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This paper considers the robust fault detection and isolation (FDI) problem for a class of nonlinear networked systems (NSs)
with randomly occurring quantisations (ROQs). After vector augmentation, Lyapunov function is introduced to ensure the
asymptotically mean-square stability of fault detection system. By transforming the quantisation effects into sector-bounded
parameter uncertainties, sufficient conditions ensuring the existence of fault detection filter are proposed, which can reduce the
difference between output residuals and fault signals as small as possible under𝐻

∞
framework. Finally, an example linearized from

a vehicle system is introduced to show the efficiency of the proposed fault detection filter.

1. Introduction

With the wide use of computer network and the decrease
of networked technique’s cost, structures of control systems
are changed. The wires of traditional control systems were
replaced by computer network reserved for special or public
use; thus information can be transmitted via controllers,
sensors, actuators, and other system units [1]. This type of
control systems is used or will be used not only in large-scale
distributed systems (such as large-scale industrial control
systems), but also in centralized small-scale local area systems
(such as space vehicles, airliners, ships, high-performance
motors, etc.) [2, 3]. For this type of control systems, infor-
mation like detection, control, coordinate, instruction, and
so forth is transmitted via public network. While functions
like estimation, control, diagnosis, and so forth can be con-
ducted among different network nodes distributively. Control
systems with at least one loop or several loops to make up
closed loop by networks are called networked systems (NSs).
Compared to traditional control systems, NSs have less wires,
which make them convenient to install and service. In this
situation, NSs can reduce systems’ weight and size, and they
are also convenient to extend. As well as the advantages
brought by NSs through sharing resources on network, new
challenges and opportunities were brought to its systems

and control theories, such as data transmission delay, data
dropout, and immanent quantisation problem.During recent
decades, many famous journals about automatic control have
published special issues on NSs [4–7]. Specifically in 2003,
report on the development of automatic control made by
Astrom and some famous scholars attracted unprecedented
attention to NSs, also plenty of research results published
[8]. However, compared to the comprehensive researches on
NSs’ stability [9–11], control [12, 13], and filtration [14–16],
researches on NSs’ fault detection seem to be less.

Fault detection is a technique to determine whether some
characteristics or parameters of the system arouse larger
deviation, which is unacceptable. It is a key technique which
can improve system’s security and reliability, and developed
rapidly in the past thirty years. Fault detection belongs to
the fault determination part in fault diagnosis procedure. A
typical fault diagnosis procedure includes residual genera-
tion, residual evaluation, separation strategy, fault estimate,
and performance evaluation. Firstly, generate residual signals
when fault occurs and the signals are sensitive to the fault and
robust to unknown input and system parameters uncertainty
[16, 17]. The most ideal condition to reach the above demand
is to make residuals decoupled with unknown inputs, related
only to faults. But the decoupling conditions are usually
severe and most systems are unable to reach. In the latest
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years, a generally adopted approach is transforming the resid-
ual generation problem into optimization problem. Design a
fault detection filter (residual generator), which makes the
transfer function’s 𝐻

∞
bound norm from disturbance to

residual as small as possible but the transfer function’s 𝐻
∞

bound norm from (or other bound norms) fault to residual
as large as possible. Some existing researches demonstrate
that there exists a unified solving method among different
optimal indices [18, 19]. After the residuals are generated,
select a suitable residual evaluation function and a threshold
value. Residual evaluation functions and threshold values can
be different in form, but usually we take residual evaluation
function over than threshold value as the judgment of fault
alarm. Here is the description of fault detection problem; this
is what we care about in this paper. After fault detection is
done, faults are located with suitable separation strategy; level
of the faults is estimated by kinds of approaches; superiority
of the diagnosis algorithm is evaluated. This is the complete
fault diagnosis procedure.

Most of the existing fault detection theories are set up
based on traditional control systems, whose data transmis-
sions are without delay or with ideal data dropout among
system components. The appearance of NSs brings new
challenges to traditional fault detection theories and out of
this the main problem is that the signals transmitted via
network became imperfect, including delay, data dropout,
quantisation effect, and other signal changes not expected
during the design. Compared to traditional control systems,
the difficulty of NSs’ fault detection mainly depends on the
imperfection of observation signals. By now, most of the
existing research results of NSs’ diagnosis detection results
focus on dealingwith network induced delay, and few of them
focus on data dropout, multipacket transmission, or signal
quantisation [20–23]. In [24–27], the authors studied system’s
stability and control problem with information coder. In
[28], Fu and Xie discussed the logarithmic quantiser and
designed the corresponding state feedback controller. Yang et
al. in [29] designed a networked filter based on logarithmic
quantiser. In [30], Li et al. studied NSs’ fault diagnosis
problem, whose residual errors have quantisation errors, and
then designed fault diagnosis filters, respectively, based on
static and dynamic coders. But so far, to the best of the
authors’ knowledge, there are very few related results in the
literature that focus on quantisation problems for NSs with
randomly occurring quantisations (ROQs). This inspires our
current research.

In this paper, the robust fault detection and isolation
(FDI) problem is investigated for a class of nonlinearNSswith
ROQs. A time-variant system with unknown disturbances
and nonlinear terms is studied.The parameters of the system
are time-variant and satisfy norm-bounded condition, and
all the quantisers are assumed to be in the logarithmic type
with different quantisation laws.On the other hand, Bernoulli
distributed stochastic sequence is used to decide which quan-
tiser is to be used at the moment. After vector augmentation,
the fault detection problem is transformed into robust 𝐻

∞

filter problem: design a robust fault detection filter for all
allowable time-variant parameters, external disturbance, and
possible quantisations; reduce the difference between fault

detection filter’s output and fault signal as small as possible
under𝐻

∞
framework. The Lyapunov function is introduced

to ensure the asymptotically mean-square stability of fault
detection system and satisfies the corresponding𝐻

∞
distur-

bance restraint conditions. A sufficient condition is presented
to ensure the existence of robust fault detection filter in
the form of Linear Matrix Inequality (LMI), as well as the
calculation of fault detection filter parameters. An example
linearized from a vehicle system is used to show the efficiency
of the proposed method.

Notations. R𝑛 is the 𝑛-dimensional Euclidean space. 𝑙
2
[0,∞)

is the space of all square-summable vector functions over
[0,∞). 𝛿(𝑥, 𝑦) is the Kronecker delta function, for two
integers 𝑥 and 𝑦, if 𝑥 = 𝑦, 𝛿(𝑥, 𝑦) = 1; otherwise, 𝛿(𝑥, 𝑦) = 0.
Prob{𝜏

𝑘
= 𝑖}means the probability of stochastic event 𝜏

𝑘
= 𝑖.

𝐼 stands for unit matrix.E{𝑥} is themathematical expectation
of a stochastic variable 𝑥. |𝑥

𝑘
| is the Euclidean norm vector of

𝑥
𝑘
; ‖𝑥‖ = (∑∞

𝑘=0
|𝑥
𝑘
|
2

)
1/2 is the 𝑙

2
norm of {𝑥

𝑘
}. In symmetric

matrices, “∗” represents a term that is induced by symmetry,
and diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix.

2. Problem Formulation

Consider a class of nonlinear NSs with ROQs:

𝑥
𝑘+1
= 𝐴
𝑘
𝑥
𝑘
+ 𝐸
𝑘
𝑔 (𝑥
𝑘
) + 𝐵
𝑘
𝑤
𝑘
+𝑀
𝑘
𝑓
𝑘

𝑦
𝑘
= 𝐶𝑥
𝑘
+ 𝐷𝑤

𝑘
,

(1)

where 𝑥
𝑘
∈ R𝑛 is the system state vector; 𝑤

𝑘
∈ 𝑙
2
[0,∞) ⊂

R𝑛𝑤 is the external disturbance; 𝑓
𝑘
∈ R𝑛𝑓 is the fault signal.

𝐴
𝑘
, 𝐸
𝑘
, 𝐵
𝑘
, and 𝑀

𝑘
are time-variant matrices with suitable

dimensions, and 𝐴
𝑘
= 𝐴 + Δ𝐴

𝑘
, 𝐸
𝑘
= 𝐸 + Δ𝐸

𝑘
, 𝐵
𝑘
= 𝐵 +

Δ𝐵
𝑘
, and𝑀

𝑘
= 𝑀 + Δ𝑀

𝑘
, where 𝐴, 𝐸, 𝐵, and𝑀 are known

constant matrices. Δ𝐴
𝑘
, Δ𝐸
𝑘
, Δ𝐵
𝑘
, and Δ𝑀

𝑘
are unknown

matrices with sector-bounded conditions given by

[Δ𝐴
𝑘
Δ𝐸
𝑘
Δ𝐵
𝑘
Δ𝑀
𝑘
] = 𝑁𝐹

𝑘
[𝐻
1
𝐻
2
𝐻
3
𝐻
4
] , (2)

where 𝑁, 𝐻
1
, 𝐻
2
, 𝐻
3
, and 𝐻

4
are known matrices. 𝐹

𝑘

satisfies 𝐹
𝑘
𝐹
𝑇

𝑘
≤ 𝐼. 𝑦

𝑘
is the measurement signal under

ideal transmission conditions; 𝐶 and 𝐷 are known constant
matrices.
𝑔(𝑥
𝑘
) is nonlinear vector function with sector restricted

conditions described as [31]

[𝑔 (𝑥
𝑘
) − 𝑇
1
𝑥
𝑘
]
𝑇

[𝑔 (𝑥
𝑘
) − 𝑇
2
𝑥
𝑘
] ≤ 0, ∀𝑥

𝑘
∈ R
𝑛
𝑥 , (3)

where𝑇
1
and𝑇
2
are known constantmatrices and𝑇 = 𝑇

1
−𝑇
2

is symmetric and positive definite matrix.
Considering the quantisation issue of NCs, in this paper,

we model the observing function as

𝑦
𝑘
=

𝑁

∑

𝑖=1

𝛿 (𝜏
𝑘
, 𝑖) 𝑔
𝑖
(𝑦
𝑘
) , (4)

where 𝜏
𝑘
is a Bernoulli distributed stochastic variable with

a known distribution law Prob{𝜏
𝑘
= 𝑖} = E{𝛿(𝜏

𝑘
, 𝑖)} = 𝑝

𝑖
,

∑
𝑁

𝑖=1
𝑝
𝑖
≤ 1. 𝑦

𝑘
is the measurement signal with quantisation

effect.
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For each 𝑖 (1 ≤ 𝑖 ≤ 𝑁), 𝑔
𝑖
(⋅) is a time-invariant

logarithmic quantiser, which can be described by

𝑔
𝑖
(𝑦
𝑘
) = [𝑔

(1)

𝑖
(𝑦
(1)

𝑘
) 𝑔
(2)

𝑖
(𝑦
(2)

𝑘
) ⋅ ⋅ ⋅ 𝑔

(𝑛
𝑦
)

𝑖
(𝑦
(𝑛
𝑦
)

𝑘
)]

𝑇

, (5)

where 𝑔(𝑗)
𝑖
(⋅) (1 ≤ 𝑗 ≤ 𝑛

𝑦
) is a scalar quantisation function

with the quantisation levels described by

U
(𝑗)

𝑖
= {±𝑢

(𝑗)

𝑖𝑚
| 𝑢
(𝑗)

𝑖𝑚
= (𝜌
(𝑗)

𝑖
)
𝑚

𝑢
(𝑗)

𝑖0
, 𝑚 = 0, ±1, ±2, . . .} ∪ {0} ,

0 < 𝜌
(𝑗)

𝑖
< 1, 𝑢

(𝑗)

𝑖0
> 0.

(6)

Each of the quantisation levels corresponds to a seg-
ment; the data in one segment has the same quantisation
output after being quantized. The logarithmic quantisers are
described as

𝑔
(𝑗)

𝑖
(𝑦
(𝑗)

𝑘
) =

{{{{{

{{{{{

{

𝑢
(𝑗)

𝑖𝑚
,

1

1 + 𝛿
(𝑗)

𝑖

𝑢
(𝑗)

𝑖𝑚
<𝑦
(𝑗)

𝑘
≤

1

1 − 𝛿
(𝑗)

𝑖

𝑢
(𝑗)

𝑖𝑚

0, 𝑦
(𝑗)

𝑘
= 0

−𝑔
𝑗
(−𝑦
(𝑗)

𝑘
) , 𝑦

(𝑗)

𝑘
< 0,

(7)

where 𝛿(𝑗)
𝑖

= (1 − 𝜌
(𝑗)

𝑖
)/(1 + 𝜌

(𝑗)

𝑖
). Then we can obtain

𝛿
(𝑗)

𝑖
(𝑦
(𝑗)

𝑘
) = (1+Δ

(𝑗)

𝑖𝑘
)𝑦
(𝑗)

𝑘
, where |Δ(𝑗)

𝑖𝑘
| ≤ 𝛿
(𝑗)

𝑖
. By definingΔ

𝑖𝑘
=

diag{Δ(1)
𝑖𝑘
, . . . , Δ

(𝑛
𝑦
)

𝑖𝑘
}, Δ
𝑖
= diag{𝛿(1)

𝑖
, . . . , 𝛿

(𝑛
𝑦
)

𝑖
}, and 𝐹

𝑖𝑘
=

Δ
𝑖𝑘
Δ
−1

𝑖
, we can obtain an unknown real-valued time-variant

matrix satisfying 𝐹
𝑖𝑘
𝐹
𝑇

𝑖𝑘
≤ 𝐼. Furthermore, the measurements

with quantisation effects are given by

𝑦
𝑘
=

𝑁

∑

𝑖=1

𝛿 (𝜏
𝑘
, 𝑖) (𝐼 + 𝐹

𝑖𝑘
Δ
𝑖
) 𝑦
𝑘
. (8)

Without loss of generality, the subscript 𝑖 of 𝐹
𝑖𝑘
can be

ignored after vector augmentation and rewrite (8) as

𝑦
𝑘
=

𝑁

∑

𝑖=1

𝛿 (𝜏
𝑘
, 𝑖) (𝐼 + 𝐹

𝑘
Δ
𝑖
) 𝑦
𝑘

=

𝑁

∑

𝑖=1

𝛿 (𝜏
𝑘
, 𝑖) (𝐼 + 𝐹

𝑘
Δ
𝑖
) 𝐶𝑥
𝑘
+

𝑁

∑

𝑖=1

𝛿 (𝜏
𝑘
, 𝑖) (𝐼 + 𝐹

𝑘
Δ
𝑖
)𝐷𝑤
𝑘
.

(9)

Consider a full-order filter described as
𝑥
𝑘+1
= 𝐺𝑥
𝑘
+ 𝐾𝑦
𝑘

𝑟
𝑘
= 𝐿𝑥
𝑘
,

(10)

where 𝑥
𝑘
is the state vector of the filter; 𝑟

𝑘
is output residual;

𝐺, 𝐾, and 𝐿 are the parameters to be determined.

By defining 𝜂
𝑘
= [𝑥
𝑇

𝑘
𝑥
𝑇

𝑘
]
𝑇, V
𝑘
= [𝑤
𝑇

𝑘
𝑤
𝑇

𝑘
]
𝑇, and 𝑟

𝑘
= 𝑟
𝑘
−

𝑓
𝑘
, the augmented model is given by

𝜂
𝑘+1
= A
𝑘
𝜂
𝑘
+

𝑁

∑

𝑖=1

[𝛿 (𝜏
𝑘
, 𝑖) − 𝑝

𝑖
]A
0
𝜂
𝑘
+E
𝑘
𝑔 (𝑍𝜂

𝑘
) +B

𝑘
V
𝑘

𝑟
𝑘
= 𝑟
𝑘
− 𝑓
𝑘
= C𝜂
𝑘
+DV
𝑘
,

(11)
where

A
𝑘
=
[
[

[

𝐴 0

𝑁

∑

𝑖=1

𝑝
𝑖
𝐾(𝐼 + 𝐹

𝑘
Δ
𝑖
) 𝐶 𝐺

]
]

]

+ [
𝑁

0
]𝐹
𝑘
[𝐻
1
0] := A +N𝐹

𝑘
H
1
,

E
𝑘
= [
𝐸

0
] + [

𝑁

0
]𝐹
𝑘
𝐻
2
:= E +N𝐹

𝑘
𝐻
2
,

B
𝑘
=
[
[

[

𝐵 𝑀

𝑁

∑

𝑖=1

𝛿 (𝜏
𝑘
, 𝑖) 𝐾 (𝐼 + 𝐹

𝑘
Δ
𝑖
)𝐷 0

]
]

]

+ [
𝑁

0
]𝐹
𝑘
[𝐻
3
𝐻
4
] :=B +N𝐹

𝑘
H
3
,

A
0
= [

0 0

𝐾 (𝐼 + 𝐹
𝑘
Δ
𝑖
) 𝐶 0

] ,

C = [0 𝐿] , D = [0 −𝐼] , 𝑍 = [𝐼 0] .

(12)

After the above augmentation, the fault detection filter
problem can be formulated as design robust𝐻

∞
filter.

The design of fault detection filter can be converted into
determining a series of filter parameters,𝐺,𝐾, and 𝐿, tomake
the system satisfy two conditions:

(1) under zero input condition, system (11) is asymptoti-
cally mean-square stable;

(2) under zero initial condition, for all possible nonzero
inputs V

𝑘
, the output 𝑟

𝑘
of (11) satisfies

E {‖𝑟‖
2

} < 𝛾
2

‖]‖2 , (13)

where 𝛾 > 0 is a prescribed𝐻
∞

disturbance scalar.

3. Main Results

3.1. Robust Fault Detection Filter Analysis

Theorem 1. For a given scalar 𝛾 > 0, if there exist scalar 𝛿 and
symmetric and positive definite matrix 𝑃 = 𝑃𝑇 > 0making the
following LMI holds:

Φ :=

[
[
[
[

[

A𝑇
𝑘
𝑃A
𝑘
+

𝑁

∑

𝑖=1

𝑝
𝑖
(1 − 𝑝

𝑖
)A𝑇
0
𝑃A
0
− 𝑃 − 𝛿T

1
+C𝑇C A𝑇

𝑘
𝑃E
𝑘
− 𝛿T
2

A𝑇
𝑘
𝑃B
𝑘
+C𝑇D

∗ E𝑇
𝑘
𝑃E
𝑘
− 𝛿𝐼 E𝑇

𝑘
𝑃B
𝑘

∗ ∗ B𝑇
𝑘
𝑃B
𝑘
− 𝛾
2

𝐼 +D𝑇D

]
]
]
]

]

< 0, (14)
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whereT
1
= (TT
1
T
2
+ TT
2
T
1
)/2 and T

2
= −(TT

1
+ TT
2
)/2, then

system (11) satisfies the aforementioned two conditions.

Proof. Consider the following Lyapunov function:

𝑉
𝑘
= 𝜂
𝑇

𝑘
𝑃𝜂
𝑘
. (15)

ConsiderE{∑𝑁
𝑖=1
[𝛿(𝜏
𝑘
, 𝑖)−𝑝

𝑖
]
2

} = ∑
𝑁

𝑖=1
𝑝
𝑖
(1−𝑝
𝑖
), calculate

the difference of 𝑉
𝑘
under V

𝑘
= 0, and its mathematical

expectation is

E {Δ𝑉
𝑘
} = 𝜂
𝑇

𝑘+1
𝑃𝜂
𝑘+1
− 𝜂
𝑇

𝑘
𝑃𝜂
𝑘
, (16)

where 𝜂
𝑘+1
= A
𝑘
𝜂
𝑘
+∑
𝑁

𝑖=1
𝑝
𝑖
(1−𝑝
𝑖
)A
0
𝜂
𝑘
+E
𝑘
𝑔(𝑍𝜂
𝑘
). Formula

(3) can be rewritten as

[
𝑥
𝑘

𝑔(𝑥
𝑘
)
]

𝑇

[
T
1

T
2

T𝑇
2
𝐼
]

𝑇

[
𝑥
𝑘

𝑔 (𝑥
𝑘
)
] ≤ 0. (17)

By defining 𝜉
𝑘
= [𝜂
𝑇

𝑘
𝑔
𝑇

(𝑍𝜂
𝑘
)]
𝑇, we can obtain

E {Δ𝑉
𝑘
} ≤ 𝜉
𝑇

𝑘
[
Φ̃
11
Φ̃
12

∗ Φ̃
22

] 𝜉
𝑘
, (18)

where Φ̃
11
= A𝑇
𝑘
𝑃A
𝑘
+ ∑
𝑁

𝑖=1
𝑝
𝑖
(1 − 𝑝

𝑖
)A𝑇
0
𝑃A
0
− 𝑃 − 𝛿T

1
,

Φ̃
12
= A𝑇
𝑘
𝑃E
𝑘
− 𝛿T
2
, and Φ̃

22
= E𝑇
𝑘
𝑃E
𝑘
− 𝛿𝐼.

It can be inferred from LMI (14) that

[
Φ̃
11
Φ̃
12

∗ Φ̃
22

] + [
C𝑇C 0

0 0
] < 0; (19)

furthermore we can obtain E{Δ𝑉
𝑘
} < 0. From the above

proof, it can be determined that the fault detection general
system (11) is asymptotically mean-square stable [32].

Let us consider the𝐻
∞

disturbance restraint conditions.
For optional V

𝑘
̸= 0, it can be inferred from (14) and (18) that

E{Δ𝑉
𝑘
} + E{𝑟𝑇

𝑘
𝑟
𝑘
} − 𝛾
2E{V𝑇
𝑘
V
𝑘
} = E{𝜉𝑇

𝑘
Φ𝜉
𝑘
} < 0, where 𝜉

𝑘
=

[𝜂
𝑇

𝑘
𝑔
𝑇

(𝑍𝜂
𝑘
) V𝑇
𝑘
]
𝑇. Then sum up the inequality from 0 to∞

to obtain
∞

∑

𝑘=0

E {
𝑟𝑘


2

} < 𝛾
2

∞

∑

𝑘=0

E {
V𝑘


2

} − E {𝑉
∞
} + E {Δ𝑉

0
} . (20)

Since the Lyapunov function is positive-definite, it is easy to
see that (13) holds under the initial condition.This concludes
the proof.

3.2. Robust Fault Detection Filter Design. Before we discuss
the robust fault detection filter design problem, the following
two lemmas are useful in deriving the filter design results.

Lemma 2 (see [33, 34] (Schur complement)). Symmetrical
matrix

𝑆 = [
𝑆
11
𝑆
12

∗ 𝑆
22

] (21)

is negative-definite, when and only when

𝑏𝑜𝑡ℎ 𝑆
11
< 0 𝑎𝑛𝑑 𝑆

22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
< 0, (22)

or

𝑏𝑜𝑡ℎ 𝑆
22
< 0 𝑎𝑛𝑑 𝑆

11
− 𝑆
𝑇

12
𝑆
−1

22
𝑆
12
< 0. (23)

Lemma 3 (see [30]). If𝑀 = 𝑀
𝑇,𝐻 and 𝐸 are real matrices,

and 𝐹 satisfies 𝐹
𝑘
𝐹
𝑇

𝑘
≤ 𝐼, then

𝑀+𝐻𝐹𝐸 + 𝐸
𝑇

𝐹
𝑇

𝐻
𝑇

< 0 (24)

holds, when and only when there exists a constant 𝜀 > 0,
making the following LMI holds:

𝑀+
1

𝜀
𝐻𝐻
𝑇

+ 𝜀𝐸
𝑇

𝐸 < 0, (25)

or

[

[

𝑀 𝐻 𝜀𝐸
𝑇

∗ −𝜀𝐼 0

∗ ∗ −𝜀𝐼

]

]

< 0. (26)

Theorem4. For a given scalar 𝛾 > 0 and the nonlinear discrete
time-variant system characterized by (1)∼(3), there exists a
robust fault detection filter in the form of (10), which makes the
system asymptotically mean-square stable. And the sufficient
condition satisfying the𝐻

∞
disturbance restraint conditions is

that there exist real matrices 𝑅 = 𝑅𝑇 > 0, 𝑆 = 𝑆𝑇 > 0, 𝑈
1
, 𝑈
2
,

𝑈
3
and real scalar 𝛿, 𝜀 > 0 to make the following LMI holds:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ψ
1,1
Ψ
1,2
−𝛿T
2

0 0 𝐴
𝑇

𝑆 Ψ
1,7

0 Ψ
1,9
𝑈
𝑇

3
0 𝜀𝐻

𝑇

1

∗ Ψ
2,2
−𝛿T
2

0 0 𝐴
𝑇

𝑆 Ψ
2,7

0 Ψ
2,9

0 0 𝜀𝐻
𝑇

1

∗ ∗ −𝛿𝐼 0 0 𝐸
𝑇

𝑆 𝐸
𝑇

𝑅 0 0 0 0 𝜀𝐻
𝑇

2

∗ ∗ ∗ −𝛾
2

𝐼 0 𝐵
𝑇

𝑆 Ψ
4,7

0 0 0 0 𝜀𝐻
𝑇

3

∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝑀
𝑇

𝑆 𝑀
𝑇

𝑅 0 0 −𝐼 0 𝜀𝐻
𝑇

4

∗ ∗ ∗ ∗ ∗ −𝑆 −𝑆 0 0 0 𝑁 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑅 0 0 0 𝑁 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑆 −𝑆 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (27)
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where Ψ
1,1
= Ψ
1,2
= −𝛿T

1
− 𝑆, Ψ

1,7
= 𝐴
𝑇

𝑅 + ∑
𝑁

𝑖=1
𝑝
𝑖
(𝐼 +

𝐹
𝑘
Δ
𝑖
)𝐶
𝑇

𝑈
𝑇

2
+ 𝑈
𝑇

1
, Ψ
1,9
= Ψ
2,9
= 𝜎(𝐼 + 𝐹

𝑘
Δ
𝑖
)𝐶
𝑇

𝑈
𝑇

2
, Ψ
2,2
=

−𝛿T
1
−𝑅,Ψ

2,7
= 𝐴
𝑇

𝑅+∑
𝑁

𝑖=1
𝑝
𝑖
(𝐼+𝐹
𝑘
Δ
𝑖
)𝐶
𝑇

𝑈
𝑇

2
,Ψ
4,7
= 𝐵
𝑇

𝑅+

∑
𝑁

𝑖=1
𝑝
𝑖
(𝐼+𝐹
𝑘
Δ
𝑖
)𝐷
𝑇

𝑈
𝑇

2
, and 𝜎 = ∑𝑁

𝑖=1
√𝑝
𝑖
(1 − 𝑝

𝑖
). If LMI (27)

holds, then the robust fault detection filter parameters satisfying
the above conditions can be calculated by

𝐺 = 𝑋
−1

12
𝑈
1
𝑆
−1

𝑌
−𝑇

12
, 𝐾 = 𝑋

−1

12
𝑈
2
, 𝐿 = 𝑈

3
𝑆
−1

𝑌
−𝑇

12
,

(28)

and 𝑋
12

and 𝑌
12

here can be determined by 𝐼 − 𝑅𝑆−1 =
𝑋
12
𝑌
𝑇

12
< 0.

Proof. It can be inferred from Lemmas 2 and 3 that the LMI
(14) equals

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃 − 𝛿T
1
−𝛿T
2

0 A𝑃 𝜎A𝑇
0
𝑃 C𝑇 0 𝜀H𝑇

1

∗ −𝛿𝐼 0 E𝑃 0 0 0 𝜀𝐻
𝑇

2

∗ ∗ −𝛾
2

𝐼 B𝑃 0 D𝑇 0 𝜀H𝑇
3

∗ ∗ ∗ −𝑃 0 0 N 0

∗ ∗ ∗ ∗ −𝑃 0 0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (29)

Define 𝑃 and 𝑃−1 as the following blocks:

𝑃 = [
𝑅 𝑋

12

𝑋
𝑇

12
𝑋
22

] , 𝑃
−1

= [
𝑆
−1

𝑌
12

𝑌
𝑇

12
𝑌
22

] , (30)

where the dimension of a block is as the same asA.

By defining

𝐽
1
= [
𝑆
−1

𝐼

𝑌
𝑇

12
0
] , 𝐽

2
= [
𝐼 𝑅

0 𝑋
𝑇

12

] , (31)

it can be see that 𝑃𝐽
1
= 𝐽
2
, 𝐽𝑇
1
𝑃𝐽
1
= 𝐽
𝑇

1
𝐽
2
.

By conducting contragradient transformation to the
matrix of (29) with diag{𝐽𝑇

1
, 𝐼, 𝐼, 𝐽

𝑇

1
, 𝐽
𝑇

1
, 𝐼, 𝐼, 𝐼}, we can obtain

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ψ
1,1
Ψ
1,2
−𝛿𝑆
−𝑇T
2

0 0 𝑆
−𝑇

𝐴
𝑇

Ψ
1,7

0 Ψ
1,9
𝑌
12
𝐿
𝑇

0 𝜀𝑆
−𝑇

𝐻
𝑇

1

∗ Ψ
2,2

−𝛿T
2

0 0 𝐴
𝑇

Ψ
2,7

0 Ψ
2,9

0 0 𝜀𝐻
𝑇

1

∗ ∗ −𝛿𝐼 0 0 𝐸
𝑇

𝐸
𝑇

𝑅 0 0 0 0 𝜀𝐻
𝑇

2

∗ ∗ ∗ −𝛾
2

𝐼 0 𝐵
𝑇

Ψ
4,7

0 0 0 0 𝜀𝐻
𝑇

3

∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝑀
𝑇

𝑀
𝑇

𝑅 0 0 −𝐼 0 𝜀𝐻
𝑇

4

∗ ∗ ∗ ∗ ∗ −𝑆
−𝑇

−𝐼 0 0 0 𝑆
−𝑇

𝑁 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑅 0 0 0 𝑁 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑆
−𝑇

−𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (32)

where Ψ
1,1
= −𝛿𝑆

−𝑇T
1
𝑆
−1

− 𝑆
−𝑇, Ψ
1,2
= −𝛿𝑆

−𝑇T
1
− 𝐼,

Ψ
1,7
= 𝑆
−𝑇

𝐴
𝑇

𝑅 + 𝑆
−𝑇

∑
𝑁

𝑖=1
𝑝
𝑖
(𝐼 + 𝐹

𝑘
Δ
𝑖
)𝐶
𝑇

𝐾
𝑇

𝑋
𝑇

12
, Ψ
1,9
=

𝜎𝑆
−𝑇

(𝐼 + 𝐹
𝑘
Δ
𝑖
)𝐶
𝑇

𝐾
𝑇

𝑋
𝑇

12
, Ψ
2,2
= −𝛿T

1
− 𝑅, Ψ

2,7
= 𝐴
𝑇

𝑅 +

∑
𝑁

𝑖=1
𝑝
𝑖
(𝐼 +𝐹
𝑘
Δ
𝑖
)𝐶
𝑇

𝐾
𝑇

𝑋
𝑇

12
,Ψ
2,9
= 𝜎(𝐼+𝐹

𝑘
Δ
𝑖
)𝐶
𝑇

𝐾
𝑇

𝑋
𝑇

12
, and

Ψ
4,7
= 𝐵
𝑇

𝑅 + ∑
𝑁

𝑖=1
𝑝
𝑖
(𝐼 + 𝐹

𝑘
Δ
𝑖
)𝐷
𝑇

𝐾
𝑇

𝑋
𝑇

12
.

By introducing newmatrices𝑈
1
= 𝑋
12
𝐺𝑌
𝑇

12
𝑆,𝑈
2
=𝑋
12
𝐾,

and 𝑈
3
= 𝐿𝑌
𝑇

12
𝑆 and conducting contragradient transforma-

tion to thematrix of (32) with diag{𝑆, 𝐼, 𝐼, 𝐼, 𝐼, 𝑆, 𝐼, 𝑆, 𝐼, 𝐼, 𝐼, 𝐼},
we can obtain LMI (27). It is to say that if the LMI (27) holds,
the fault detection augmentation system (11) is ensured to
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be asymptotically mean-square stable and satisfies the 𝐻
∞

disturbance restraint conditions (13).
On the other hand, if LMI (27) holds, then

[
−𝑆 −𝑆

−𝑆 −𝑅
] < 0, (33)

and it can be inferred that 𝑆 − 𝑅 < 0, 𝑆 > 0. Since
𝑃𝑃
−1

= 𝐼, then 𝐼 − 𝑅𝑆−1 = 𝑋
12
𝑌
𝑇

12
< 0. By matrix singular

value decomposing, two nonsingular square matrices 𝑋
12
,

𝑌
12

satisfying conditions can always be obtained; thus the
filter parameters can be calculated by (28).This concludes the
proof.

3.3. Residual Evaluation Strategy. After the fault detection
filter is designed, the residual evaluation function 𝐽

𝑘
and

threshold value 𝐽th are introduced to evaluate NSs (whether
there are faults in NSs):

𝐽
𝑘
= {

𝑘

∑

𝑠=0

𝑟
𝑇

𝑟
𝑟
𝑠
}

1/2

,

𝐽th = sup
𝑤∈𝑙
2
,𝑓=0

E {𝐽
𝑘
} .

(34)

The following inequalities are used to determine whether
the fault occurs:

𝐽
𝑘
> 𝐽th ⇒ Fault ⇒ ALARM,

𝐽
𝑘
≤ 𝐽th ⇒ No Fault.

(35)

4. Simulation Results

In this section, in order to show the effectiveness of the pro-
posed method, a discrete-time linear system linearized from
a vehicle system is employed with the following parameters:

𝐴 = [

[

−0.1 0.1 0.4

0.3 0.2 −0.1

0.2 0.2 0.3

]

]

, 𝐸 = [

[

0.2 0.1 0.7

0.1 0.2 0.4

0.3 0.8 0.2

]

]

,

𝐵 = [

[

0.4

1.0825

4.0687

]

]

, 𝑀 = [

[

0.2

0.4

0.5

]

]

, 𝑁 = [

[

0.3

0.1

0.3

]

]

,

𝐻
1
= [0.2 0.1 0.5] , 𝐻

2
= [0.3 0.1 0.2] ,

𝐻
3
= [0.35] , 𝐻

4
= [0.2] ,

𝐶 = [0.2 0.1 0.5] , 𝐷 = [0.3] .

(36)

The nonlinear term 𝑔(𝑥
𝑘
) is defined as [𝑔

1
(𝑥
1𝑘
) 0 𝑔

2
(𝑥
2𝑘
)]
𝑇,

where 𝑔
1
(𝑥
1𝑘
) = 0.2𝑥

1𝑘
× sin(𝑥

1𝑘
) and 𝑔

2
(𝑥
2𝑘
) = −0.1𝑥

2𝑘
×

sin(𝑥
2𝑘
). Then we can obtain that

𝑇
1
= [

[

0.25 0 0

0 0 0

0 0 0

]

]

, 𝑇
2
= [

[

0 0 0

0 0 0

0 0 0.15

]

]

. (37)

The parameters of logarithmic quantisers are set as 𝑢(1)
10
=

𝑢
(2)

10
= 𝑢
(3)

10
= 𝑢
(1)

20
= 𝑢
(2)

20
= 𝑢
(3)

20
= 𝑢
(1)

30
= 𝑢
(2)

30
= 𝑢
(3)

30
= 1,
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Figure 1: Quantisation law of three quantisers.
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Figure 2: Quantiser selection indicator.

𝜌
(1)

1
= 𝜌
(2)

1
= 𝜌
(3)

1
= 0.6, 𝜌(1)

2
= 𝜌
(2)

2
= 𝜌
(3)

2
= 0.5, and 𝜌(1)

3
=

𝜌
(2)

3
= 𝜌
(3)

3
= 0.4, as shown in Figure 1.The distribution law of

the quantiser selection variable 𝜏
𝑘
is set as Prob{𝜏

𝑘
= 1} = 0.5,

Prob{𝜏
𝑘
= 2} = 0.35, and Prob{𝜏

𝑘
= 3} = 0.15. It is to say

that, at a certain time, the probability of quantiser 1 is 0.4,
the probability of quantiser 2 is 0.35, and the probability of
quantiser 3 is 0.25, which are illustrated in Figure 2.

This paper aims to determine the parameters of the 𝐻
∞

robust fault detection filter by using Theorem 4. With the
help of mincx in Matlab [35], we can calculate the minimum
value of 𝛾 as 𝛾∗ = √𝛾2opt = 3.3321, where 𝛾

2

opt is the optimal
solution of the corresponding convex optimisation problems.
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Figure 3: The time-domain simulations of 𝑤
𝑘
and 𝐹

𝑘
.

The parameters of the 𝐻
∞

robust fault detection filter are
calculated as

𝐺 = [

[

−0.1985 −0.2718 −0.856

0.0005 0.3711 0.7378

−0.0113 0.1834 0.6084

]

]

, 𝐾 = [

[

0.044

−0.1722

−0.031

]

]

,

𝐿 = [−0.029 −0.0192 0.0945] .

(38)

The unknown input 𝑤
𝑘
is defined as 0.5 × exp(−𝑘/10) ×

(2𝑛
𝑘
− 1), for 𝑘 = 0, 1, . . . , 500, where 𝑛

𝑘
is uniformly

distributed in [−1, 1]. The system parameter 𝐹
𝑘
is taken as

sin(𝑘/2), as illustrated in Figure 3.The fault signal 𝑓
𝑘
is taken

as 0.5 when 𝑘 ∈ [200, 300]; otherwise 𝑓
𝑘
= 0.

As shown in Figure 4, (a) represents system’s fault signal;
(b) represents the square of residuals 𝑟

𝑘
; (c) represents the

output of residuals evaluation function 𝐽
𝑘
. By fixing the form

of 𝑤
𝑘
, we obtain 𝐽th = (1/500)∑

500

𝑡=1
𝐽
500
= 1.5997 × 10

−4

after 500 times of simulation without fault. As demonstrated
in Figure 4(c), residuals evaluation function 𝐽

260
= 1.5975 ×

10
−4

< 𝐽th < 𝐽261 = 1.6462 × 10
−4; then it can be seen that the

fault is detected in the 61st step after it occurred.

5. Conclusion

In this paper, the analysis and design problem of an 𝐻
∞

robust fault detection filter for a class of discrete-time NSs
with ROQs have been investigated. Because the bandwidth
of the communication channel is limited, signal must be
quantised before it is transmitted via network. ROQs are
introduced in the form of randomly occurring logarithmic
quantisers, which are transformed into randomly occurring
uncertainties of system parameters. By vector augmenting,
the original fault detection problem is transformed into
robust𝐻

∞
filter problem. Then a sufficient condition is pre-

sented to ensure the existence of robust fault detection filter,
which guarantees the asymptotically mean-square stability of
fault detection system and satisfies a certain𝐻

∞
disturbance

0 50 100 150 200 250 300 350 400 450 500

0
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0.6
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f
k

Time k
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Time k
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Figure 4: The time-domain simulations of 𝑓
𝑘
, 𝑟2
𝑘
and 𝐽
𝑘
.

restraint condition. The simulation results demonstrate that
this proposed approach is efficient for NSs with ROQs.
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