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We propose a fractional model for computer virus propagation. The model includes the interaction between computers and
removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two
sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the
classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-
slow evolutions towards the steady-state, effects not easily captured by the integer order models.

1. Introduction

The global information world in what we live has brought
numerous advantages into our lives. Daily commodities like
making traveling arrangements, checking bank accounts,
buying online books, groceries, and souvenirs, and other
important tasks in our lives, such as working, are readily
available at the click of a button. Nevertheless, this easy
way into the internet has also some disadvantages, namely,
in what concerns computer virus propagation. Computer
viruses spread and cause hugemoney losses to companies and
customers. Annually, millions of dollars are lost due to virus
infections [1].

During the last few years, authors have applied math-
ematical models for epidemics to computer virus propaga-
tion. Computer virus and biological virus have very similar
behavioral patterns [2–4]. Based on this observation, some
biological epidemic models, such as the susceptible-infected-
susceptible (SI/SIS) or the susceptible-infected-recovered
(SIR) models, were applied in modeling the epidemic behav-
ior of computer virus patterns [5–12].

In [5, 8], authors study the propagation of viruses and
worms in distinct network topologies. In 2005, Zou et
al. [6] propose an Internet worm monitoring system that
detects a worm in its early propagation stage, using Kalman

filter estimation. Moreover, the model can also predict the
vulnerable susceptible computer population and estimate the
infected computers for uniform-scan worms, such as Code
Red. Feng et al. [9] propose a modified SIRS model for
computer virus propagation, with dual delays and multistate
antivirus measures. Some of the measures may be cleaning,
patching, and filtering. Authors use the central manifold
theorem and normal form theory to establish explicit for-
mulas for determining the stability and direction of periodic
solutions produced by the model.The appearance of periodic
solutions is an aggressive state in a computer network, since
it means the virus prevalence will not be constant (i.e., will
not be easier to combat). A way to control this phenomenon
is to combine bifurcation control and reduce virus preva-
lence strategies, such as using distinct topological network
structures. Mishra and Jha [7] develop an SIRS model that
includes temporary immunity. The latter is observed when
an antivirus software is run in a computer network, after
a node gets affected by a malicious object. The authors
observe that the endemic equilibrium of the model might be
unstable, leading to new outcomes of an SIRS model. Zhu et
al. [10] use optimal control methods to fight computer virus
propagation. They consider a controlled delayed model and
then apply an optimal control strategy, assuming a tradeoff
between the control costs and the effects. Ren et al. [11]
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study a computer virus propagation model, where the effect
of antivirus ability is considered. The ability of an antivirus
software can be measured by the number of computers
recovered, from infected computers, per unit time, due to
running the antivirus software. The ability of an antivirus
software is usually proportional to its cost. Backward and
Hopf bifurcations can be found in the model, for variation
of the antivirus ability. Authors also show the existence of
bistable states. Zhu et al. [12] propose a model for computer
virus propagation, where the interaction between computers
and external removable devices is taken into account. Authors
assume reasonable assumptions for this interaction and prove
that the state without virus is globally asymptotically stable
for a value of the reproduction number, 𝑅

0
< 1. They

also prove that the epidemic state is globally asymptotically
stable for values of 𝑅

0
> 1. Thus, a good strategy to control

computer virus transmission is to developmeasures such that
𝑅
0
< 1.
In this paper, we analyze the fractional order version

of the integer order model proposed by Zhu et al. [12],
for computer and removable devices virus propagation. We
simulate numerically the model for different values of the
order of the fractional derivative 𝛼. In this line of thought,
the paper is organized as follows. In Section 3, we describe
the model proposed for computer viruses propagation. In
Section 4, we analyze several simulations of the model,
for distinct values of the fractional derivative, and discuss
implications of the results. In the last section, we present the
main conclusions and outline some future research topics.

2. Fractional Calculus: A Review

The generalization of the derivative operator𝐷𝛼𝑓(𝑥) to frac-
tional values of 𝛼, the order of the derivative, started with the
theory of differential calculus, namely, when Leibniz wrote
about 𝐷1/2𝑓(𝑥). The development of the fractional calculus
(FC) is due to many contributions of mathematicians such as
Euler, Liouville, Riemann, and Letnikov [13–16]. In the fields
of physics and engineering, FC is presently associated with
long termmemory effects [17–21]. This research is still giving
its first steps and new areas of application of FC, such as the
modelling of dynamical systems, are emerging [22].

Several definitions of fractional derivatives were pro-
posed. The most used definitions of a fractional derivative of
order 𝛼 are the Riemann-Liouville (RL), Grünwald-Letnikov
(GL), and Caputo (C) formulations. GL is defined as

GL
𝑎

𝐷
𝛼

𝑡
𝑓 (𝑡) = lim

ℎ→0

1

ℎ𝛼

[(𝑡−𝑎)/ℎ]

∑

𝑘=0

(−1)
𝑘
(
𝛼

𝑘
)𝑓 (𝑡 − 𝑘ℎ) ,

𝑡 > 𝑎, 𝛼 > 0,

(1)

where Γ(⋅) is Euler’s gamma function, [𝑥] means the integer
part of 𝑥, and ℎ is the step time increment.

These expressions capture the history of the past dynam-
ics, contrary to the integer counterpart that is a “local”
operator.This property was recognized in several phenomena
and their modelling becomes easier using the FC formalism,
while integer ordermodels are oftenmuchmore complicated.

The GL definition inspired a discrete-time calculation
algorithm, based on the approximation of the time increment
ℎ bymeans of the sampling period𝑇, yielding the equation in
the 𝑧 domain:

Z {𝐷
𝛼
𝑓 (𝑡)}

Z {𝑓 (𝑡)}
=

1

𝑇𝛼

∞
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Γ (𝛼 + 1)
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𝑧
−𝑘

= (
1 − 𝑧
−1

𝑇
)

𝛼

,

(2)

whereZ denotes the 𝑍-transform operator.
One implementation of (2) is accomplished by means of

a 𝑟-term truncated series:

Z {𝐷
𝛼
𝑓 (𝑡)}

Z {𝑓 (𝑡)}
=

1

𝑇𝛼

𝑟

∑

𝑘=0

(−1)
𝑘
Γ (𝛼 + 1)

𝑘! Γ (𝛼 − 𝑘 + 1)
𝑧
−𝑘

, (3)

where, in order to have good approximations, a large 𝑟 and a
small value of 𝑇 are required.

Expression (3) represents the Euler, or first backward
difference, approximation in the so-called 𝑠 → 𝑧 conversion
scheme. Another possibility consists in the Tustin conversion
rule. The Euler and Tustin rational expressions, 𝜓

0
(𝑧
−1

) =

((1 − 𝑧
−1

)/𝑇) and 𝜓
1
(𝑧
−1

) = (2/𝑇)((1 − 𝑧
−1

)/(1 + 𝑧
−1

)),
are called generating approximants of zero and first order,
respectively.Therefore, the generalization of these conversion
methods leads to the noninteger order 𝛼 results [23]:

𝑠
𝛼
≈ (
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−1

𝑇
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𝛼
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𝑠
𝛼
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(4)

The expression 𝜓
𝛼

0
(𝑧
−1

) = [𝜓
0
(𝑧
−1

)]
𝛼 and 𝜓

𝛼

1
(𝑧
−1
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[𝜓
1
(𝑧
−1

)]
𝛼 weighted by the factors 𝑝 and 1 − 𝑝 generate a

family of fractional differentiator:

𝜓
𝛼

𝑎V (𝑧
−1

) = 𝑝𝜓
𝛼

0
(𝑧
−1

) + (1 − 𝑝)𝜓
𝛼

1
(𝑧
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) . (5)

In order to get a rational expression, the final approxima-
tion corresponds to a truncated Taylor series or a rational
fraction expansion. The arithmetic mean (5) motivates the
study of an averaging method [22] based on the generalized
formula of averages (often called average of order 𝑞 ∈ R):

𝜓
𝛼

𝑎V (𝑧
−1

) = {𝑝[𝜓
𝛼

0
(𝑧
−1

)]
𝑞

+ (1 − 𝑝) [𝜓
𝛼

1
(𝑧
−1

)]
𝑞

}
1/𝑞

, (6)

where (𝑝, 𝑞) are two tuning degrees of freedom, correspond-
ing 𝑞 to the order of the averaging expression and 𝑝 to
the weighting factor. For example, when 𝑞 = {−1, 0, 1}, in
expression (6), we get the well-known expressions for the
{harmonic, geometric, arithmetic} averages.

3. The Model

The fractional model considered here for computer viruses
propagation consists of one SIR (susceptible-infected-
recovered) and one SI (susceptible-infected) coupledmodels.
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It is derived as follows. We consider that the entire computer
and removable devices population is divided into five classes,
the susceptible computers, 𝑆, the infected computers, 𝐼,
the immune (protected with effective antivirus) computers,
𝑅, the susceptible removable devices, 𝑅

𝑆
, and the infected

removable devices, 𝑅
𝐼
. The first system SIR is for computer

virus modeling and the second system SI is for removable
devices viruses propagation.

Computers are connected to the network at a rate 𝜆
1
. Sus-

ceptible computers can be infected by other computers, at a
rate 𝛽

1
𝑆𝐼, or by a removable device, at a rate 𝛽

2
(𝑅
𝐼
/𝑅
𝑁
)𝑆, and,

after that, move to the infected class, 𝐼. Parameters 𝛽
1
and

𝛽
2
are the contact infective forces between susceptible and

infective computers and between computers and removable
devices, respectively. Infected computers can be repaired at
a rate 𝜎

1
𝐼 and move to the immune class, 𝑅, where 𝜎

1
is the

recovery rate of infected computers, due to antivirus software.
Every computer can be disconnected from the network, at a
rate 𝜇

1
, in all classes.

The removable devices are recruited, at a rate 𝜆
2
, to the

susceptible class, 𝑅
𝑆
. They are infected by the computers at

a rate 𝛽
2
(𝐼/𝑁)𝑅

𝑆
and then move to the infected removable

class, 𝑅
𝐼
. These infected devices may recover at a rate

𝜎
2
(𝑅/𝑁)𝑅

𝐼
and after they move back to the susceptible class,

𝑅
𝑆
. Parameter 𝜎

2
is the recovery rate of removable devices,

due to antivirus software. All removable devices may break
down at a rate 𝜇

2
in all classes.

The model assumes that the antivirus software provides
protection of computers, for all times. This is not a real-
istic assumption, but it simplifies the model at this stage.
Future work will consider adding temporary immunity to
computers; that is, the model will assume, more realistically,
that antivirus software must be updated (i.e., immunity is
temporary).

In Figure 1, we depict the schematic diagramof themodel.
The system of fractional nonlinear ordinary differential

equations, for the proposed model, is given by
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2
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(7)

where 𝛼 ∈]0, 1] is the order of the fractional derivative.
The derivation of model (7) including fractional orders,

in a pure mathematical way, embodies some criticism. In
fact, it derives from a classical integer order expression and
assumes, by including a new degree of freedom, that we
can have a better fit between real-world data and theoretical
formulation. Furthermore, possibly, the definition of different
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Figure 1: Schematic diagram of the fractional order model (7) for
computer viruses propagation [12].

fractional orders can lead to slight better models but at
cost of an increased complexity. Therefore, the proposed
methodology follows recent studies [24–26] where fractional
models constitute merely an abstract conjecture that needs
to be validated in the future, in the presence of real data. In
what concerns the meaning of 𝛼, while the abstract interpre-
tation can be related solely to “anomalous” or “super-slow”
dynamics, its clinical significance remains to be investigated.
Possible research directions point to DNA relationship [27,
28].

The basic reproduction number, 𝑅
0
, of the integer order

model (𝛼 = 1) is computed in [12] to be

𝑅
0
=

𝛽
2

2
+ 𝜇
2
𝛽
1
(𝜆
1
/𝜇
1
)

𝜇
2
(𝜇
1
+ 𝜎
1
)

. (8)

The basic reproduction number, 𝑅
0
, is defined as the number

of secondary infections due to a single infection in a com-
pletely susceptible population. For 𝑅

0
< 1 the disease-free

equilibrium is globally asymptotically stable. If 𝑅
0

> 1, the
endemic equilibrium is globally asymptotically stable [12].

4. Numerical Results

In this section we develop several numerical simulations of
the new fractional order model (7). The dynamical behavior
of the model is studied numerically for variation of the
noninteger order derivative 𝛼. Initial conditions used in the
simulations are found in Table 1 and parameter values in
Table 2. For integrating the differential equations of the type
𝐷
𝛼
𝑥
𝑖

= 𝜑
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
) a standard integration of order 1

followed by a differentiation of order 1 − 𝛼, approximated by
means of (3), was implemented. Furthermore, the numerical
calculations adopt the values 𝑟 = 10

3 and 𝑇 = 2.5 ⋅ 10
−4 year.

In Figure 2, we plot the dynamics of the number of
susceptible computers, 𝑆, versus time, 𝑡, of model (7), for
different values of order of the fractional derivative; namely,
𝛼 ∈ {0.1, . . . , 1}. Initial conditions and parameter values are
those of Case 1. For these parameter values, the integer order
system has reproduction number 𝑅

0
≃ 0.84 < 1 [12].

In Figures 3 and 4 we plot, respectively, the dynamics of
the number of infected computers, 𝐼, and immune computers,
𝑅, versus time 𝑡, of model (7), for 𝛼 ∈ {0.1, . . . , 1}. Initial
conditions and parameters are those of Case 1.
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Figure 2: Dynamics of the susceptible computers 𝑆 versus time 𝑡,
of system (7), for 𝛼 ∈ {0.1, . . . , 1}. Parameter values and initial
conditions are those of Case 1.
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Figure 3: Dynamics of the infected computers 𝐼 versus time 𝑡,
of system (7), for 𝛼 ∈ {0.1, . . . , 1}. Parameter values and initial
conditions are those of Case 1.

Table 1: Initial conditions used in the numerical simulations of
model (7).

Variable 𝑆 𝐼 𝑅 𝑅
𝑆

𝑅
𝐼

Case 1 0.0 4.0 3.0 0.1 0.5
Case 2 5.0 1.0 0.0 0.5 0.1

In Figures 5 and 6, we plot, respectively, the values of
the susceptible removable devices, 𝑅

𝑆
, and of the infected

removable devices,𝑅
𝐼
, versus time, 𝑡, respectively, for distinct

values of the fractional derivative 𝛼. Initial conditions are
those of Case 1.
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Figure 4: Dynamics of the immune computers 𝑅 versus time 𝑡,
of system (7), for 𝛼 ∈ {0.1, . . . , 1}. Parameter values and initial
conditions are those of Case 1.
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Figure 5: Dynamics of the susceptible removable devices 𝑅
𝑆
versus

time 𝑡, of system (7), for𝛼 ∈ {0.1, . . . , 1}. Parameter values and initial
conditions are those of Case 1.

From Figures 2–6, we observe that by varying 𝛼, we
get a smooth variation of the dynamics. It is important to
note that we can vary not only the “velocity” of the initial
transient but also the evolution towards the steady-state.This
effect is typical in fractional dynamical systems, where we can
have a super-fast initial transient, followed by a super-slow
convergence to the final value. Moreover, we verify also that
for 𝛼 = 0.1we have the slowest evolution, while 𝛼 = 0.7 yields
the fastest transient.

In Figures 7–11, we consider initial conditions and param-
eter values as in Case 2 and vary the fractional derivative 𝛼.
We increase the values of the contact infective forces to be
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Table 2: Parameters used in the numerical simulations ofmodel (7).

Parameter Case 1 Case 2
𝜆
1

1 1
𝜆
2

0.1 0.1
𝛽
1

0.01 0.035
𝛽
2

0.01 0.035
𝜎
1

0.02 0.02
𝜎
2

0.005 0.005
𝜇
1

0.1 0.1
𝜇
2

0.1 0.1

𝛽
1
= 𝛽
2
= 0.035. For these parameter values, the integer order

system has reproduction number 𝑅
0
≃ 3.02 > 1 [12].
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Figure 9: Dynamics of the immune computers 𝑅 versus time 𝑡,
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1
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= 0.035.

In Figure 7, we plot the dynamics of the number of
susceptible computers, 𝑆, versus time, 𝑡, of model (7), for
𝛼 ∈ {0.1, . . . , 1}.

In Figures 8 and 9, we plot, respectively, the dynamics
of the number of infected computers, 𝐼, and of immune
computers, 𝑅, versus time 𝑡, of model (7), for 𝛼 ∈ {0.1, . . . , 1}.

In Figures 10 and 11, we plot, respectively, the values of
the susceptible removable devices, 𝑅

𝑆
, and of the infected

removable devices, 𝑅
𝐼
, versus time 𝑡, for 𝛼 ∈ {0.1, . . . , 1}.

These charts reveal that Case 2 leads to much richer
dynamics than Case 1. From Figures 7–11, we observe that
by varying 𝛼, we can tune the dynamics of the transient.
Furthermore, we verify again that for 𝛼 = 0.1, we have
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the slowest evolution, whereas for 𝛼 = 0.7, the transient is
the fastest. Moreover, from Figure 7, we conclude that the
overshoots for different values of 𝛼 remain globally almost
invariant. Even so, for 𝛼 = 0.3, we get the smallest amplitude
of the overshoots. As for the transients of the other charts,
the fastest dynamics is at 𝛼 = 0.7; therefore, the smaller peak
time occurs for 𝛼 = 0.7 and the larger one for 𝛼 = 0.1. It
is interesting to note a slight overshoot for the number of
susceptible removable devices, 𝑅

𝑆
, for 𝛼 = {0.1, 0.2, 0.3}.

5. Conclusions

We proposed a fractional order model for computer
virus propagation, where the interaction of computers and

removable devices is included. We simulated the system for
distinct values of the order 𝛼 of the fractional derivative and
two sets of initial conditions. We conclude that we can tackle
a family of distinct dynamical responses, including very fast
transients and super-slow responses, usual in systems with
long range memory. The set of initial conditions denoted as
Case 1 produces a set of monotonous family of responses,
while Case 2 presents more complex patterns. In both cases,
the fractional orders 𝛼 = 0.1 and 𝛼 = 0.7 are those that
lead to the slowest final evolution and the fastest transients,
respectively. Globally, we note that fractional calculus is a
mathematical tool well suited to model dynamical systems
including important memory phenomena.
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