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Autonomous on-orbit servicing is expected to play an important role in future space activities. Acquiring the relative pose
information and inertial parameters of target is one of the key technologies for autonomous capturing. In this paper, an estimation
method of relative pose based on stereo vision is presented for the final phase of the rendezvous and docking of noncooperative
satellites. The proposed estimation method utilizes the sparse stereo vision algorithm instead of the dense stereo algorithm. The
method consists of three parts: (1) body frame reestablishment, which establishes the body-fixed frame for the target satellite using
the natural features on the surface and measures the relative attitude based on TRIAD and QUEST; (2) translational parameter
estimation, which designs a standard Kalman filter to estimate the translational states and the location of mass center; (3) rotational
parameter estimation, which designs an extended Kalman filter and an unscented Kalman filter, respectively, to estimate the
rotational states and all the moment-of-inertia ratios. Compared to the dense stereo algorithm, the proposed method can avoid
degeneracy when the target has a high degree of axial symmetry and reduce the number of sensors. The validity of the proposed
method is verified by numerical simulations.

1. Introduction

The autonomous on-orbit servicing is expected to be one
of the most challenging and exciting space activities in the
future [1, 2]. In the past, many expensive satellites were out
of service in orbit due to various failures, such as solar panel
undeployment and gyro malfunction. However, in these
cases, most of the other parts of the satellites were still func-
tional [3, 4]. The on-orbit servicing, which is the execution
of repair, refueling, orbit maintenance, and reorbiting, can
extend the life of malfunctioned satellites and save a large
amount of expense.

Therefore, more and more attentions have been paid
to the technologies of autonomous on-orbit servicing. Sev-
eral on-orbit servicing projects including on-orbit servicing
demonstration experiments and conceptual on-orbit servic-
ing systems have been carried out [5, 6].

As malfunctioned satellites are generally noncooperative
targets tumbling in space and have no equipment which can
be used for relative pose measurement [7], it is necessary

to develop the method of relative pose measurement with-
out the cooperation of target satellites. For example, the
purpose of the Spacecraft for the Universal Modification of
Orbits (SUMO) program is to demonstrate the integration of
machine vision, robotics, mechanisms, and autonomous con-
trol algorithms to accomplish autonomous rendezvous and
grapple of a variety of interfaces traceable to future spacecraft
servicing operations [8]. In the SUMO program, the main
concept is to be able to capture an unaided target satellite; that
is, target satellite is equipped without special facilities such
as grapple fixtures or reflectors which is compatible with the
SUMO. SUMO was later renamed as the Front-End Robotics
Enabling Near-term Demonstration (FREND) to develop
a series of key components including a seven degree-of-
freedom (DOF) flight robotic arm which was demonstrated
in a test bed with a stereo photogrammetric imaging system
[9]. Similarly, DEOS (Deutsche Orbitale Servicing Mission)
project focuses on finding and evaluating the procedures and
techniques for rendezvous, capture, and deorbiting of a
noncooperative target satellite [10]. In the automatic mode,
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a number of images are taken and dumped to the ground
segment, and then target motion is estimated by the control
software in the ground station.

The relative pose information of two involved satellites is
of vital importance for the end-effector to successfully grasp
the tumbling satellite. If the dynamic model of the target is
known, a filter can be designed to suppress the measurement
noise and estimate the states which cannot be measured
directly. Furthermore, the dynamic model can also be used
to predict the motion of the target satellite, and then the
optimal path planning can be conducted to guide a robotic
manipulator to capture the tumbling target at a rendezvous
point with the same velocity [11]. Vision system is more and
more commonly utilized for the relative pose measurements
in the rendezvous missions due to the low cost, low mass,
and low energy requirement of CCD/CMOS cameras [12, 13].
Nagamatsu et al. proposed a 12th order extended Kalman
filter to estimate the position and attitude of a torque-free
target satellite by using a simplified dynamical model [14].
NASA investigated the feasibility of robotic autonomous
servicing of the Hubble Space Telescope (HST). A nonlinear
estimator was developed to estimate the HST body rates by
using vision-based sensors which can output relative quater-
nion [15, 16]. NASA/GSFC continued to develop a Goddard
Natural Feature Image Recognition (GNFIR) algorithm. A 6-
DOF pose estimationwas demonstrated in Robotic Refueling
Mission in order to augment the traditional overlays [17].
Tweddle described a new approach to solve a SLAM problem
for unknown and uncooperative objects that are spinning
about an arbitrary axis. An experimental test-bed known as
“Goggles” with computer vision-based navigation capability
by the stereo cameras is used to test the algorithm [18]. Lichter
andDubowsky proposed an important and effective architec-
ture of estimating dynamic state, geometric shape, andmodel
parameters of objects in orbit [19]. A team of cooperating
3D vision sensors captures sequences of range images to
determine the rough target poses before filtering.The relative
positions and orientations between sensors mounted on dif-
ferent satellites are required to be known with high accuracy,
which is perhaps a cost and operation burden for on-orbit
servicing. A model-based pose refinement algorithm was
proposed to perform the relative pose estimation of a floating
object from the visual information of a stereo-vision system
[20]. Du et al. proposed a method based on two collaborative
cameras sharing the recognition task to determine the pose
of a large noncooperative target [21], and details of image
processing were also discussed.

In this paper, the problem of relative pose estimation
for the final phase of the rendezvous and docking of non-
cooperative satellites is investigated. Instead of the dense
stereo algorithm presented in the literature [17], here the
relative pose estimation method is based on the sparse stereo
algorithm. The body-fixed coordinate system of the target
satellite is reestablished by utilizing the natural features on the
target surface. Two relative attitude measurement methods
based on TRIAD andQUEST are presented.Then, a standard
Kalman filter is designed to estimate the translational states
and the location of the mass center. An extended Kalman
filter (EKF) and an unscented Kalman filter (UKF) are

designed, respectively, to estimate the rotational states and
the moment-of-inertia ratios including the ratios of product
of inertia, and their performances are compared with each
other.

This paper is structured as follows. Section 2 defines the
coordinate systems and transformation matrixes used in the
relative pose estimation. Section 3 presents two algorithms
for relative attitude measurements including the scheme for
updating the target feature coordinate system when target
is tumbling. Then, an approach based on Kalman filter to
estimate the location of mass center and translation parame-
ters is proposed in Section 4. In Section 5, the EKF and UKF
are designed, respectively, to estimate the moment-of-inertia
ratios and orientation parameters. Numerical simulation is
conducted to verify the proposed algorithm and results are
discussed as well in Section 6. The last section contains
conclusions.

2. Coordinate Systems
and Transformation Matrixes

As various physical quantities are usually defined in different
coordinate systems, the coordinate systems and coordinate
transformation matrixes are defined to illustrate the relative
geometrical relationship between the target and chaser. The
relative geometrical relationship and coordinate systems are
illustrated in Figure 1.

2.1. Inertial Coordinate System (Σ𝑖). The origin of the inertial
coordinate system 𝑜

𝑖
− 𝑥
𝑖
𝑦
𝑖
𝑧
𝑖
is centered on Earth, the 𝑧

𝑖
axis

is aligned with the rotation axis, and the 𝑥
𝑖
axis is defined to

point toward the Vernal equinox. The 𝑦
𝑖
axis completes the

right-handed orthogonal coordinate system. The attitude of
target satellite and service satellite can be described as the
rotation from the inertial frame to the body frame.

2.2. Local Orbital Coordinate System (Σ𝑜 & Σ
𝑜


). The origin
of the local orbital coordinate system 𝑜

𝑜
− 𝑥
𝑜
𝑦
𝑜
𝑧
𝑜
(Σ𝑜) lies

in the mass center of service satellite. The 𝑥
𝑜
axis is in the

opposite direction of the Earth center, the 𝑦
𝑜
axis is in the

flight direction, and the 𝑧
𝑜
axis which completes the right-

handed orthogonal coordinate system is in the direction of
the angular momentum of the orbit.

Similarly, the local orbital coordinate system Σ
𝑜


is
attached to target satellite. The rotation matrix between the
two satellite orbital frames is denoted as C𝑜

𝑜
 . As two satellites

are almost in the same orbit and the service satellite is very
close to the target, C𝑜

𝑜
 is nearly a 3 × 3 identity matrix. For

instance, if the target is a leading satellite in the circular orbit
of 700 km altitude and the chaser is 100mbehind the target in
the same orbit, the rotation angle between two orbital fames
is only about 3.

2.3. Chaser Body-Fixed Coordinate System (Σ𝑠). The origin of
chaser body-fixed coordinate system 𝑜

𝑠
− 𝑥
𝑠
𝑦
𝑠
𝑧
𝑠
lies in the

mass center of service satellite, and the three body axes of
symmetry are defined as three coordinate axes 𝑥

𝑏
, 𝑦
𝑏
, and 𝑧

𝑏
.
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Figure 1: Geometrical relationship and coordinate systems.

The orientation of the Σ𝑠 relative to Σ𝑖 or Σ𝑜 is determined by
attitude and orbit determination system which is equipped
with gyro, star sensor, GNSS receiver, and so on. The coordi-
nate transformation matrix from inertial coordinate system
Σ
𝑖 to Σ𝑠 is denoted as C𝑠

𝑖
, and the coordinate transformation

matrix from Σ
𝑜 to Σ𝑠 is denoted as C𝑠

𝑜
.

2.4. Stereovision-Fixed Coordinate System (Σ𝑐). The origin
of stereovision-fixed coordinate system 𝑜

𝑐
− 𝑥
𝑐
𝑦
𝑐
𝑧
𝑐
lies in

the stereo vision system. The axis 𝑧
𝑐
is parallel with the

optical axis of the cameras, 𝑥
𝑐
is vertical to the optical axis,

and the direction of axis 𝑦
𝑐
obeys the right-hand role. The

measurement information (coordinates of feature points) of
stereo vision system is described in this coordinate system.

The rotation matrix C𝑐
𝑠
and the translation vector 𝜌𝑐

𝑠

from Σ
𝑠 to Σ𝑐 can be acquired by calibration on the ground.

Therefore, relationship between the coordinates of feature
points in Σ𝑠 and Σ𝑐 can be described as

p𝑠
𝑖
= C𝑠
𝑐
⋅ p𝑐
𝑖
+ 𝜌
𝑐

𝑠
, (1)

where p𝑠
𝑖
= [𝑥
𝑠

𝑖
, 𝑦
𝑠

𝑖
, 𝑧
𝑠

𝑖
] are the coordinates of 𝑖th feature point

in the frame Σ𝑠 and p𝑐
𝑖
= [𝑥
𝑐

𝑖
, 𝑦
𝑐

𝑖
, 𝑧
𝑐

𝑖
] are in Σ𝑐.

2.5. Target Feature Coordinate System (Σ𝑓). As there are
no artificial marks which can provide effective cooperative
information to service satellite, natural features on the target
surface are utilized to establish target feature coordinate
system 𝑜

𝑓
− 𝑥
𝑓
𝑦
𝑓
𝑧
𝑓
. The natural features are usually on

frameworks of the antenna backboard, solar panels, and so
on. The frame Σ𝑓 is applied to determine the relative pose
between target and chaser satellite. The methods to establish
the frame Σ𝑓 are described in Section 3.

2.6. Target Body-Fixed Coordinate System (Σ𝑡). The origin of
target body-fixed coordinate system 𝑜

𝑡
−𝑥
𝑡
𝑦
𝑡
𝑧
𝑡
lies in themass

center of target satellite, and the three coordinate axes 𝑥
𝑡
, 𝑦
𝑡
,

and 𝑧
𝑡
are set to be parallel to 𝑥

𝑓
, 𝑦
𝑓
, and 𝑧

𝑓
, respectively.

Obviously, the axes𝑥
𝑡
,𝑦
𝑡
, and 𝑧

𝑡
are probably not alignedwith

three body axes of symmetry of target.

2.7. Target Nominal Body-Fixed Coordinate System (Σ𝑟). The
origin of target nominal body-fixed coordinate system 𝑜

𝑟
−

𝑥
𝑟
𝑦
𝑟
𝑧
𝑟
lies in approximate mass center of target satellite, and

the three coordinate axes 𝑥
𝑟
, 𝑦
𝑟
, and 𝑧

𝑟
are parallel to 𝑥

𝑡
, 𝑦
𝑡
,

and 𝑧
𝑡
, respectively. Approximate location of mass center is

estimated by ground staff using teleoperation loop or esti-
mated automatically by service spacecraft. For example, the
approximate mass center of target satellite can be supposed
to lie in the target centroid. Then, the vector →𝑜

𝑟
𝑜
𝑓
is known

and the offset →𝑜
𝑡
𝑜
𝑟
which is denoted as b will be estimated.

3. Algorithms of Relative
Attitude Measurement

Natural feature points are utilized to establish the target
feature coordinate system Σ

𝑓. As image processing including
image filtering, edge detection, feature point recognition, and
matching is discussed [19], it is assumed in this paper that
the coordinates of natural feature points in frame Σ

𝑐 are
outputted by the stereo vision system.

3.1. Attitude Determination Based on TRIAD. There are
several feature points tracked by the stereo vision system,
which is illustrated in Figure 1. Three points 𝑝

1
, 𝑝
2
, and 𝑝

3

are selected according to geometry and imaging quality of
natural feature points to establish the frame Σ

𝑓 by right-
handed rule. The 𝑝

1
is the origin of Σ𝑓, the axis 𝑥

𝑓
is in the

direction of vector →𝑝
1
𝑝
2
, and the axis 𝑧

𝑓
is vertical to the

plane which contains the three points. The direction of axis
𝑦
𝑓
obeys the right-hand role. The rotation matrix C𝑓

𝑐
from
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the frame Σ𝑐 to Σ
𝑓 can be determined by direction cosine

matrix as follows:

C𝑓
𝑐
= {c
1
, c
2
, c
3
} ,

c
1
=

→
𝑝
1
𝑝
2



→
𝑝
1
𝑝
2



,

c
3
=

→
𝑝
1
𝑝
2
×
→
𝑝
1
𝑝
3



→
𝑝
1
𝑝
2
×
→
𝑝
1
𝑝
3



,

c
2
= c
3
× c
1
,

(2)

where | | is the magnitude calculation and a × b is the
representation of the operation of vector cross product. The
error of TRIAD can be described as rotation angle 𝜙 about
the Euler axis

𝜙
2
=
1

2
(𝛼
2

1
+ 𝛼
2

2
) (1 + csc2𝜃) , (3)

where 𝜃 is the angle between →𝑝
1
𝑝
2
and →𝑝

1
𝑝
3
, and it produces

minimum error when it is 90∘. 𝛼
1
and 𝛼

2
are pointing errors

of →𝑝
1
𝑝
2
and →𝑝

1
𝑝
3
, respectively, and the pointing errors will be

reduced with the extension of the line segments. Then, it is
concluded that the three points which contribute the largest
area are to be selected to obtain better accuracy in practice.

3.2. Attitude Determination Based on QUEST. As there are
often more than 3 feature points available in the view of
stereo vision system, it is better that all available points (the
number of points is denoted as𝑚 + 1) in view are utilized to
improve the accuracy of relative attitude determination.Then
coordinates of all feature points except 𝑝

1
in the frame Σ𝑓 can

be calculated as follows:

𝑥
𝑓

𝑖
= c
1
⋅
→
𝑝
1
𝑝
𝑖
,

𝑦
𝑓

𝑖
= c
2
⋅
→
𝑝
1
𝑝
𝑖
,

𝑧
𝑓

𝑖
= c
3
⋅
→
𝑝
1
𝑝
𝑖
,

𝑖 = 2, 3, . . . , 𝑚 + 1,

(4)

where a ⋅ b is the vector inner product. As measuring is
repeated, an average processing is utilized and then more
accurate coordinatesX𝑓

𝑖
are determined in the frame Σ𝑓. The

components of X̂𝑓
𝑖
are described as

𝑥
𝑖
=
∑
𝑛

𝑘=1
𝑥
𝑖,𝑘

𝑛
, 𝑦

𝑖
=
∑
𝑛

𝑘=1
𝑦
𝑖,𝑘

𝑛
, �̂�

𝑖
=
∑
𝑛

𝑘=1
𝑧
𝑖,𝑘

𝑛
,

(5)

where 𝑛 is the number of measurements.
A set of observation unit vectorsW

1
, . . . ,W

𝑚
are defined

as

W
𝑗
=

X𝑓
𝑖


X𝑓
𝑖



, 𝑗 = 𝑖 − 1, 𝑗 = 1, . . . , 𝑚. (6)

Similarly, a set of reference unit vectors V
1
, . . . ,V

𝑚
are

defined as

V
𝑗
=

→
𝑝
1
𝑝
𝑖



→
𝑝
1
𝑝
𝑖



, 𝑗 = 𝑖 − 1, 𝑗 = 1, . . . , 𝑚. (7)

According to the Quest algorithm, an attitude matrix C𝑓
𝑐

can be found to minimize the loss function

𝐿 (C𝑓
𝑐
) =

1

2

𝑚

∑

𝑗=1

𝑎
𝑗


W
𝑗
− C𝑓
𝑐
⋅ V
𝑗



2

, (8)

where 𝑎
𝑗
is the weight of the 𝑗th vector pair which is defined

as

𝑎
𝑗
=


X𝑓
𝑖



∑
𝑚+1

𝑖=2


X𝑓
𝑖



. (9)

The algorithm of optimal processing for (8) is presented
in the literature [22].

3.3. Strategy for Updating the Target Feature Coordinate Sys-
tem. As the target satellite is tumbling in space, some feature
points will be lost and new feature points will appear in the
view of the stereo vision system.The new target feature coor-
dinate system Σ

𝑓,1 is established dynamically according to the
measurement requirements. It is necessary to determine the
offset and orientation between the framesΣ𝑓,1 andΣ𝑓,0(Σ𝑓,0 is
the original target feature coordinate system and the rotation
angle between the frame Σ𝑓,0 and Σ𝑡 is 0) to keep continuous
pose estimation.

According to (4) and (5), accurate coordinates of the fea-
ture points in Σ

𝑓,0 are obtained. Three new feature points 𝑝
𝑙
,

𝑝
𝑚
, and 𝑝

𝑛
are selected among the feature point set to

establishΣ𝑓,1 with𝑝
𝑙
as the new origin.The offset of the origin

of the frame Σ𝑓,1 in Σ𝑓,0 is (𝑥
𝑙
, 𝑦
𝑙
, �̂�
𝑙
), which is denoted as 𝜌𝑓,1

𝑓,0
.

Similar to (2), the orientation of the frame Σ𝑓,1 relative to Σ𝑓,0
can be described as

C𝑓,1
𝑓,0

= {c0,1
1
, c0,1
2
, c0,1
3
} ,

c0,1
1

=

→
𝑝
𝑙
𝑝
𝑚



→
𝑝
𝑙
𝑝
𝑚



,

c0,1
3

=

→
𝑝
𝑙
𝑝
𝑚
×
→
𝑝
𝑙
𝑝
𝑛



→
𝑝
𝑙
𝑝
𝑚
×
→
𝑝
𝑙
𝑝
𝑛



,

c0,1
2

= c0,1
3

× c0,1
1
.

(10)

In general, the relationship between the coordinates of the
feature points in Σ𝑓,𝑘 and Σ𝑓,𝑘−1can be described as

p𝑓,𝑘−1
𝑖

= C𝑓,𝑘−1
𝑓,𝑘

⋅ p𝑓,𝑘
𝑖

+ 𝜌
𝑓,𝑘

𝑓,𝑘−1
, (11)

where 𝑘 is the number of establishing target feature coordi-
nate systems, p𝑓,𝑘

𝑖
= [𝑥
𝑓,𝑘

𝑖
, 𝑦
𝑓,𝑘

𝑖
, 𝑧
𝑓,𝑘

𝑖
] are the coordinates of 𝑖th
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feature point in the frame Σ𝑓,𝑘, p𝑓,𝑘−1
𝑖

= [𝑥
𝑓,𝑘−1

𝑖
, 𝑦
𝑓,𝑘−1

𝑖
, 𝑧
𝑓,𝑘−1

𝑖
]

are the coordinates in Σ
𝑓,𝑘−1, and 𝜌𝑓,𝑘

𝑓,𝑘−1
is the translation

vector between Σ𝑓,𝑘−1 and Σ𝑓,𝑘.
As the rotation matrix C𝑓,0

𝑓,𝑘
and translation vector 𝜌𝑓,𝑘

𝑓,0

between the frames Σ𝑓,𝑘 and Σ𝑓,0 can be derived according to
(11), the coordinates of any natural feature point in the frame
Σ
𝑓,0 can be obtained even if feature points which are used to

establish the frame Σ𝑓,0 are lost in view.

4. Estimation of the Location of Mass Center
and Translation Parameters

In order to estimate the location of the mass center for target
satellite and the relative position and velocity between chaser
and target, a standard Kalman filter is designed to process the
coordinates of feature points with the CW equations as the
dynamic model.

4.1. CW Equations. When two satellites are nearly in the
same circular orbit with close distance, the CW equations can
perfectly describe the translational motion dynamics,

[
�̇�

�̈�
] = [

0
3×3

I
3×3

K (𝑛) −2 [n×]] [
𝜌

�̇�
] + [

0
3×3

I
3×3

] 𝜂, (12)

where n = [
0

0

𝑛
], [n×] = [

0 −𝑛 0

𝑛 0 0

0 0 0
], and K(𝑛) = [

−3𝑛
2
0 0

0 0 0

0 0 𝑛
2

]; it is
due to the effect of orbitalmechanics, 0

𝑗×𝑗
and I
𝑗×𝑗

are identity
and zero matrices, respectively, 𝑗 is matrix dimension, and 𝜂
is the force disturbance on a unit mass. 𝜌 is the displacement
vector from the target mass center to the chaser mass center
and it is expressed in the target orbital frame Σ𝑜



, and �̇� is the
relative velocity between target and chaser.

4.2. Measurement Model. The estimation of relative position
and velocity is also the process of locating the target mass
center. When a series of feature points are continuously
tracked, the coordinates of feature points are outputted in the
frame Σ𝑐.The relative attitude between the target satellite and
the stereo vision system is determined according to methods
in Section 3. According to the geometrical relationship, the
displacement vector 𝜌 is described as

𝜌 = C𝑜


𝑡
(r
𝑖
+ b) − 𝜌

𝑖
, (13)

where r
𝑖
is the coordinate value of the 𝑖th natural feature point

in the frame Σ𝑟, b is the location error of mass center which is
illustrated as →𝑜

𝑡
𝑜
𝑟
in Figure 1, 𝜌

𝑖
is the vector from the origin

of the frame Σ𝑠 to the 𝑖th feature point and is expressed in
the frame Σ𝑜



, and C𝑡
𝑜
 is the rotation matrix from the frame

Σ
𝑜


to Σ
𝑡. As the target is a malfunctioned satellite which

is noncooperative, no information including the attitude
parameters can be provided to the service spacecraft. An
available way to measure the target attitude is combining the
relative attitude and service spacecraft attitude. It is written as

C𝑜


𝑡
= C𝑜



𝑜
⋅ C𝑜
𝑠
⋅ C𝑠
𝑐
⋅ C𝑐
𝑓,𝑘

⋅ C𝑓,𝑘
𝑡

≈ C𝑜
𝑠
⋅ C𝑠
𝑐
⋅ C𝑐
𝑓,𝑘

⋅ C𝑓,𝑘
𝑡

= C𝑜
𝑡
,

(14)

whereC𝑠
𝑜
is the rotationmatrix from the frameΣ𝑜 to the frame

Σ
𝑠 whichwill be provided by attitude and orbit control system

(AOCS), C𝑜


𝑜
is ignored as it is nearly a 3 × 3 identity matrix,

C𝑠
𝑐
is defined in Section 2.4, C𝑐

𝑓,𝑘
is determined by methods

described in Sections 3.1 and 3.2, and C𝑓,𝑘
𝑡

is rewritten as

C𝑓,𝑘
𝑡

= C𝑓,𝑘
𝑓,𝑘−1

⋅ C𝑓,𝑘−1
𝑓,𝑘−2

⋅ ⋅ ⋅C𝑓,1
𝑓,0(𝑡)

. (15)

𝜌
𝑖
can be described as

𝜌
𝑖
= C𝑜



𝑜
⋅ C𝑜
𝑠
⋅ (C𝑠
𝑐
⋅ 𝜌
𝑐,𝑖
+ 𝜌
𝑐

𝑠
) ≈ C𝑜

𝑠
⋅ (C𝑠
𝑐
⋅ 𝜌
𝑐,𝑖
+ 𝜌
𝑐

𝑠
) , (16)

where 𝜌
𝑐,𝑖
is the coordinates of the 𝑖th natural feature point in

the frame Σ𝑐, which is measured by stereo vision system, and
C𝑠
𝑐
and 𝜌𝑐

𝑠
are defined in Section 2.4.

There are several natural feature points on the surface
of the target spacecraft. If stereo vision system tracks these
feature points simultaneously during the relative pose estima-
tion, better measurements will be achieved by an averaging
operation. Substituting (14) into (13), the observation equa-
tions can be rewritten as

∑
𝑛

𝑖=1
(C𝑜
𝑡
⋅ r
𝑖
− 𝜌
𝑖
)

𝑛
= 𝜌 − C𝑜

𝑡
⋅ b + 𝜀, (17)

where 𝜀 is the measurement noise. If stereo vision system is
carefully calibrated, the coordinate error of a feature point
can be approximately regarded as white noise. Therefore, 𝜀 is
approximately modeled as zero mean white Gaussian process
with covariance matrix of R

1
. Obviously,

ḃ = 0. (18)

4.3. Filter Design. In order to suppress measurement noise
and estimate states which cannot be measured directly, a
standard Kalman filter is designed.

Define state variables as follows:

X𝑇
1
= [𝜌
𝑇
�̇�
𝑇 b𝑇] . (19)

Then, the relative position and velocity estimation dy-
namic equations can be concluded as follows:

[

[

�̇�

�̈�

ḃ
]

]

= [

[

0
3×3

I
3

0

K (𝑛) −2 [n×] 0

0 0 0

]

]

[

[

𝜌

�̇�

b
]

]

+ [

[

0
3×3

I
3

0
3×3

]

]

𝜂. (20)

The math model of estimating mass center location and
translational states is a linear system according to (17) and
(20). Setting the linear system (20) into the standard state-
space form Ẋ

1
= A
1
X
1
+B
1
𝜂, the solution to the correspond-

ing state transfermatrixΦ
1,𝑘/𝑘−1

and covariancematrix of the
discrete-time process noiseQ

1,𝑘
is as follows:

Φ
1,𝑘/𝑘−1

= I + A
1,𝑘−1

⋅ 𝑇,

Q
1,𝑘

= 𝑇(I + A
1,𝑘−1

⋅
𝑇

2
) ⋅ 𝜂𝜂

𝑇
(I + A

1,𝑘−1
⋅
𝑇

2
)

𝑇

𝑇.

(21)
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Equation (17) is rewritten as measurement equations:

z
1,𝑘

= H
1,𝑘

⋅ X
1,𝑘

+ 𝜀
𝑘
. (22)

Initialization is

X̂
1,0

= 𝐸 [X
1,0
] ,

P
1,0

= 𝐸 [(X
1,0

− 𝐸 [X
1,0
]) (X
1,0

− 𝐸 [X
1,0
])
𝑇
] .

(23)

Time update is

X̂
1,𝑘/𝑘−1

= Φ
1,𝑘/𝑘−1

⋅ X̂
1,𝑘−1

,

P
1,𝑘/𝑘−1

= Φ
1,𝑘/𝑘−1

⋅ P
1,𝑘−1

⋅Φ
𝑇

1,𝑘/𝑘−1
+Q
1,𝑘−1

.

(24)

Measurement update is

K
1,𝑘

= P
1,𝑘/𝑘−1

⋅H𝑇
1,𝑘

⋅ [H
1,𝑘

⋅ P
1,𝑘/𝑘−1

⋅H𝑇
1,𝑘

+ R
1,𝑘
]
−1

,

X̂
1,𝑘

= X̂
1,𝑘/𝑘−1

+ K
1,𝑘

[z
1,𝑘

−H
1,𝑘

⋅ X̂
1,𝑘/𝑘−1

] ,

P
1,𝑘

= (I − K
1,𝑘

⋅H
1,𝑘
) ⋅ P
1,𝑘/𝑘−1

.

(25)

5. Estimation of the Moment-of-Inertia Ratios
and Orientation Parameters

As noncooperative target satellite is often a malfunctioned
satellite that is tumbling freely with unknown rates in space,
the moment-of-inertia ratios can be estimated instead of the
moment-of-inertia. Because the axes of the frame Σ𝑡 are not
aligned with three body axes of symmetry, the products of
inertia cannot be neglected.

5.1. Measurement Model. TheAOCS of the service spacecraft
can also output the attitude relative to inertial system. Amea-
surement of the target attitude will be provided by combining
the relative attitude and service spacecraft attitude. Then,

C𝑡
𝑖
= C𝑡
𝑐
⋅ C𝑐
𝑠
⋅ C𝑠
𝑖
, (26)

whereC𝑠
𝑖
is the attitude of service satellite relative to the frame

Σ
𝑖, C𝑐
𝑠
is described in Section 2, and C𝑐

𝑡
is C𝑐
𝑓,𝑘

⋅ C𝑓,𝑘
𝑡

which is
described in (14). The rotation matrix C𝑡

𝑖
can be rewritten in

quaternion form q𝑡
𝑖
and q𝑡

𝑖
can be expressed as

q𝑡
𝑖
= q ⊗ q

𝜐
, (27)

where q𝑡
𝑖
is target quaternion measurement, q is the quater-

nion which defines the rotation from inertial to the target
body frame, and q

𝜐
is the measurement noise. The symbol

⊗ designates the multiplication of quaternion.

5.2. System Dynamic Equations. The time-derivative of the
quaternion can be expressed as follows:

q̇ = 0.5 ⋅ q ⊗ 𝜔, (28)

where 𝜔 = [0 𝜔
𝑇
]
𝑇

, and 𝜔 is angular velocity of target
satellite with respect to inertial space, resolved in target body-
fixed coordinate system Σ

𝑡.

According to Euler’s equation, dynamics of the rotational
motion for a rigid target satellite can be expressed as

I ⋅ �̇� = −𝜔 × (I ⋅ 𝜔) + w, (29)

where w is disturbing torque vector and I is the inertia
matrix,

I =
[
[
[

[

𝐼


𝑥𝑥
𝐼


𝑥𝑦
𝐼


𝑥𝑧

𝐼


𝑥𝑦
𝐼


𝑦𝑦
𝐼


𝑦𝑧

𝐼


𝑥𝑧
𝐼


𝑦𝑧
𝐼


𝑧𝑧

]
]
]

]

. (30)

We define the element 𝐼
𝑥𝑥

as 1, and then we obtain the
moment-of-inertia ratios matrix as

I = I

𝐼
𝑥𝑥

= [

[

1 𝐼
𝑥𝑦

𝐼
𝑥𝑧

𝐼
𝑥𝑦

𝐼
𝑦𝑦

𝐼
𝑦𝑧

𝐼
𝑥𝑧

𝐼
𝑦𝑧

𝐼
𝑧𝑧

]

]

. (31)

Then, (29) can be rewritten as

I ⋅ �̇� = −𝜔 × (I ⋅ 𝜔) + w, (32)

where w = w/𝐼
𝑥𝑥

and the elements 𝐼
𝑦𝑦
, 𝐼
𝑧𝑧
, 𝐼
𝑥𝑦
, 𝐼
𝑥𝑧
, and

𝐼
𝑦𝑧

are constants. For the dynamic equations are nonlinear
system, EKF and UKF will be employed to estimate the
moment-of-inertia ratios and the relative attitude.

5.3. EKF Filter Design. Define state variables as follows:

X𝑇
2
= [q𝑇 𝜔𝑇 Ι𝑇V ] , (33)

where Ι𝑇V = [𝐼
𝑦𝑦
, 𝐼
𝑧𝑧
, 𝐼
𝑥𝑦
, 𝐼
𝑥𝑧
, 𝐼
𝑦𝑧
]. When dynamic equations

are linearized, 𝛿𝑞
0
is ignored as 𝛿𝑞

0
is not an independent

variable and it has variations of only the second order. Then,
the error-state vector 𝛿X

2
is described as

𝛿X𝑇
2
= [𝛿q𝑇

13
𝛿𝜔
𝑇

𝛿Ι
𝑇

V ] , (34)

where the components of 𝛿X
2
are defined as follows:

𝛿q = q̂−1 ⊗ q,

𝛿𝜔 = 𝜔 − �̂�,

𝛿I = I − Î,

(35)

where 𝛿q = [1 𝛿q𝑇
13
]
𝑇

.
The dynamic equations can be given as

Ẋ
2
= 𝑓 (X

2
) = [

[

0.5 ⋅ q ⊗ 𝜔
−I−1 [𝜔 × (I ⋅ 𝜔)] + I−1w

0
]

]

. (36)

For simplicity, process equations (36) and measurement
equations (27) are rewritten as

Ẋ
2,𝑘−1

= 𝑓 (X
2,𝑘−1

,w
𝑘−1

) ,

q𝑡
𝑖,𝑘
= ℎ (X

2,𝑘
, q
𝜐,𝑘
) ,

(37)
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where the state noise w
𝑘
and the measurement noise q

𝜐,𝑘
are

assumed to be independent of each other, white noise.
Define the state transfer matrixΦ

2,𝑘/𝑘−1

Φ
2,𝑘/𝑘−1

= I + A
2,𝑘−1

⋅ 𝑇, (38)

where A
2,𝑘−1

is the Jacobian matrix of partial derivatives of
𝑓( ) with respect to state variable X

2
; that is,

A
2,𝑘−1

=
𝜕𝑓(X
2
)

𝜕X
2

X
2
=X̂
2,𝑘−1

= [

[

− [�̂�×] 0.5 ⋅ I
3×3

0
3×5

0
3×3

N (Î, �̂�) M (Î, �̂�)
0
5×3

0
5×3

0
5×5

]

]11×11

,

(39)

where

M (Î, �̂�) = Î−1 ⋅ ([
[

0 0 𝑚
2
𝑚
3

0

𝑚
2

0 𝑚
1

0 𝑚
3

0 𝑚
3

0 𝑚
1
𝑚
2

]

]

− (�̂�×) ⋅ [

[

0 0 �̂�
2
�̂�
3

0

�̂�
2

0 �̂�
1

0 �̂�
3

0 �̂�
3

0 �̂�
1
�̂�
2

]

]

) ,

[𝑚1 𝑚
2
𝑚
3]
𝑇
= Î−1 (�̂� × (Ι̂�̂�)) ,

N (Î, �̂�) = Î−1 ⋅ [((Ι̂�̂�) ×) − (�̂�×) ⋅ Ι̂] .

(40)

If (27) is quaternion multiplied by q̂−1 in left, the lin-
earized measurement equation is obtained by ignoring the
high order terms,

𝛿q𝑡
𝑖,13,𝑘

≈ 𝛿q
13,𝑘

+ q
𝜐,13,𝑘

. (41)

For simplicity, (41) is rewritten as

z
2,𝑘

= H
2,𝑘

⋅ X
2,𝑘

+ 𝜐
𝑘
. (42)

Initialization is

X̂
2,0

= 𝐸 [X
2,0
] ,

P
2,0

= 𝐸 [(X
2,0

− 𝐸 [X
2,0
]) (X
2,0

− 𝐸 [X
2,0
])
𝑇
] .

(43)

Time update is

X
2,𝑘/𝑘−1

= 𝐹 (X
2,𝑘−1

,w
𝑘−1

) ,

P
2,𝑘/𝑘−1

= Φ
2,𝑘/𝑘−1

⋅ P
2,𝑘−1

⋅Φ
𝑇

2,𝑘/𝑘−1
+Q
2,𝑘−1

.

(44)

Measurement update is

K
2,𝑘

= P
2,𝑘/𝑘−1

⋅H𝑇
2,𝑘

⋅ [H
2,𝑘

⋅ P
2,𝑘/𝑘−1

⋅H𝑇
2,𝑘

+ R
𝑘
]
−1

,

𝛿X̂
2,𝑘

= K
2,𝑘

⋅ z
2,𝑘
,

P
2,𝑘

= (I − K
2,𝑘

⋅H
2,𝑘
) ⋅ P
2,𝑘/𝑘−1

.

(45)

Therefore, the estimated states q̂
𝑘
, �̂�
𝑘
, and Î

𝑘
can be

innovated right after measurement update according to (35).

5.4. UKF Filter Design. Although the EKF is the estimation
algorithm which is widely used for nonlinear systems, UKF
is more accurate when the model is highly nonlinear [23,
24]. Therefore, a UKF filter is designed to achieve a better
estimation.

The initialization of UKF is the same to EKF. For 𝑘 =

1, 2, . . ., calculate sigma points:

𝜒
2,𝑘−1

= [X̂
2,𝑘−1

X̂
2,𝑘−1

+ √(𝑛 + 𝜆)P
2,𝑘−1

X̂
2,𝑘−1

− √(𝑛 + 𝜆)P
2,𝑘−1

] ,

(46)

where 𝑛 is the number of states, and 𝜆 is the scaling factor for
the sigma points which is calculated as

𝜆 = 𝛼
2
(𝑛 + 𝑘) − 𝑛, (47)

where𝛼 is the scaling parameter which determines the spread
of the sigma points around and is usually set to be a small
positive value (0.0001 < 𝛼 < 1), and 𝑘 is a secondly scaling
parameter which is usually set to 0.

Time update is

𝜒
𝑖

2,𝑘/𝑘−1
= 𝐹 (𝜒

𝑖

2,𝑘−1
) ,

X̂
2,𝑘/𝑘−1

=

2𝑛

∑

𝑖=0

𝑊
(𝑚)

𝑖
𝜒
𝑖

2,𝑘/𝑘−1
,

P
2,𝑘/𝑘−1

=

2𝑛

∑

𝑖=0

𝑊
(𝑐)

𝑖
[𝜒
𝑖

2,𝑘/𝑘−1
− X̂
2,𝑘/𝑘−1

] [𝜒
𝑖

2,𝑘/𝑘−1
− X̂
2,𝑘/𝑘−1

]
𝑇

,

𝛾
𝑖

2,𝑘/𝑘−1
= ℎ (𝜒

𝑖

2,𝑘/𝑘−1
) ,

ẑ
2,𝑘/𝑘−1

=

2𝑛

∑

𝑖=0

𝑊
(𝑚)

𝑖
𝛾
𝑖

2,𝑘/𝑘−1
,

(48)

where 𝑊(𝑚)
𝑖

and 𝑊
(𝑐)

𝑖
are the weighted coefficients and de-

fined as follows:

𝑊
(𝑚)

0
=

𝜆

(𝑛 + 𝜆)
,

𝑊
(𝑐)

0
=

𝜆

(𝑛 + 𝜆)
+ (1 − 𝛼

2
+ 𝛽) ,

𝑊
(𝑚)

𝑖
= 𝑊
(𝑐)

𝑖
=

0.5

(𝑛 + 𝜆)
, 𝑖 = 1, . . . , 2𝑛,

(49)

where 𝛽 is the scaling parameter and is used to incorporate
prior knowledge of the distribution of X

2
(for Gaussian

distribution, 𝛽 = 2 is optimal).
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Figure 2: Realization of the simulation software.

Table 1: Initial orbit elements.

𝑎 (km) 𝑒 𝑖 (∘) Ω (∘) 𝜔 (∘) 𝑀 (∘)
Target 6700 0 0 0 0 0
Chaser 6700 0 0 0 0 −8.5 × 10−5

Measurement update is

P
2,𝑦
𝑘
𝑦
𝑘

=

2𝑛

∑

𝑖=0

𝑊
(𝑐)

𝑖
[𝛾
𝑖

2,𝑘/𝑘−1
− ẑ
2,𝑘/𝑘−1

] [𝛾
𝑖

2,𝑘/𝑘−1
− ẑ
2,𝑘/𝑘−1

]
𝑇

+ R
𝑘
,

P
2,𝑥
𝑘
𝑦
𝑘

=

2𝑛

∑

𝑖=0

𝑊
(𝑐)

𝑖
[𝜒
𝑖

2,𝑘/𝑘−1
− X̂
2,𝑘/𝑘−1

] [𝛾
𝑖

2,𝑘/𝑘−1
− ẑ
2,𝑘/𝑘−1

]
𝑇

,

K
2,𝑘

= P
2,𝑥
𝑘
𝑦
𝑘

P−1
2,𝑦
𝑘
𝑦
𝑘

,

𝛿X̂
2,𝑘

= K
2,𝑘

⋅ z
2,𝑘
,

P
2,𝑘

= P
2,𝑘/𝑘−1

− K
2,𝑘
P
2,𝑦
𝑘
𝑦
𝑘

K𝑇
2,𝑘
,

(50)

where z
2,𝑘
, q̂
𝑘
, �̂�
𝑘
, and Î

𝑘
are calculated by using the same

method described in Section 5.3.

6. Simulation and Evaluation

The computer simulation is developed to verify the validity
of the proposed algorithms in this paper. The simulation
software integrates the orbital and attitude dynamics, camera
photograph model, and relative pose estimation algorithms.
The simulation is realized in MATLAB and Figure 2 shows
the simulation blocks in the MATLAB environment.

It is assumed that the service satellite and the malfunc-
tioned satellite are in the same orbit with different orbital
phases. The initial orbit elements of the target and chaser are
given in Table 1.

So the orbit altitude is about 300 km and the service
satellite stands at the position which is about 10m behind
target satellite.

Table 2: Feature points specifications in the simulation.

Number 𝑥 (m) 𝑦 (m) 𝑧 (m)
1 0.5 −1.0 0.5

2 0.5 −1.0 −0.5

3 −0.5 −1.0 0.5

4 −0.5 −1.0 −0.5

5 −0.5 −1.0 0.0

6 0.0 −1.0 −0.5

The target satellite is under torque-free tumbling motion.
The target satellite is initially aligned with orbital frame and
initial angular velocity is assumed as 𝜔

𝑡
= [2.5 5.0 3.0]

∘
/s.

The moment-of-inertia matrix in the target body-fixed coor-
dinate system (Σ𝑡) is set as

I = [

[

10 3.0 2.5

3.0 13 1.5

2.5 1.5 12

]

]

kg ⋅m2. (51)

Therefore, the corresponding moment-of-inertia ratios
matrix is as follows:

I = [

[

1.00 0.30 0.25

0.30 1.30 0.15

0.25 0.15 1.20

]

]

. (52)

As the image processing including image filtering, edge
detection, and feature matching is discussed in many papers,
the image processing is assumed as a solved problem in
this paper, and then coordinates of natural feature points in
image plane are regarded to be available for the estimation
processing.The specifications of feature points in frame Σ𝑡are
shown in Table 2.

Two cameras are parallel to each other and the baseline
is 0.5m. The focus length of camera is set as 2.5 cm. The
two cameras of the stereo vision system are mounted at
[0, 0.55, 0.25]m and [0, 0.55, −0.25]m in frame Σ𝑠. The CCD
pixel elements are assumed as 2048 × 2048 and the pixel size
is 3.2 𝜇m × 3.2 𝜇m.The coordinates of feature points in image
plane are corrupted by white Gaussian noises 0.5 pixels (1𝜎)
to simulate the image processing error.

The location errors of mass center →𝑜
𝑡
𝑜
𝑟
are set as [−100,

200, −300]mm and the initial values of the corresponding
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Figure 3: Attitude determination errors using TRIAD.

states are supposed as [0, 0, 0]mm. The initial relative posi-
tion errors are set as [300, 300, 300]mm and initial relative
velocity errors are [50, 50, 50]mm/s. The initial relative atti-
tude errors and angular velocity errors are given as [1, 2, −1]∘
and [0.5, 0.3, −0.5]∘/s, respectively.

The first 3 points listed in Table 2 are selected to establish
the frame Σ𝑓,0 by TRIAD and number 1 point is used as the
origin. Assume that number 1 point is lost at 10 s and number
2–4 points are selected to establish the new frame Σ𝑓,1 with
number 4 point as the origin. According to (10) and (15),
target attitude with respect to chaser (the orientation of Σ𝑓,0
relative to Σ

𝑠) can be continuously measured. The attitude
determination errors are plotted in Figure 3. In Figure 3, the
errors in period of 10 s–300 s vary similarly to the errors in
period of 0 s–10 s, which proves that method described in
Section 3.3 is feasible.

Attitude determination errors using QUEST are shown
in Figure 4. Obviously, QUEST algorithm achieves a higher
precision than TRIAD, because all feature points tracked are
utilized. The standard deviations of TRIAD are 0.27∘, 0.11∘,
and 0.26∘, and the standard deviations of QUEST are 0.19∘,
0.04∘, and 0.18∘. Then, the TRIAD algorithm is applied to the
following simulations.

The standard Kalman filter for estimating the location
of the mass center and the translation parameters is tuned.
Filter parameters are defined as P

1,0
= 1 × 10

−2I
9×9

, Q
1
=

1 × 10
−8I
9×9

, and R
1,𝑘

= 4 × 10
−4I
3×3

. A series of simulation
figures are shown from Figure 5 to Figure 11.

The estimation errors of relative position and relative
velocity are plotted in Figures 5 and 6, respectively, and the
estimation of mass center location is displayed in Figure 7.
The convergence time for recognition of the mass center
location and estimating the relative position and velocity is
less than 20 s. The accuracy of relative navigation is fairly
highwith the triaxial relative position errors less than 2.5mm,
5.5mm, and 3.0mm, respectively, and the triaxial relative
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Figure 4: Attitude determination errors using QUEST.
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Figure 5: Estimation errors of relative position.

velocity errors less than 0.2mm/s, 0.2mm/s, and 0.2mm/s,
respectively. The location errors of the mass center are less
than 2.0mm, 6.0mm, and 1.1mm in three axes. It also should
be noticed that 𝑌 axial errors are larger than the other two
axial errors.The corresponding reason is that the positioning
errors of stereo vision system are bigger along the optical axis
direction.

The EKF and UKF are utilized to estimate the moment-
of-inertia ratios and the orientation parameters. In order to
compare performances of the two filters, the filter parameters
are defined the same as P

2,0
= [
8×10
−5I
6×6

1×10
−1I
5×5

]
11×11

,Q
2
=

1 × 10
−12I
11×11

, and R
2,𝑘

= 2 × 10
−5I
3×3

. Other parameters of
UKF are tuned as 𝑘 = 0, 𝛼 = 0.005, and 𝛽 = 3.

The differences between the referenced attitude of the
target and the estimated attitude by using EKF and UKF,
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Figure 6: Estimation errors of relative velocity.
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Figure 7: Estimation of the mass center location.

which are attitude estimation errors, are plotted together in
Figure 8. The simulation results show that both estimation
algorithms can assure the convergence. Comparing UKF
output errors with those from EKF, the accuracy of UKF is
better than the accuracy of EKF. In the period of 50 s–300 s,
the attitude determination errors of UKF are less than 0.08∘,
0.12∘, and 0.08∘ and errors of EKF are less than 0.38∘, 0.52∘,
and 0.34∘.

Figure 9 shows the estimation errors of angular velocity.
The estimation performances of angular velocity of the two
algorithms are similar to the performances of attitude. In the
same time period, the estimation errors of UKF are less than
0.01∘/s, 0.025∘/s, and 0.01∘/s and errors of EKF are less than
0.038∘/s, 0.11∘/s, and 0.038∘/s.

Estimation errors of moment-of-inertia ratios are shown
in Figures 10 and 11. Although ̇ΙV = 0 is the linear model,
the convergence time of UKF is shorter than that of EKF as
the UKF estimation accuracy for angular velocity is better.
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Table 3: Estimation of moment-of-inertia ratios.

𝐼
𝑦𝑦
/𝐼
𝑥𝑥

𝐼
𝑧𝑧
/𝐼
𝑥𝑥

𝐼
𝑥𝑦
/𝐼
𝑥𝑥

𝐼
𝑥𝑧
/𝐼
𝑥𝑥

𝐼
𝑦𝑧
/𝐼
𝑥𝑥

True value 1.3 1.2 0.30 0.25 0.15
Estimation 1.29 1.19 0.30 0.25 0.15

However, UKF and EKF achieve similar accuracy for esti-
mating the moment-of-inertia ratios in the period of 100 s–
300 s. At the same time, it is noticed that the convergence
time of estimating moment-of-inertia ratios is longer than
attitude and angular velocity. The reason why the estimation
of moment-of-inertia ratios needs a longer convergence time
lies in that the moment-of-inertia ratios cannot be observed
directly and more time will be required to measure attitude
errors which are produced by the errors of moment-of-
inertia ratios. The estimation errors are displayed in Table 3
according to errors of UKF in the period of 200 s–250 s.

7. Conclusions

In order to capture the malfunctioned satellite, this paper
proposes an algorithm for estimating the relative pose and
inertial parameters of the target satellite by using a single
stereo vision system. Compared to the dense stereo algorithm
presented in literature 17, the proposed method can avoid
degeneracy when the target has a high degree of axial sym-
metry and reduce the numbers of sensors and the complexity
of the operation. As UKF achieves a better performance than
EKF, the UKF is recommended for the rotational estimation.
The simulation results demonstrate that the developed algo-
rithm can estimate the relative pose, the location of mass
center, and the moment-of-inertia ratios with high precision.
However, the proposed method also has degeneracy; if there
are no obvious features on the target surface, it is a better
choice that the two methods are jointly used in practice. The
experimental verification of the proposed algorithm should
be conducted to ensure the practical application, which will
be a focus in the further study.
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and G. Ortega, “Ground guided CX-OLEV rendez-vous with



12 Mathematical Problems in Engineering

uncooperative geostationary satellite,” Acta Astronautica, vol.
61, pp. 312–325, 2007.

[13] C. Lyn, G.Mooney, D. Bush et al., “Computer vision systems for
robotic servicing of the hubble space telescope,” in Proceedings
of the AIAA SPACE Conference & Exposition, pp. 1–13, Long
Beach, Calif, USA, September 2007.

[14] H. Nagamatsu, T. Kubota, and I. Nakatani, “Capture strategy for
retrieval of a tumbling satellite by a space robotic manipulator,”
in Proceedings of the 13th IEEE International Conference on
Robotics and Automation, pp. 70–75, April 1996.

[15] J. K. Thienel, S. Z. Queen, and J. M. VanEepoel, “Hubble space
telescope angular velocity estimation during the robotic servic-
ing mission,” in Proceedings of the AIAA Guidance, Navigation,
and Control Conference and Exhibit, pp. 1–15, San Francisco,
Calif, USA, August 2005.

[16] J. K.Thienel and R. M. Sanner, “Hubble space telescope angular
velocity estimation during the robotic servicing mission,” Jour-
nal of Guidance, Control, andDynamics, vol. 30, no. 1, pp. 29–34,
2007.

[17] B. Roberts and J. Pellegrino, “Robotic servicing technology
development,” in Proceedings of the AIAA SPACE 2013 Confer-
ence & Exposition, pp. 1–10, San Diego, Calif, USA, September
2013.

[18] B. E. Tweddle, Computer Vision-Based Localization and Map-
ping of an Unknown, Uncooperative and Spinning Target for
Spacecraft Proximity Operations, Massachusetts Institute of
Technology, Cambridge, Mass, USA, 2013.

[19] M. D. Lichter and S. Dubowsky, “State, shape, and parameter
estimation of space objects from range images,” inProceedings of
the IEEE International Conference on Robotics and Automation,
pp. 2974–2979, New Orleans, La, USA, May 2004.

[20] J. M. Kelsey, J. Byrne, M. Cosgrove et al., “Vision-based relative
pose estimation for autonomous rendezvous and docking,” in
Proceedings of the Aerospace Conference, pp. 1–20, Big Sky,Mont,
USA, 2006.

[21] X. Du, B. Liang, W. Xu, and Y. Qiu, “Pose measurement of large
non-cooperative satellite based on collaborative cameras,” Acta
Astronautica, vol. 68, no. 11-12, pp. 2047–2065, 2011.

[22] M. D. Shuster and S. D. Oh, “Three-axis attitude determination
from vector observations,” Journal of Guidance and Control, vol.
4, no. 1, pp. 70–77, 1981.

[23] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new
approach for filtering nonlinear systems,” in Proceedings of the
American Control Conference, pp. 1628–1632, Seattle, Wash,
USA, June 1995.

[24] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlin-
ear estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–
422, 2004.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


