9, 10].

Most conventional methods model the task of link pre-
diction in the form of estimating the probability that two
nonadjacent nodes would be linked, which is believed to be
positively correlated with the similarity between them [11].
Mainstreammethods take into account topological similarity
based on network structures and can be classified into
three major classes [11]. The first class calculates topological

similarity with global structural information, such as the
Katz Index that counts all paths connecting two nodes with
shorter paths preferred [12]. Such global indices show fair
performance in prediction but suffer from high computa-
tional complexity [11]. The second class, defined on local
structures, typically includes Common Neighbors (CN) Index
[13] counting the number of common nodes, Preferential
Attachment (PA) Index [14] preferring the links between
endpoints of high degrees, and the methods penalizing high-
degree common neighbors, such asAdamic-Adar (AA) Index
[15], Resource Allocation (RA) Index [16], Optimized AA
(OAA) Index,OptimizedRA (ORA) Index [17], andCentrality
based Index (DC-CN, BD-CN, and CC-CN) [18]. In spite
of successfully reducing the computational expense, local
indices suffer from relatively poor prediction performance
[11]. In order to find a nice tradeoff between performance and
complexity, the third class of similarity indices is proposed on
quasilocal structures.The Local Path (LP) Index ignores long-
path terms in Katz Index [19], and its bounded version (BLP)
relates local paths in an elaborate way [20]. The Significant
Path (SP) Index comprehensively considers paths and inter-
mediate node degree [21]. The Local Random Walk (LRW)
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Index limits a random walk within a local range [22], while
the Superposed Random Walk (SRW) Index continuously
releases a random walker at the starting node to emphasize
the nodes near the target node [22].

Influence of a node plays a very important role in link pre-
diction, so that a nodewith powerful influence can attract and
impact on other nodes in a network, such as a very important
person (VIP) in a social network, possessing strong power
to transmit his/her reputation to attract others to follow.
In a network, a node with high degree is believed to have
more powerful influence and more likely to arise links in the
future. However, when carefully examining the node degree
influence in link prediction, we find that not all the influence
is significant to the counterpart endpoint. In other words,
there are noncontribution relations in node degree influence.
For example, in Figure 1, we define the influence degree as
the number of endpoint relations, valid influence degree as
the number of endpoint relations which can eventually reach
the counterpart endpoint, and connectivity chance as the
proportion the valid influence occupies in the total amount
of an endpoint, featuring the total valid amount of influence
emanating from the endpoint. Despite an apparently high
influence degree of 3 in subgraph (b), V

4
and V
6
in fact possess

valid influence degree only of 1 and connectivity chance
only accounting for 1/3 because of two noncontribution
relations, and, in contrast, V

1
and V

3
although just with

lower influence degree of 1 cast all influence degree to each
other and have greater connectivity chance of 1. Furthermore,
in subgraph (c), V

7
and V

11
obtain the highest valid influ-

ence degree of 3 and also greater connectivity chance of 1
without any useless relations as V

1
and V

3
in subgraph (a).

Therefore, we reasonably deduce the link likelihood order
(c) > (a) > (b), according to the valid influence degree
and connectivity chance. From the theoretical analysis and
real illustration, we extract a finding that obviously the
high chance of connectivity can enhance link likelihood and
on the contrary the noncontribution relations would harm
it.

In this paper, we propose a novel similarity index
considering penalization on noncontribution relations with
a tunable penalization factor 𝛽 and random walk based
valid influence diffusion, namely, noncontribution relations
penalization (NRP) index. In contrast with recently published
SP Index [21] and also a link prediction algorithm, there
are obvious differences: NRP focuses on the penalization
on noncontribution relations in endpoints and meanwhile
adds bidirectional valid influence diffusions together to form
the model, but SP just considers single direction paths and
focuses on the heterogeneity of different paths concerning
the intermediate nodes without considering the endpoints.
Besides novelty, compared with seven mainstream baselines
via experiments on nine benchmark datasets, numerical
analysis shows a great improvement on NRP.

The rest of the paper is organized as follows: in Section 2,
the new model based on penalization on noncontribution
relations and significant connectivity is introduced; in Sec-
tions 3 and 4, the experimental materials of nine bench-
mark datasets and methods including metrics and seven
mainstream baselines are described, respectively; we present

the results and discussions in Section 5 and finally make a
conclusion.

2. Method

An undirected network 𝐺(𝑉, 𝐸) is considered, where 𝑉 and
𝐸 stand for the sets of nodes and links, respectively. Multiple
links and self-connections are not allowed. For each pair of
nodes, 𝑥, 𝑦 ∈ 𝑉, every algorithm referred to in this paper
assigns a score 𝑠

𝑥𝑦
. This score can be viewed as a measure of

similarity between nodes 𝑥 and 𝑦, and hereinafter we do not
distinguish similarity and score. All the nonexistent links are
sorted in decreasing order according to their scores, and the
links at the top are most likely to exist. To test the algorithm’s
accuracy, the set of links𝐸 is randomly divided into two parts:
the training set 𝐸𝑇 is treated as known information, while the
testing set 𝐸𝑃 is used for testing and no information in this
set is allowed to be used for training. Clearly, 𝐸𝑇⋃𝐸

𝑃
= 𝐸

and 𝐸
𝑇
⋂𝐸
𝑃
= 0.

As described in the introduction and Figure 1, the prob-
ability of link between two nonadjacent endpoints is based
on the similarity established via considering valid influence
diffusion which can be regarded as a resource diffusion
process [22]. Here, for the sake of emphasizing the common
transferring capability in bidirectional resource diffusion, we
first extract the intermediate connectivity 𝐶 ignoring the
transfer probability values 1/𝑘

𝑥
and 1/𝑘

𝑦
emanating from the

endpoints in Definition 1 as follows.

Definition 1. On an undirected unweighted network 𝐺(𝑉, 𝐸),
one defines the intermediate connectivity 𝐶 of a 𝑙-step path
𝑞 = {V

0
= 𝑥, V

1
, . . . , V

𝑙−1
, V
𝑙
= 𝑦}; connecting 𝑥 and 𝑦 equals

the product of transfer probability from V
1
to V
𝑙
or from V

𝑙−1

to V
0
ignoring the transfer probability from the endpoint, as

𝐶(𝑥, 𝑦)
󵄨󵄨󵄨󵄨

𝑗

𝑙
=

𝑙−1

∏

𝑖=1

𝑃 (V
𝑖+1

| V
𝑖
) =

𝑙−1

∏

𝑖=1

𝑃 (V
𝑙−1−𝑖

| V
𝑙−𝑖
) , (1)

where 𝑃(V
𝑖+1

| V
𝑖
) = 1/𝑘(V

𝑖
) is the transfer probability from V

𝑖

to V
𝑖+1

with 𝑘(V
𝑖
) denoting the degree of node V

𝑖
.

Although the numbers of links are different in networks,
the total resources in different networks are the same, simply
set as one, necessarily normalizing resource of endpoint as
𝑘
𝑥
/2|𝐸| with 𝑘

𝑥
denoting the influence degree of endpoint 𝑥

and |𝐸| denoting the number of links [22]. And, importantly,
themore the quantity of the valid resource fromone endpoint
can be delivered to the counterpart, the more similar the
two endpoints are. Furthermore, we add the bidirectional
resource diffusion quantities on paths with length from 2 to 𝑡

together and simplify the ultimate formalism in Definition 2
as our similarity index—noncontribution relations penaliza-
tion (NRP) index.

Definition 2. On an undirected unweighted network𝐺(𝑉, 𝐸),
with the initial resource usually assigned according to the
importance of nodes, here, one simply sets the initial resource
of node 𝑥 proportional to its normalized degree 𝑘

𝑥
/2|𝐸|

[22]. The link prediction similarity index sim(𝑥, 𝑦)|
𝑙
on
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Figure 1: Illustration of noncontribution relations and valid influence diffusion. With the same valid influence degree of 1 and smaller
connectivity chance of 1/3 than 1 in subgraph (a), link likelihood in (b) is less than (a) because of two noncontribution relations attached on
V
4
and V

6
; meanwhile, subgraph (c) with the highest valid influence degree of 3 and the same connectivity chance in (a) obtains the greatest

link likelihood. Totally, we rank (c) > (a) > (b) according to reasonable link likelihood.

a path 𝑞 = {V
0

= 𝑥, V
1
, . . . , V

𝑙
= 𝑦} equals the sum of

product of normalized and penalized node degrees and
transfer probability between two ends in both directions from
𝑥 to 𝑦 and from 𝑦 to 𝑥, as

sim (𝑥, 𝑦)
󵄨󵄨󵄨󵄨𝑙
=

𝑁(𝑙)

∑

𝑗=1

[(
𝑘
𝑥

2 |𝐸|
)

𝛽
1

𝑘
𝑥

𝐶(𝑥, 𝑦)
󵄨󵄨󵄨󵄨

𝑗

𝑙

+ (

𝑘
𝑦

2 |𝐸|
)

𝛽

1

𝑘
𝑦

𝐶(𝑥, 𝑦)
󵄨󵄨󵄨󵄨

𝑗

𝑙
]

=

𝑁(𝑙)

∑

𝑗=1

(
1

2 |𝐸|
)

𝛽

𝐶(𝑥, 𝑦)
󵄨󵄨󵄨󵄨

𝑗

𝑙
[(𝑘
𝑥
)
𝛽−1

+ (𝑘
𝑦
)
𝛽−1

] .

(2)

After merging, we obtain the processed equation, where 𝛽 is
penalty factor in [0, +∞) and 𝑁(𝑙) is the number of paths
of length 𝑙, 𝐶(𝑥, 𝑦) represents the intermediate connectivity
deleting the impact from the endpoint, and [(𝑘

𝑥
)
𝛽−1

+(𝑘
𝑦
)
𝛽−1

]

emphasizes the depressed influence of endpoints. At last, we
obtain the NRP index of summation on path lengths from 2
to 𝑡, saying that

𝑠
NRP
𝑥𝑦

(𝑡) =

𝑡

∑

𝑙=2

sim (𝑥, 𝑦)
󵄨󵄨󵄨󵄨𝑙
. (3)

Since paths longer than three cost expensive computa-
tions contribute but little for predicting links, we just consider
the paths with 𝑙 = 2 and 3 in practice and later experiments
[19, 22].

3. Experiments Data

Experiments are performed on nine real-world networks
(datasets are freely downloaded from the following
academic websites: http://vlado.fmf.uni-lj.si/pub/networks/
data, http://wiki.gephi.org/index.php?title=Datasets, http://
lovro.lpt.fri.uni-lj.si/support.jsp, http://konect.uni-koblenz
.de/networks/, andhttp://www.linkprediction.org/index.php/
link/resource/data). We converted arcs into undirected links
and removed loops and multilinks to make them simple
networks. (i) Network US Air97 (USAir) [23] is the network
of the US air transportation system. (ii) Network Yeast PPI
(Yeast) [24] is the protein-protein interaction network of
yeast. (iii) Network NetScience (NS) [25] is the network
of coauthorships between scientists publishing on the
topic of networks. (iv) Network Jazz [26] is the network
of Jazz musicians. (v) Network C.elegans (CE) [27] is the
neural network of the nematode worm C. elegans. (vi)
Network Slovka [28] is the Facebook friendship network
of Slavko Žitnik. (vii) Network Email (Email) [29] is the
email communication network of University of Rovira i
Virgili (URV) in Tarragona, Spain. (viii) Network Infectious
(Infec) [30] is the face-to-face contact network of people
during the exhibition “Infectious: Stay Away” in 2009 at the
Science Gallery in Dublin. (ix) Network EuroSiS (ES) [31] is
the mapping network between Science in Society actors on
the Web of 12 European countries. Table 1 reports the basic
topological features of these networks.

Each dataset is randomly divided into a training set 𝐸𝑇

containing 90% links and a testing set 𝐸𝑃 containing the re-
maining 10% links.
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Table 1: The basic topological features of the nine benchmark networks. |𝑉| denotes the number of nodes, |𝐸| is the number of links,
⟨𝑘⟩ represents the average degree, ⟨𝑑⟩ denotes the average distance, 𝐶 indicates the clustering coefficient [27], 𝑟 indicates the assortativity
coefficient [33], and𝐻 is the degree heterogeneity, defined as𝐻 = ⟨𝑘

2
⟩/⟨𝑘⟩

2.

Nets |𝑉| |𝐸| ⟨𝑘⟩ ⟨𝑑⟩ C r 𝐻

USAir 332 2128 12.81 2.74 0.749 −0.208 3.36

Yeast 2370 10904 9.2 5.16 0.378 0.469 3.35

NS 1461 2742 3.75 5.82 0.878 0.461 1.85

Jazz 198 2742 27.7 2.24 0.633 0.02 1.4

CE 453 2025 8.94 2.66 0.655 −0.225 4.49

Slavko 334 2218 13.28 3.05 0.488 0.247 1.62

Email 1133 5451 9.62 3.61 0.254 0.078 1.94

Infec 410 2765 13.49 3.63 0.467 0.226 1.39

ES 1272 6454 10.15 3.86 0.382 −0.012 2.46

4. Experiments Metrics

Area under curve (AUC) [32], an accurate metric, can be
interpreted as the probability that a randomly chosenmissing
link (a link in 𝐸

𝑃) is given a higher score than a randomly
chosen nonexistent link (a link in 𝑈 \ 𝐸, where 𝐸 denotes
the universal link set). In the implementation, among 𝑛

independent comparisons, if there are 𝑛
󸀠 times the missing

link has a higher score and 𝑛
󸀠󸀠 times they are the same score,

AUC can be calculated as follows:

AUC =
𝑛
󸀠
+ 0.5𝑛

󸀠󸀠

𝑛
. (4)

AUCestimates the accuracy of the index globally, with the
significance that if all the scores generated from independent
and identical distribution, the accuracy should be about 0.5.
Therefore, the degree to which the accuracy exceeds 0.5
indicates how much better the algorithm performs than pure
chance.

4.1. Baselines. For comparison, we introduce six classical
algorithms as follows.

(1) Common Neighbors (CN) Index [13]: considering
if two endpoints are similar, they may have many
common neighbors with definition by calculating the
number of common neighbors:

𝑠
CN
𝑥𝑦

=
󵄨󵄨󵄨󵄨Γ (𝑥) ∩ Γ (𝑦)

󵄨󵄨󵄨󵄨 , (5)

where Γ(𝑥) is the set of neighbor nodes belonging to
endpoint𝑥 and Γ(𝑥)∩Γ(𝑦) denotes the set of common
neighbors of endpoints 𝑥 and 𝑦.

(2) Preferential Attachment (PA) Index [14]: believing the
probability that the new link will connect 𝑥 and 𝑦 is
proportional to 𝑘

𝑥
× 𝑘
𝑦
:

𝑠
PA
𝑥𝑦

= 𝑘
𝑥
× 𝑘
𝑦
, (6)

where 𝑘
𝑥
and 𝑘

𝑦
denote the degree of node 𝑥 and 𝑦,

respectively.

(3) Adamic-Adar (AA) Index [15]: based on CN, pun-
ishing the common neighbors with high degree by
considering the logarithm of reciprocal of common
neighbors’ degrees:

𝑠
AA
𝑥𝑦

= ∑

𝑧∈Γ(𝑥)∩Γ(𝑦)

1

log (𝑘
𝑧
)
. (7)

(4) Resource Allocation (RA) Index [16]: similar to AA,
punishing the common neighbors with high degree
just by considering the reciprocal of common neigh-
bors’ degrees:

𝑠
RA
𝑥𝑦

= ∑

𝑧∈Γ(𝑥)∩Γ(𝑦)

1

𝑘
𝑧

. (8)

(5) Local Path (LP) Index [16, 19]: additionally counting
the contribution of local paths with length 3 as
follows:

𝑆
LP

= 𝐴
2
+ 𝜀𝐴
3
, (9)

where 𝐴 is the adjacency matrix and 𝜀 is a free
parameter.

(6) Bounded Local Path (BLP) Index [20]: bounding local
paths with structural coefficients according to path
lengths:

𝑠
BLP
𝑥𝑦

=

𝑙max

∑

𝑖=2

1

𝑖 − 1
⋅

󵄨󵄨󵄨󵄨󵄨
𝑃
𝑖
(V
𝑥
, V
𝑦
)
󵄨󵄨󵄨󵄨󵄨

∏
𝑖

𝑗=2
(𝑁 − 𝑗)

, (10)

where 𝑙max indicates the maximum length under
consideration and |𝑃

𝑖
(V
𝑥
, V
𝑦
)| is the number of all

paths connecting V
𝑥
and V
𝑦
with length 𝑖.

(7) Superposed RandomWalk (SRW) Index [22]: consid-
ering superposition of local paths less than 𝑡 steps and
the degrees of two endpoints as follows:

𝑠
SRW
𝑥𝑦

(𝑡) =

𝑡

∑

𝜏=1

[𝑞
𝑥
𝜋
𝑥𝑦

(𝜏) + 𝑞
𝑦
𝜋
𝑦𝑥

(𝜏)] , (11)

where 𝑞
𝑥

= 𝑘
𝑥
/2|𝐸| and 𝜋

𝑥𝑦
(𝜏) denote normalized

initial resource and transfer probability from node 𝑥

to 𝑦, respectively.
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Table 2: Prediction accuracy measured by AUC values on the nine benchmark networks. Each data point is an average over 10 independent
runs, each of which corresponds to a random 90%–10% division of training set and testing set. All the present results are optimal values.
Numbers in brackets stand for the standard deviations.

AUC CN PA AA RA LP BLP SRW NRP
USAir 0.937 (0.008) 0.885 (0.017) 0.948 (0.007) 0.954 (0.007) 0.938 (0.007) 0.931 (0.010) 0.953 (0.011) 0.957 (0.011)
Yeast 0.723 (0.005) 0.494 (0.008) 0.724 (0.005) 0.723 (0.005) 0.732 (0.005) 0.733 (0.004) 0.735 (0.005) 0.736 (0.005)
NS 0.940 (0.011) 0.679 (0.012) 0.940 (0.011) 0.940 (0.011) 0.940 (0.011) 0.943 (0.009) 0.943 (0.009) 0.944 (0.009)
Jazz 0.953 (0.005) 0.762 (0.013) 0.961 (0.004) 0.970 (0.004) 0.954 (0.005) 0.951 (0.005) 0.960 (0.004) 0.970 (0.004)
CE 0.914 (0.011) 0.808 (0.021) 0.948 (0.010) 0.954 (0.010) 0.914 (0.011) 0.911 (0.007) 0.953 (0.009) 0.960 (0.009)
Slavko 0.941 (0.009) 0.775 (0.013) 0.945 (0.009) 0.946 (0.010) 0.944 (0.010) 0.943 (0.010) 0.949 (0.009) 0.952 (0.009)
Email 0.844 (0.007) 0.782 (0.007) 0.846 (0.007) 0.846 (0.007) 0.893 (0.006) 0.902 (0.005) 0.903 (0.007) 0.908 (0.006)
Infec 0.939 (0.009) 0.703 (0.013) 0.942 (0.009) 0.943 (0.009) 0.954 (0.012) 0.958 (0.006) 0.964 (0.006) 0.966 (0.006)
ES 0.910 (0.005) 0.820 (0.007) 0.912 (0.006) 0.912 (0.006) 0.936 (0.007) 0.938 (0.005) 0.945 (0.005) 0.946 (0.005)

5. Results and Discussions

Because of small contribution and expensive cost of compu-
tation on long paths, experiments on NRP just considering
𝑡 = 3 in nine networks are implemented (referenced in [19,
22]). After obtaining AUC values experiments, in Section 5.1,
we demonstrate important meaning of penalizing noncon-
tribution relations in NRP in Figure 2 of nine subgraphs
corresponding to nine different datasets. Furthermore, per-
formance explanations about the nine subgraphs will be
offered with different values of penalization factor 𝛽 when
searching for optimal values in [0, 5] which is wide enough
to find the optimal values. Then, we compare our algorithms
with CN, PA, AA, RA, LP, BLP, and SRW via Table 2. At last,
the computational complexity is discussed in Section 5.3.

5.1. Performances of Penalization on Noncontribution Rela-
tions. There are nine subgraphs in Figure 2 about AUC of
NRP showing functions of penalization on noncontribution
relations of endpoint degrees with penalization factor 𝛽

varying in the range [0, 5], measured by average AUC under
10 independent runs obeying random divisions of training
sets and testing sets. The 𝛽-axis represents the penalization
degree on endpoint degrees. According to (2) and (3), 𝛽 < 1,
that is, 𝛽 − 1 < 0, suggests endpoints with noncontribution
relations will be penalized and the smaller the 𝛽 is, the more
severely the noncontribution relations are suppressed, and
vice versa. In Figure 2, the optimal 𝛽’s of all nine datasets
locate between 0 and 1 when AUC curves reach the peaks,
say, USAir at 0.38, Yeast at 0.77, NS at 0.86, CE at 0.11, Jazz
at 0.36, Infec at 0.5, Slavko at 0.63, Email at 0.84, and ES at
0.63, which means CE suffers the most penalization and NS
suffers the least. And when 𝛽 > 1, the AUC performances
decrease very severely compared with the optimal AUCs.The
𝛽 < 1 consistently happening in nine various kinds of datasets
means indeed that the noncontribution relations of endpoint
degrees are penalized, and the performance will get worse if
they are promoted when 𝛽 > 1.

5.2. Comparison on AUC. To demonstrate the prediction
ability, we report the performances of NRP index with

the optimal 𝛽 values on nine datasets, respectively. Table 2
reports the average AUC values of NRP and baselines. The
results in the table are all optimal and the best values are
emphasized in bold font. NRP achieves the best performances
in all nine datasets (see boldface in Table 2). Notice that
those datasets represent different kinds of networks with
heterogeneous topological features (see Table 1) and disparate
organization principles; the comparison highlights that NRP
works well consistently on various situations.

Analyzing the difference in performance between NRP
and baselines, we realize that it is the penalization on
large-degree nodes with many noncontribution relations and
emphasis on connectivity based on randomwalk that explain
the difference. PA simply assumes that only if the higher
the degrees the two endpoints have, the more similar the
two endpoints are, ignoring the existence of noncontribution
relations in degrees of endpoints and the significant con-
nectivity between endpoints, leading to the poorest accuracy
performance, especially in Yeast. Instead, CN considers the
connectivity via counting the number of common neighbors
on 2-hop paths, but ignoring influence of endpoint degrees
and connectivity of long paths, resulting in an improved
but still worse performance. Further, AA and RA extend
CN by similarly penalizing intermediate large-degree nodes
and not surprisingly obtain better performance than CN.
However, as the same as CN, ignorance of influence of
endpoint degrees and long paths cause AA and RA to still
work dissatisfiedly such as in Yeast. In contrast, LP and
BLP take long paths into account and thus outperform on
many networks such as in ES. However, lacking consider-
ation of influence of endpoint degree, LP and BLP meet
difficulty in accurately predicting missing links in contrast
to NRP, such as in USAir. An exception for BLP is its
worse performance especially than CN in USAir, Jazz, and
CE because of inelegant formalism of coefficient which
cannot hit an optimal value to help it overwhelmingly defeat
CN. SRW, with consideration of influence of high endpoint
degree and of long paths based on random walk, further
improves the performance in contrast to the former algo-
rithms, but neglect of penalization on endpoint degree with
noncontribution relations preventing it from better predic-
tion performance. Above all, NRP, outstandingly leveraging
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Figure 2: AUC of NPR, respectively, on nine different datasets with 𝛽 in [0, 5]. The optimal AUC is obtained at 𝛽opt. All AUC values are
obtained by averaging over ten independently random divisions.

the valid influence of endpoint degree with penalization on
noncontribution relations and connectivity based on random
walk, outperforms all other mainstream algorithms on nine
datasets.

5.3. Complexity Discussion. In application of algorithm, the
low computation complexity is another very important con-
cern in the design of prediction algorithm. As we know, the
time complexity of product of two𝑁×𝑁matrices is 𝑂(𝑁

3
).

From the definitions of CN, PA, AA, RA, LP, BLP, and SRW,
PA has the time complexity of 𝑂(𝑁

2
), CN, PA, AA, and RA

have the time complexity of 𝑂(𝑁
3
), and LP, BLP, and SRW

are of the complexity 𝑀 × 𝑂(𝑁
3
) with coefficient 𝑀 ≪

𝑁
3. In contrast, although with the same time complexity of

𝑀 × 𝑂(𝑁
3
) of LP, BLP, and SRW, more than CN, PA, AA,

andRA, our index shows stronger performance than themall.

Above all, our index, NRP, achieves the best performance
with little increase in complexity.

6. Conclusions

In research on topological similarity based link prediction, we
find that not all relations involved in the degree of endpoint
make contribution to valid influence diffusion due to the exis-
tence of noncontribution relations. Accordingly, we expect, in
case of penalizing the noncontribution relations in endpoints
degree with a penalization factor 𝛽 in the valid influence
diffusion process, the link prediction performance could be
improved.Therefore, in this paper amodel namedNRPbased
on noncontribution relations penalization of endpoint degree
and randomwalk based valid influence diffusion is proposed.
To detect our model, many experiments are implemented on
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nine benchmark networks and the results compared with the
CN, PA, AA, RA, LP, BLP, and SRW confirm our expectation
that penalization on noncontribution relations of endpoint
degree could greatly improve the accuracy performance in
link prediction.

And due to the various structures and properties of exper-
imental datasets, it is obvious that our model can be used in
many applications of link prediction, such as transportation
planning, biological reactions, friend recommendation in
social network, and disease prevention.
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