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Open-chain multibody systems have been extensively studied because of their widespread application. Based on the structural
characteristics of such a system, the relationship between its hinged bodies was transformed into recursive constraint relationships
among the position, velocity, and acceleration of the bodies. The recursive relationships were used along with the Huston-Kane
method to select the appropriate generalized coordinates and determine the partial velocity of each body and to develop an
algorithm of the entire system. The algorithm was experimentally validated; it has concise steps and low susceptibility to error.
Further, the algorithm can readily solve and analyze open-chain multibody systems.

1. Introduction

With the significant development of engineering and technol-
ogy over the last 40 years, experts and researchers around the
world have ceaselessly pursued creativity, which has included
the development of diverse dynamics methods for solving
multibody systems. Hooker and Wargulies [1, 2] derived a
general dynamics equation of a form that consists of𝑁 rigid
bodies. Roberson and Wittenburg [3, 4] described the struc-
ture of multibody systems based on concepts of graph theory
and derived general dynamics equations of a rigid system. Ho
[5] used the direct pathmethod to derive dynamics equations
of the motion of a flexible multibody spacecraft with a
topological tree configuration. Kane presented what came
to be known as Kane’s method, which can be used to auto-
matically eliminate the constraints force of a system and does
not require the introduction of a differential scalar energy
function [6–8]. Haug et al. [9, 10] developed the equations
of motion of flexible dynamic systems, which are presented
in this paper, using vibration and static correction elastic
deformation modes. Furthermore, de jalón and Bayo [11]
proposed an absolute Cartesian method.

The above works have facilitated the development of
modern engineering and technology and provided a variety

of effective methods for solving the problems of dynamic
mechanical systems. Many institutions and researchers have
used these methods to study systems. Among them are
Houston et al. [12–16], who subsequently used Kane’s method
to develop a comprehensive approach and general dynamics
formula for solving a multibody system. Tianjin University
also developed the new multibody dynamics software and
the flexible body dynamics software and successfully applied
them to the analysis, modeling, and experimental study of
dynamics [12, 17–19]. Furthermore, Shanghai Jiaotong Uni-
versity conducted a series of studies on flexible multibody
dynamics simulation software and theory [20–22], and the
National Defense University studied a parachute recovery
system using a multibody dynamics model [23–26].

However, these methods have drawbacks. For example,
some of them do not have general dynamics equations that
can be applied to any multibody system, and some require
the user to have sufficient experience and skill to be able to
use them to select the proper general velocity that would
simplify the calculation process. Moreover, some of the
methods involve several differential equations and constraint
forces, which increase the difficulty of solving the dynamics
equations of the system, just as others require extensive and
laborious derivative operations.
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Figure 1: Simplified model of the open-chain multibody system.

In the present study, vector analysis of a kinematic open-
chain multibody system was carried out based on the struc-
tural characteristics of the system. In combination with the
Huston-Kane method, the vector analysis was used to select
appropriate generalized coordinates, and the generalized
velocity, rather than the generalized coordinates, was used
as the independent variable for describing the motion of the
system.The recursive dynamics equations of the system were
also obtained.

2. Dynamic Modeling

2.1. Assumption. Theopen-chainmultibody system shown in
Figure 1 is assumed to be composed of hinged rigid rods with
theirmasses concentrated at their ends.There are 𝑛 rigid bod-
ies and 𝑛 + 1 nodes in the system. Based on the low-number
array method for describing multibody systems developed
by Huston, one end of the system was selected as the
starting point, and the nodes were numbered from that end.
The nodes were numbered as 0, 1, 2, 3, . . . , 𝑛, and the rods
were numbered as 1, 2, 3, . . . , 𝑛. The mass of each node is
denoted by𝑚

𝑖
, the length of each rod is denoted by 𝑙

𝑖
, and the

angle between the 𝑦-axis and each rod is denoted by 𝜃
𝑖
(𝑡). In

the generalized coordinates, the first node position is defined
by [𝑥
0
(𝑡), 𝑦
0
(𝑡)], and the angle between each body and the 𝑦-

axis is defined by 𝜃
𝑖
(𝑡).

2.2. Kinematic Analysis

2.2.1. Position Analysis. It is assumed that the position of the
first node in the inertial frame at time 𝑡 is [𝑥

0
(𝑡), 𝑦
0
(𝑡)] and

that the angle between the 𝑖th rod and the 𝑦-axis is 𝜃
𝑖
(𝑡). The

position of each node is thus given by

[
𝑥
𝑖 (𝑡)

𝑦
𝑖 (𝑡)

] = [
𝑥
𝑖−1 (𝑡) − 𝑙

𝑖
sin 𝜃
𝑖 (𝑡)

𝑦
𝑖−1 (𝑡) − 𝑙

𝑖
cos 𝜃
𝑖 (𝑡)

] 𝑖 = 1, 2, . . . , 𝑛. (1)

2.2.2. Velocity Analysis. The velocity of each node is obtained
as a derivative of the position of the node and is defined
by ̇𝜃
𝑖
(𝑡) = 𝜔

𝑖
(𝑡). Hence, the velocity of the first node is

[𝑥̇0(𝑡) ̇𝑦
0
(𝑡)]
󸀠, and those of subsequent nodes are

[
𝑥̇
𝑖 (𝑡)

̇𝑦
𝑖 (𝑡)

] = [
𝑥̇
𝑖−1 (𝑡) − 𝑙

𝑖
cos 𝜃
𝑖 (𝑡) 𝜔1 (𝑡)

̇𝑦
𝑖−1 (𝑡) + 𝑙

𝑖
sin 𝜃
𝑖 (𝑡) 𝜔1 (𝑡)

] 𝑖 = 1, 2, . . . , 𝑛.

(2)

2.2.3. Partial Velocity Analysis. The partial velocity of each
node relative to the generalized velocity can be obtained as
follows:

𝑢
𝑖𝑗
=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

[
0

0
] 𝑖 < 𝑗, 𝑗 ≤ 𝑛

[
1

0
] 𝑗 = 𝑛 + 1

[
0

1
] 𝑗 = 𝑛 + 2

[
−𝑙
𝑖
cos 𝜃
𝑖 (𝑡)

𝑙
𝑖
sin 𝜃
𝑖 (𝑡)

] 𝑖 ≥ 𝑗.

(3)

The derivative of the partial velocity can also be obtained as
follows:

𝑢̇
𝑖𝑗
=

{{{{

{{{{

{

[
0

0
] 𝑖 < 𝑗

[
𝑙
𝑖
sin 𝜃
𝑖 (𝑡) 𝜔𝑖 (𝑡)

𝑙
𝑖
cos 𝜃
𝑖 (𝑡) 𝜔𝑖 (𝑡)

] 𝑖 ≥ 𝑗.

(4)

2.2.4. Acceleration Analysis. The derivative of the velocity of
each node gives the acceleration. The acceleration of each
node can thus be obtained using

𝑎
𝑖
=

𝑛+1

∑

𝑗=0

𝑢
𝑖𝑗

̈𝑞
𝑗
+ 𝑢̇
𝑖𝑗

̇𝑞
𝑗

𝑖 = 0, 1, 2, . . . , 𝑛, (5)

where ̇𝑞
𝑗
is the 𝑗th generalized velocity and ̈𝑞

𝑗
is the derivative

of the 𝑗th generalized velocity.

2.3. Dynamic Analysis. It is assumed that the active force
acting on each node is 𝑓𝑧

𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑛, where 𝑓𝑧 is the

matrix formulation.

2.3.1. Generalized Active Force. Using Kane’s method, the
generalized active force of the 𝑗th generalized coordinates can
be obtained as

𝐹𝑙
𝑗
=

𝑛

∑

𝑖=1

𝑓𝑧
𝑖
⋅ 𝑢
𝑖𝑗

𝑗 = 1, 2, . . . , 𝑛 + 2. (6)

The generalized active force of the entire system is given by

𝐹𝑙 = 𝑢
󸀠
𝑓𝑧. (7)
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Figure 2: Double pendulum.

2.3.2. Generalized Inertial Force 𝐹𝑙
∗. Based on Kane’s

method, the generalized inertial force of the 𝑗th generalized
coordinates is

𝐹𝑙
∗

𝑗
=

𝑛

∑

𝑖=1

− 𝑚
𝑖
𝑎
𝑖
⋅ 𝑢
𝑖𝑗

=

𝑛

∑

𝑖=1

− 𝑚
𝑖
(𝑢
𝑖𝑗

̈𝑞
𝑗
+ 𝑢̇
𝑖𝑗

̇𝑞
𝑗
) ⋅ 𝑢
𝑖𝑗

𝑗 = 1, 2, . . . , 𝑛 + 2.

(8)

The generalized inertial force of the entire system is

𝐹𝑙
∗
= −𝑢
󸀠
𝑀𝑢 ̈𝑞 − 𝑢

󸀠
𝑀𝑢̇ ̇𝑞, (9)

where 𝑢, ̇𝑞, and ̈𝑞 are the matrix formulations of 𝑢
𝑖𝑗
, ̇𝑞
𝑗
, and

̈𝑞
𝑗
, respectively; 𝑢󸀠 is the transpose matrix of 𝑢; and 𝑀 =

diag[𝑚
0
, 𝑚
1
, . . . , 𝑚

𝑛
].

2.4. Dynamics Equation. Based on Kane’s equation,

𝐹𝑙 + 𝐹𝑙
∗
= 0. (10)

If (9) is substituted into (10), we have

𝐹𝑙 − 𝑢
󸀠
𝑀𝑢 ̈𝑞 − 𝑢

󸀠
𝑀𝑢̇ ̇𝑞 = 0. (11)

By transposition,

𝑢
󸀠
𝑀𝑢 ̈𝑞 = 𝐹𝑙 − 𝑢

󸀠
𝑀𝑢̇ ̇𝑞. (12)

Equation (12) can be rewritten as

𝐴 ̈𝑞 = 𝑓𝑙, (13)

where 𝐴 = 𝑢
󸀠
𝑀𝑢 and 𝑓𝑙 = 𝐹𝑙 − 𝑢

󸀠
𝑀𝑢̇ ̇𝑞.

Equation (13) includes 𝑛 + 2 equations and a total of 𝑛 + 2

variables.The kinematic parameters of the system can thus be
obtained.

3. Examples

3.1. Example 1. Figure 2 shows a double pendulum. The
system consists of two hinged pendulums, the movements
of which are limited to the plane of the inertial reference

system. Their lengths and masses are, respectively, 𝑙
1
and 𝑙
2

and 𝑚
1
and 𝑚

2
. As known, the system has two degrees of

freedom and can therefore be described by two generalized
coordinates. Two methods for solving the double pendulum
are presented, namely, the Lagrange method and the method
proposed in this paper.

In Lagrange’s method, the absolute value of each of 𝛼
1

and 𝛼
2
is selected using the inertial reference system axis

as the generalized coordinate of the system. The dynamics
equations can thus be written as

(𝑚
1
+ 𝑚
2
) 𝑙
1
𝛼̈
1
+ 𝑚
2
𝑙
2
cos (𝛼

2
− 𝛼
1
) 𝛼̈
2

− 𝑚
2
𝑙
2
sin (𝛼

2
− 𝛼
1
) 𝛼̇
2

2
+ (𝑚
1
+ 𝑚
2
) 𝑔 sin𝛼

1
= 0,

𝑚
2
𝑙
1
cos (𝛼

2
− 𝛼
1
) 𝛼̈
1
+ 𝑚
2
𝑙
2
𝛼̈
2

+ 𝑚
2
𝑙
1
sin (𝛼

2
− 𝛼
1
) 𝛼̇
2

1
+ 𝑚
2
𝑔 sin𝛼

2
= 0.

(14)

In the method proposed in this paper, the relative value
of each of 𝛽

1
and 𝛽

2
is selected using the inertial reference

system axis as the generalized coordinate of the system.
Gravity is the only active force acting on the multibody
system.

To simplify the calculations, it is assumed that𝑚
1
= 𝑚
2
=

1, 𝑙
1
= 𝑙
2
= 1, and the initial angle of each pendulum relative

to the inertial reference system axis is 18∘. We solved this
problem using Lagrange’s method and the method of this
paper, respectively. The dynamic responses are shown in
Figure 3.

It can be seen that the dynamic responses obtained by the
twomethods are in good agreement, which confirms that the
proposed method is valid for solving the double pendulum
problem.

3.2. Example 2. The system shown in Figure 4 is a line-
throwing rocket. The coordinate system is the inertial coor-
dinate system, and the launch point is defined as the origin
of the coordinates. The 𝑥-axis is in the flight direction of the
rocket and is locally parallel to the “ground.” The 𝑦-axis is
vertical to the “ground.”

The entire system is located on the XOY plane and its
motion is planar. The rocket is simplified as a mass point and
the rope is broken into 𝑛 arbitrary segments in accordance
with the finite segment method. The length of each rope
segment is 𝑙

𝑖
, with the length and mass of the last segment

being variable. The segments are numbered 1, 2, 3, . . . , 𝑛, and
labels from the rocket pull them to the ground. If the elon-
gation and bending of the rope in the axial direction are not
considered and assuming that the mass of each rope segment
is mainly distributed at the end of the segment farther from
the rocket and that the different segments are connected by
a hinge, if the rope is pulled out and the length of the last
segment changes till it fits the setting condition, a new rope
segment 𝑛 + 1 would be created.

Let us consider the example of a rocket with the length
of 1m, diameter of 122mm, and total weight of 20 kg and
with gunpowder weight of 2.33 kg, rocket total impulse of
4770N⋅s, and engine working time of 0.43 s. Further, the lin-
ear density of the rope is 0.043Kg/m, and each rope section is
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Figure 3: Dynamic responses.

Table 1: Comparison of the simulation and test results for a launch
angle of 30∘.

Parameters Range (m) Maximum velocity
(m/s)

Flight time
(s)

Simulation 637.1 206.6 8.1
Test 629.9 199.5 8.6
Absolute error 7.2 7.1 0.5

1m long.The emission angle is 30∘.The simulation and exper-
imental results for this rocket were compared. The test setup
was as shown in Figure 5.

The simulation and test results are summarized in Table 1.
The range, maximum velocity, and flight time obtained by
simulation and the test using a launch angle of 30∘ are given
in the table. As can be seen, the simulation range was 7.2m
longer than that of the test, which represents an error of 1.13%.
The maximum velocity obtained by simulation was 7.1m/s
higher than that of the test, indicating an error of 3.4%. The
simulation flight time was 0.5 s shorter than that of the test.

The velocities of the rocket measured by radar and
obtained by simulation for the launch angle of 30∘ are shown
in Figure 6. From the figure, it can be seen that the maximum

𝜃n

𝜃3

𝜃2

𝜃1

Y

X
O

Figure 4: Simplified model of the line-throwing rocket.
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Figure 5: Test setup.
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Figure 6: Curves of simulation and test velocities for a launch angle
of 30∘.

velocity measured during the test was 199.5m/s, whereas
the maximum simulation velocity was 206.6m/s. When the
engine was stopped, the test velocities after 1, 2, 3, and 4 s
were 154.3, 99.3, 73.8, and 60.5m/s, respectively, whereas the
simulation velocities were 158.7, 98.9, 70.3, and 58.5 s, respec-
tively.The errors are 2.8%, 0.4%, 5.0%, and 3.4%, respectively,
and the average error is 2.9%.

The data in Table 1 and the velocity curves in Figure 6
show that the simulation results, including the velocity
changes, are in good agreement with the test results.This ver-
ifies the precision of the dynamic model of the line-throwing
rocket.

4. Conclusions

By analysis, the recursive relationships among the location,
velocity, and acceleration of the different parts of an open-
chain multibody system were determined and were used
in combination with Houston-Kane’s method to select the
appropriate generalized velocity and develop a dynamic
recursive algorithm of the multibody system. The proposed
method does not require the solution of the constrained
reaction force in the modeling process, and it involves fewer
variables and equations, which improves the computational
efficiency of the dynamic model.

The developed dynamic recursive algorithm was used to
simulate and analyze two examples. The dynamic responses
of the double pendulum obtained by simulation were found
to be in good agreement with the results of test for a
line-throwing rocket. The validity of the dynamic recursive
algorithm for solving an open-chain multibody system was
thus verified.
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