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This paper investigates the position and velocity tracking control of a class of high-speed trains (HST) with unknown actuator
failures (AF) and control input saturation (CIS). Firstly, a nonlinear dynamic model for HST at normal operating status is built.The
structure of traction system in HST is analyzed and the corresponding model for HST with unknown AF is presented as well. The
type of AF under consideration is that some of the plant inputs are influenced by hopping function. An adaptive model-based fault
detection and diagnosis (AMFDD) module is proposed based on immersion and invariance (I&I) method to make decisions on
whether a fault has occurred. A new framework to design amonotonemapping is proposed in I&Imethod, that is,𝑃(𝑥)-monotone.
Using on-line obtained fault information, an adaptive law is designed to update the controller parameters to handle unknown AF
and CIS in HST simultaneously when some of plant parameters are unknown. Closed-loop stability and asymptotic position and
velocity tracking are ensured. Numerical simulations of China Railways High-speed 2 (CRH2) train are provided to verify the
effectiveness of the presented scheme.

1. Introduction

In practical applications, nonlinearity caused by imperfec-
tions of modelling leads to performance degradation of
the closed-loop system. Compensation control of nonlinear
systems has been a research topic of wide interest. In [1],
unknown continuous and monotone nonlinearities which
satisfy some constraints are considered, and an adaptive
controller using artificial neural networks is proposed for
a class of nonlinear systems with input nonlinearities. In
[2], direct adaptive neural network control is presented
for uncertain multi-input/multi-output nonlinear systems in
block triangular forms. Reference [3] presents two indirect
adaptive control schemeswhich are employed to approximate
unknown nonlinear functions. Reference [4] proposes a
robust control algorithm for a three-axis stabilized flexible
spacecraft in the presence of control input nonlinearity/dead-
zone. In [5, 6], an adaptive neurofuzzy control is proposed by
describing nonlinear affine systems as a Takagi-Sugeno fuzzy
model. An adaptive fuzzy backstepping control approach is

considered in [7] for a class of nonlinear strict-feedback
systems with unknown functions, unknown dead zones, and
immeasurable states. In [8], step tracking control problem for
discrete-time nonlinear systems, which are represented by a
Takagi-Sugeno fuzzy system, is investigated in a networked
environment with a limited capacity. In [9], the problem
of adaptive fuzzy tracking control via output feedback for
a class of uncertain strict-feedback nonlinear systems with
unknown time-delay functions is investigated. In [10], the
problemof tracking control for a class of large-scale nonlinear
systems with unmodeled dynamics is addressed by designing
the decentralized adaptive fuzzy output feedback controller
to guarantee that all the signals in the closed-loop system are
bounded. Reference [11] deals with the adaptive sliding-mode
control problem for nonlinear active suspension systemswith
varying sprung and unsprung masses, unknown actuator
nonlinearity, and suspension performances.

In HST, besides nonlinearity, train traction module may
fail to work due to various kinds of reasons [12–14], such as
overvoltage in traction transformer, overcurrent in traction
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converter, and overheat in asynchronous motor. AF in HST
will cause problems, that is, inaccurate position tracking,
inaccurate velocity tracking, or even train accident. It is
significant to design the controller addressing AF to realize
fault-tolerant control (FTC) in HST [15–21]. In control
society, there are many remarkable results on FTC for AF.
In [22], a class of nonlinear systems with faults, paramet-
ric uncertainties, and without full state measurements are
considered. A novel observer is designed whose estimation
error is not affected by faults and an observer-based fault-
tolerant tracking controller is proposed to make the outputs
asymptotically track the reference signals while the states
are bounded. In [23], a FTC scheme based on the adaptive
control technique for near-space-vehicle attitude dynamics
is considered. In [24], a FTC scheme using backstepping
and neural network methodology is proposed for a class of
nonlinear systemswith known structure and unknown faults.
In [25, 26], a direct adaptive feedback controller is developed
for linear time-invariant plants with AF and the closed-loop
stability and asymptotic tracking are ensured. Reference [27]
proposes an adaptive compensation for parametric strict-
feedback systems. A fault-tolerant robust control for a class
of nonlinear systems is investigated in [28]. A robust FTC
will switch itself between robust control strategies designed
under normal operation and faulty condition. Reference [29]
investigates the reliable𝐻

∞
control problem for discrete-time

piecewise linear systems with time delays and AF. In [30], a
fault-tolerant controller is presented for Lipschitz nonlinear
continuous-time systems in the presence of disturbances
and noises. An integrated design of the adaptive robust
control and the fault identification for a linear system with
AF is proposed in [31]. Reference [32] investigates the FTC
problem for near-space vehicle attitude dynamics with AF,
which is described by a Takagi-Sugeno fuzzy model. In [33],
a new FTC scheme is proposed by incorporating integral
sliding modes, unknown input observers, and a fixed control
allocation scheme, where only measured system outputs
are assumed to be available. The problem of FTC for a
class of nonlinear systems with AF is discussed, and an
observer-based FTC scheme is proposed in [34]. Adaptive
fuzzy observers are proposed to provide a bank of residuals
for fault detection and isolation and an accommodation
scheme is proposed to compensate for the effect of the fault.
Reference [35] presents a FTC for nonlinear systems which
are connected in a networked control system.

CIS, which implies that the output of serving motors is
constrained, is another problem in HST, and a few studies
have been done on this field [36, 37]. Study on designing
controllers by considering CIS beforehand is promoted for
system in which higher performance is expected. Karason
and Annaswamy [38] deal with the problem of adaptive
control for a linear time-invariant plant in the presence of
constraints on the input amplitude. In [39], a nonlinear
small gain theorem is presented that provides formalism
for analyzing the behavior of certain control systems that
contain or utilize saturation. Polycarpou et al. [40] address
the issue of CIS in on-line approximation based control for
nonlinear systems, and a modified control design framework
is presented for preventing CIS from destroying the learning

capabilities and memory of an on-line approximation. In
[41], the robust control of an induction motor is investigated,
and a parameter-dependent model is addressed. Wu et al.
[42] present a method, for designing output feedback laws
that stabilize a linear system subject to actuator saturation
with a large domain of attraction, which applies to general
linear systems including strictly unstable ones and is pre-
sented in both continuous-time and discrete-time setting.
Zhou et al. [43, 44] develop some significative methods
in this direction using Raccati equations as a basic tool.
Fridman and Dambrine [45] consider quantized and delayed
state feedback control of linear systems with given constant
bounds on the quantization error and on the time-varying
delay. Reference [46] deals with the problem of tracking and
stabilization control of internally dampedmobile robots with
unknown parameters and subject to input torque saturation
and external disturbances.

Recently, a novel I&I adaptive method for nonlinear
systems is presented to realize performance-oriented control
[47–49]. In this paper, based on a nonlinear dynamic model
for a class of HST, an adaptive FTC with I&I AMFDD is
presented. An AMFDD module using I&I adaptive state
observer is designed to detect AF, and direct adaptive con-
troller based on on-line AMFDD information is achieved to
handle nonlinearity, unknown AF, and CIS in HST. A new
framework to design amonotonemapping is proposed in I&I
method, that is,𝑃(𝑥)-monotone.The stability of HST systems
is proved theoretically.

The rest of this paper is organized as follows. Section 2
introduces problem formulation in HST. In Section 3, an
AMFDDmodule is introduced and corresponding I&I adap-
tive FTC is presented forAF andCIS.The simulation is shown
in Section 4. Section 5 draws the conclusion.

2. Problem Formulation

In this section, we propose a nonlinear dynamic model for a
class of HST with and without AF.

2.1. Dynamic Model of a Single Carriage. The HST consists
of a number of carriages, and couplers are used to couple
adjacent carriages. A carriage during travelling is subjected to
various kinds of forces, such as traction and braking forces,
forces between carriages, and resistance forces. The force
analysis of a single carriage in HST is illustrated in Figure 1.

Traction and Braking Forces. 𝑢
𝑖
denotes traction force of the

𝑖th carriage, that is, 𝑢
𝑖
> 0, and braking force of the 𝑖th

carriage, that is, 𝑢
𝑖
< 0. 𝜆

𝑖
denotes whether the 𝑖th carriage is

powered or nonpowered.

Assumption 1. The class of HST that we considered is dis-
tributed driving type [50], that is, 𝜆

𝑖
= 1 for all carriages.

Interacting Forces between Carriages. Connection modules
between two carriages in HST are nonlinear subsystems.
Hence, it is difficult to obtain accurate mechanical model
of interacting forces between two carriages. A widely used
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Figure 1: The force analysis of a single carriage.

mechanical model for couplers consists of elastic forces and
damping forces. In [51], nonlinear elastic force acting between
carriages is described as follows:

𝑓
𝑘
(𝑡) = 𝑘 (𝑡) 𝜖

𝑖
(𝑡) , (1)

where relative displacement between two carriages is as

𝜖
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

𝑖−1
(𝑡) , (2)

where 𝑥
𝑖
(𝑡) is position of the 𝑖th carriage. 𝑘(𝑡) denotes

nonlinear relationship between displacements and forces and

𝑘 (𝑡) = 𝑘
0
(1 + 𝜖

𝑖
(𝑡) 𝜎) . (3)

If 𝜎 = 0, coupler between carriages is linear, that is, 𝑘(𝑡) = 𝑘
0
,

which does not exist in practice. If 𝜎 < 0 or 𝜎 > 0, the coupler
is soft coupling or hard coupling, respectively. Khalil and
Grizzle [52] and Franklin and Powell [53] have proved that
a system with a soft spring is more likely to have unsatisfying
control performance. We take the minimum value 𝑘 of 𝑘(𝑡)
in controller design, that is, 𝑘(𝑡) = 𝑘. The damping force is
described as

𝑓
𝑏
(𝑡) = 𝑏 (𝑡) (𝑥̇

𝑖
(𝑡) − 𝑥̇

𝑖−1
(𝑡)) , (4)

where 𝑏(𝑡) is damping coefficient and 𝑥̇
𝑖
(𝑡) is velocity of the

𝑖th carriage. We take the minimal value 𝑏 of the coefficient
𝑏(𝑡), that is, 𝑏(𝑡) = 𝑏. The interacting force between carriages
is as

𝑓
𝑐

𝑖
(𝑡) = 𝑓

𝑘
(𝑡) + 𝑓

𝑏
(𝑡) . (5)

Resistance Forces of HST. During travelling, carriages of HST
are subjected to various kinds of resistance forces mainly
including mechanical resistance and air resistance. The two
forces are as follows [54]:

𝑓
𝑝

𝑖
(𝑡) = 𝑚

𝑖
(𝑐
0
+ 𝑐V𝑥̇𝑖 (𝑡) + 𝑐

𝑎
𝑥̇
2

𝑖
(𝑡)) , (6)

where 𝑚
𝑖
represents mass of the 𝑖th carriage and 𝑚

𝑖
(𝑐
0
+

𝑐V𝑥̇𝑖(𝑡)) and 𝑚
𝑖
𝑐
𝑎
𝑥̇
2

𝑖
(𝑡) denote mechanical resistance and air

resistance, respectively. 𝑐
0
, 𝑐V, and 𝑐

𝑎
are coefficients which

may not be obtained accurately during train locomotion.
Slope and curve resistance forces of HST depend on

railway condition. Slope and curve resistance forces are
normally considered by Garg and Dukkipati [55] as follows:

𝑓
𝑒

𝑖
(𝑡) = 𝑚

𝑖
𝑔 sin 𝜃

𝑖
+ 0.002

𝑚
𝑖
𝑑
𝑎

𝑅
𝑡

, (7)

where 𝑑
𝑎
is axle length of a carriage and 𝑅

𝑡
is turning radius.

Based on the above analysis, dynamic model of a single
carriage in HST is given as follows:

𝑚
𝑖
𝑥̈
𝑖
(𝑡) = 𝜆

𝑖
𝑢
𝑖
(𝑡) + 𝑓

𝑐

𝑖+1
(𝑡) − 𝑓

𝑐

𝑖
(𝑡) − 𝑓

𝑝

𝑖
(𝑡) − 𝑓

𝑒

𝑖
(𝑡)

= 𝜆
𝑖
𝑢
𝑖
(𝑡) − 𝑚

𝑖
(𝑐
0
+ 𝑐V𝑥̇𝑖 (𝑡)) − 𝑚

𝑖
𝑐
𝑎
𝑥̇
2

𝑖
(𝑡)

− 𝑘 (𝑥
𝑖
(𝑡) − 𝑥

𝑖−1
(𝑡)) − 𝑏 (𝑥̇

𝑖
(𝑡) − 𝑥̇

𝑖−1
(𝑡))

− 𝑘 (𝑥
𝑖
(𝑡) − 𝑥

𝑖+1
(𝑡)) − 𝑏 (𝑥̇

𝑖
(𝑡) − 𝑥̇

𝑖+1
(𝑡))

− 𝑚
𝑖
𝑔 sin 𝜃

𝑖
− 0.002

𝑚
𝑖
𝑑
𝑎

𝑅
𝑡

.

(8)

2.2. Dynamic Model of HST. Dynamic model of HST with 𝑛
carriages can be derived as follows:

𝑚
1
𝑥̈
1
(𝑡) = 𝜆

1
𝑢
1
(𝑡) − 𝑘 (𝑥

1
(𝑡) − 𝑥

2
(𝑡))

− 𝑏 (𝑥̇
1
(𝑡) − 𝑥̇

2
(𝑡)) − 𝑚

1
(𝑐
0
+ 𝑐V𝑥̇1 (𝑡))

− 𝑚
1
𝑐
𝑎
𝑥̇
2

1
(𝑡) − 𝑚

1
𝑔 sin 𝜃

1
− 0.002

𝑚
1
𝑑
𝑎

𝑅
𝑡

,

𝑚
2
𝑥̈
2
(𝑡) = 𝜆

2
𝑢
2
(𝑡) − 𝑘 (𝑥

2
(𝑡) − 𝑥

1
(𝑡))

− 𝑏 (𝑥̇
2
(𝑡) −𝑥̇

1
(𝑡)) − 𝑘 (𝑥

2
(𝑡) − 𝑥

3
(𝑡))

− 𝑏 (𝑥̇
2
(𝑡) − 𝑥̇

3
(𝑡)) − 𝑚

2
(𝑐
0
+ 𝑐V𝑥̇2 (𝑡))

− 𝑚
2
𝑐
𝑎
𝑥̇
2

2
(𝑡) − 𝑚

2
𝑔 sin 𝜃

2
− 0.002

𝑚
2
𝑑
𝑎

𝑅
𝑡

,

...

𝑚
𝑖
𝑥̈
𝑖
(𝑡) = 𝜆

𝑖
𝑢
𝑖
(𝑡) − 𝑘 (𝑥

𝑖
(𝑡) − 𝑥

𝑖−1
(𝑡))

− 𝑏 (𝑥̇
𝑖
(𝑡) −𝑥̇

𝑖−1
(𝑡)) − 𝑘 (𝑥

𝑖
(𝑡) − 𝑥

𝑖+1
(𝑡))

− 𝑏 (𝑥̇
𝑖
(𝑡) − 𝑥̇

𝑖+1
(𝑡)) − 𝑚

𝑖
(𝑐
0
+ 𝑐V𝑥̇𝑖 (𝑡))

− 𝑚
𝑖
𝑐
𝑎
𝑥̇
2

𝑖
(𝑡) − 𝑚

𝑖
𝑔 sin 𝜃

𝑖
− 0.002

𝑚
𝑖
𝑑
𝑎

𝑅
𝑡

,

...

𝑚
𝑛
𝑥̈
𝑛
(𝑡) = 𝜆

𝑛
𝑢
𝑛
(𝑡) − 𝑘 (𝑥

𝑛
(𝑡) − 𝑥

𝑛−1
(𝑡))

− 𝑏 (𝑥̇
𝑛
(𝑡) −𝑥̇

𝑛−1
(𝑡)) − 𝑚

𝑛
(𝑐
0
+ 𝑐V𝑥̇𝑛 (𝑡))

− 𝑚
𝑛
𝑐
𝑎
𝑥̇
2

𝑛
(𝑡) − 𝑚

𝑛
𝑔 sin 𝜃

𝑛
− 0.002

𝑚
𝑛
𝑑
𝑎

𝑅
𝑡

,

(9)
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where 𝑥
𝑖
subsystem represents dynamics of the 𝑖th carriage in

HST. To simplify the controller design, (9) is rewritten as

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐶
0
+ 𝐶V𝑥 (𝑡) + 𝐶

𝑎
𝑥
2

(𝑡)

= [
0
𝑛×𝑛

𝐼
𝑛×𝑛

𝐴
21

𝐴
22

] 𝑥 (𝑡) + [
0
𝑛×𝑛

𝐵
2

] 𝑢 (𝑡) + [
0
𝑛×1

𝐸
02
+ 𝐶
02

]

+ [
0
𝑛×𝑛

0
𝑛×𝑛

0
𝑛×𝑛

𝐶V2
] 𝑥 (𝑡) + [

0
𝑛×𝑛

0
𝑛×𝑛

0
𝑛×𝑛

𝐶
𝑎2

] 𝑥
2

(𝑡) ,

𝑦 = 𝐶𝑥 (𝑡) ,

(10)

where 𝑥 = [𝑥
1

⋅ ⋅ ⋅ 𝑥
𝑛

𝑥̇
1

⋅ ⋅ ⋅ 𝑥̇
𝑛
]
T is the state vector.

𝐴 ∈ 𝑅
2𝑛×2𝑛 and 𝐵 ∈ 𝑅

2𝑛×𝑛 are known, and 𝐶
0
∈ 𝑅
2𝑛, 𝐶V ∈

𝑅
2𝑛×2𝑛, and 𝐶

𝑎
∈ 𝑅
2𝑛×2𝑛 are unknown matrixes, and we have

𝐴
12
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑘

𝑚
1

𝑘

𝑚
1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝑘

𝑚
2

−2𝑘

𝑚
2

𝑘

𝑚
2

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0
𝑘

𝑚
3

−2𝑘

𝑚
3

𝑘

𝑚
3

0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
𝑘

𝑚
𝑛

𝑘

𝑚
𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐴
22
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑏

𝑚
1

𝑏

𝑚
1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝑏

𝑚
2

−2𝑏

𝑚
2

𝑏

𝑚
2

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0
𝑏

𝑚
3

−2𝑏

𝑚
3

𝑏

𝑚
3

0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
𝑏

𝑚
𝑛

𝑏

𝑚
𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐵
2
= diag(

𝜆
1

𝑚
1

𝜆
2

𝑚
2

⋅ ⋅ ⋅
𝜆
𝑛

𝑚
𝑛

) ,

𝐸
02

= diag(
𝑔 sin 𝜃

1
+ 0.002𝑑

𝑎

𝑅
𝑡

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑔 sin 𝜃

𝑛
+ 0.002𝑑

𝑎

𝑅
𝑡

) ,

𝐶
02
= [−𝑐
0
−𝑐
0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −𝑐

0
]
T
,

𝐶V2 = diag (−𝑐V −𝑐V ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −𝑐V) ,

𝐶
𝑎2
= diag (−𝑐

𝑎
−𝑐
𝑎
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −𝑐

𝑎
) .

(11)

2.3. Fault Analysis of Traction Systems in HST. In HST,
velocity cruise control is accomplished through the traction
system which consists of high-voltage circuit (included by
pantograph, current transformer, main circuit breaker, etc.),

Target
velocity Velocity cruise

controller

Traction
force Traction

converters Traction
motor

Train velocity
detection

Train actual
velocity

+

−

Figure 2: The principle of velocity cruise control in HST.

traction transformer, traction converter, asynchronous
motor, wheels, and so on [12–14]. The principle of velocity
cruise control is shown in Figure 2.

Traction converter is used to control traction motor
to achieve velocity cruise control of HST. The probability
of incorrect voltage and current, such as malfunction of
electronic components in traction converter, is great [56, 57].
The output of 𝑖th actuator in failure status can be described as
𝑢
𝑓
(𝑡) and its elements is shown as follows:

𝑢
𝑓

𝑖
(𝑡) = 𝑓

𝑖
(𝑡) 𝑢
𝑖
(𝑡) (𝑖 = 1, . . . , 𝑛) , (12)

where 𝑢
𝑖
(𝑡) is control input without AF. 𝑓

𝑖
(𝑡) ∈ (𝑓

𝑖
, 𝑓
𝑖
) is

unknownpiecewise hopping function, with known boundary
𝑓
𝑖
, 𝑓
𝑖
, which represents malfunction of electronic compo-

nents in traction system and

𝑓
𝑖
(𝑡) =

{{{{{

{{{{{

{

1 𝑡 < 𝑡
1

𝑓
𝑖1

𝑡
1
≤ 𝑡 < 𝑡

2

𝑓
𝑖2

𝑡
2
≤ 𝑡 < 𝑡

3

...
...

(13)

where 𝑓
𝑖𝑗
is unknown constant for 𝑗 = 1, 2, . . . , 𝑙 and 𝑡

𝑗
for

𝑗 = 1, 2, . . . , 𝑙 satisfies

𝑡
𝑗
− 𝑡
𝑗−1

≥ 𝑡
𝑗,min, (14)

where 𝑡
0
= 0 and 𝑡

𝑗,min, which is theminimum switch time for
𝑓
𝑖𝑗
, will be discussed later. It is assumed that 𝐸

02
is unknown

constant matrix for 𝑡 ∈ (𝑡
𝑗−1

, 𝑡
𝑗
). After AF, dynamic model

(10) will be

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑓 (𝑡) 𝑢 (𝑡) + 𝐶
0
+ 𝐶V𝑥 (𝑡) + 𝐶

𝑎
𝑥
2

(𝑡) , (15)

or suppose there are 𝑝 failed actuators; we have

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + ∑

𝑖=1,...,𝑚

𝑏
𝑖
𝑓
𝑖
(𝑡) 𝑢
𝑖
(𝑡) + 𝐶

0
+ 𝐶V𝑥 (𝑡) + 𝐶

𝑎
𝑥
2

(𝑡)

= 𝐴𝑥 (𝑡) + ∑

𝑖 ̸= 𝑗
1
,...,𝑗
𝑝

𝑏
𝑖
𝑢
𝑖
(𝑡) + ∑

𝑗=𝑗
1
,...,𝑗
𝑝

𝑓
𝑗
(𝑡) 𝑏
𝑗
𝑢
𝑗
(𝑡) + 𝐶

0

+ 𝐶V𝑥 (𝑡) + 𝐶
𝑎
𝑥
2

(𝑡) ,

(16)

where 𝑏
𝑖
is the column of 𝐵, 𝑓(𝑡) ∈ 𝑅

𝑛×𝑛, and

𝑓 (𝑡) = diag (𝑓
1
(𝑡) 𝑓
2
(𝑡) 𝑓
3
(𝑡) ⋅ ⋅ ⋅ 𝑓

𝑚
(𝑡)) . (17)
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Therefore, after AF, HST system is multiplied by an unknown
AF which impacts on stability of HST system. The control
objective is to design a feedback control such that all signals in
the closed-loop system are bounded, and 𝑥(𝑡) asymptotically
tracks a given reference 𝑥

𝑚
(𝑡) which is generated from the

reference system:

𝑥̇
𝑚
= 𝐴
𝑚
𝑥
𝑚
(𝑡) + 𝐵

𝑚
𝑟 (𝑡) , (18)

where 𝑥
𝑚
∈ 𝑅
2𝑛, 𝐴
𝑚
∈ 𝑅
2𝑛×2𝑛, and 𝐵

𝑚
∈ 𝑅
2𝑛×1 are known

constant matrices such that all the eigenvalues of 𝐴
𝑚
are in

the open left-half complex plane, and 𝑟(𝑡) ∈ 𝑅 is bounded
and piecewise continuous.

3. I&I Adaptive Fault-Tolerant Control
Based on AMFDD

In this section, an adaptive controller combined with fault-
tolerant module based on I&I AMFDD technology is devel-
oped. I&I AMFDD module is designed to detect AF and
direct adaptive controller handles AF of HST.The system (10)
can be rewritten as follows:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝜃Φ (𝑥) , (19)

where 𝜃 = [𝐶
0
𝐶V 𝐶

𝑎
], and Φ(𝑥) = [1 𝑥(𝑡) 𝑥

2

(𝑡)]
T is

Lipschitz with 𝐺 as
󵄨󵄨󵄨󵄨Φ (𝑥
1
) − Φ (𝑥

2
)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨
[1 𝑥
1
(𝑡) 𝑥
2

1
(𝑡)]

T
− [1 𝑥

2
(𝑡) 𝑥
2

2
(𝑡)]

T󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨
[0 𝑥
1
(𝑡) − 𝑥

2
(𝑡) 𝑥
2

1
(𝑡) − 𝑥

2

2
(𝑡)]

T󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥

2
(𝑡)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨
[0 1 𝑥

1
(𝑡) + 𝑥

2
(𝑡)]

T󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨
[0 1 2𝑥]

T󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥

2
(𝑡)
󵄨󵄨󵄨󵄨

= 𝐺
󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥

2
(𝑡)
󵄨󵄨󵄨󵄨 ,

(20)

where 𝑥 is the maximum value of position and velocity of
HST. For the control problem considered in this paper, the
following is assumed.

Assumption 2. The state of system (19) is available at every
instant, and the maximum value of position and velocity of
HST, that is, 𝑥, is known before AF (12).

Assumption 3. If system parameters and AF (up to 𝑛 − 1

failures) are known, the remaining actuators can still achieve
a desired control objective.

Assumption 4. All pairs {𝐴, 𝐵𝑓(𝑡)} are uniformly completely
controllable for 𝑓

𝑖
(𝑡) ∈ (𝑓

𝑖
, 𝑓
𝑖
), 𝑖 = 1, . . . , 𝑛.

3.1. Adaptive Model-Based Fault Detection and Diagnosis
(AMFDD). AMFDDmodule is combined with train control
system in HST. Taking China Railways High-speed (CRH)

trains [58–60] as an example, AMFDD module is designed
to detect AF in Train Control and Management System. For
𝑡 ∈ (𝑡
𝑗−1

, 𝑡
𝑗
), consider the following AMFDD:

̇̂𝑥 (𝑡) = 𝐴𝑥 (𝑡) + Θ̂Φ (𝑥 (𝑡)) + 𝐵𝑢 (𝑡) − 𝐿 (𝑦 (𝑡) − 𝑦 (𝑡)) , (21)

where 𝑥, Θ̂, and 𝑦 are the estimate of 𝑥, 𝜃, and 𝑦. I&I adaptive
control is a noncertainty equivalence technique with

Θ̂ = 𝜃 + 𝛽 (𝑥) , (22)

where the estimation objective is to render the manifold

{(𝑥, 𝜃) , | 𝜃 + 𝛽 (𝑥) − 𝜃 = 0} (23)

invariant and (asymptotically) attractive, and the continuous
function 𝛽(𝑥), which is added to the estimated parameter
vector 𝜃, is also a design parameter. Estimation of 𝜃 is
achieved by driving the estimate error

𝑧 = 𝜃 − 𝜃 + 𝛽 (𝑥) (24)

to zero. Define parameterized function:

𝑄
𝑝
(𝜃) =

𝑑𝛽 (𝑥)

𝑑𝑥
𝜃Φ (𝑥) , (25)

which satisfies 𝑃(𝑥) − 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑒, that is,

(𝑎 − 𝑏) 𝑃 (𝑥) (𝑄
𝑝
(𝑎) − 𝑄

𝑝
(𝑏)) ≥ 0, (26)

where 𝑃(𝑥) is a design function, which simplifies computa-
tional complexity of 𝛽(𝑥), satisfying

𝑃 (𝑥) ≥ 0,
𝑑𝑃 (𝑥)

𝑑𝑡
≤ 0. (27)

Theorem 5. AMFDD (21) and the adaptive law

̇̂
𝜃 = −

𝑑𝛽 (𝑥)

𝑑𝑥
(𝐴𝑥 (𝑡) + (𝜃 + 𝛽 (𝑥 (𝑡)))Φ (𝑥 (𝑡)) + 𝐵𝑢 (𝑡))

(28)

can realise that

(1) the estimate error (24) converges to zero, that is,
lim
𝑡→∞

𝑧 = 0;
(2) the observational error 𝑒

𝑥
satisfies

𝑒
𝑥
(𝑡) ≤ 𝑒max (𝑡) , (29)

where

𝑒
𝑥
(𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) ,

𝑒max (𝑡) = 𝑒
𝜆max(𝐴)𝑡𝑒

0

+ 𝑒
−𝜆min(𝐴)𝑡𝜃Φ (𝑥)𝐴

−1

(𝑒
𝜆max(𝐴)𝑡 − 1) ,

(30)

where 𝑒
0
is initial state vector of 𝑒

𝑥
, 𝜃 is the upper bound of

𝑧, and 𝜆max() and 𝜆min() denote the maximum and minimum
value of matrix.
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(3) Decision on the occurrence of AF in carriages is made
if at least one term of the estimation error 𝑒

𝑥
(𝑡) exceeds

its corresponding error bound 𝑒max(𝑡).

Proof. The derivative of 𝑧 is as follows:

𝑧̇ =
̇̂
𝜃 +

𝑑𝛽 (𝑥)

𝑑𝑥
(𝐴𝑥 (𝑡) + 𝜃Φ (𝑥 (𝑡)) + 𝐵𝑢 (𝑡)) , (31)

which clearly yields

𝑧̇ =
̇̂
𝜃 +

𝑑𝛽 (𝑥)

𝑑𝑥
(𝐴𝑥 (𝑡) + 𝜃Φ (𝑥 (𝑡)) + 𝐵𝑢 (𝑡))

= −
𝑑𝛽 (𝑥)

𝑑𝑥
(𝜃 + 𝛽 (𝑥 (𝑡)))Φ (𝑥 (𝑡)) +

𝑑𝛽 (𝑥)

𝑑𝑥
𝜃Φ (𝑥 (𝑡))

= 𝑄
𝑝
(𝜃) − 𝑄

𝑝
(𝜃 + 𝛽 (𝑥 (𝑡))) .

(32)

Consider a positive-definite function𝑉 = (1/2)𝑧
𝑇

𝑃(𝑥)𝑧, and
using (26), (27), and (32), we have

𝑉̇ = 𝑧
𝑇

𝑃 (𝑥) 𝑧̇ +
1

2
𝑧
𝑇

𝑃̇ (𝑥) 𝑧

= 𝑧
𝑇

𝑃 (𝑥) (
̇̂
𝜃 +

𝑑𝛽 (𝑥)

𝑑𝑥
(𝐴𝑥 (𝑡) + 𝜃Φ (𝑥 (𝑡))

+𝐵𝑢 (𝑡))) +
1

2
𝑧
𝑇
𝑑𝑃 (𝑥)

𝑑𝑡
𝑧

≤ (𝜃 − 𝜃 + 𝛽 (𝑥))
𝑇

𝑃 (𝑥)

× (𝑄
𝑝
(𝜃) − 𝑄

𝑝
(𝜃 + 𝛽 (𝑥))) ≤ 0

(33)

from which convergence of 𝑧(𝑡) follows; that is,

lim
𝑡→∞

(𝜃 + 𝛽 (𝑥)) = 𝜃. (34)

The derivative of 𝑒
𝑥
is as follows:

̇𝑒
𝑥
(𝑡) = 𝑥̇ (𝑡) − ̇̂𝑥 (𝑡)

= 𝐴𝑥 (𝑡) + 𝜃Φ (𝑥) + 𝐵𝑢 (𝑡)

− 𝐴𝑥 (𝑡) − (𝜃 + 𝛽 (𝑥))Φ (𝑥)

− 𝐵𝑢 (𝑡) − 𝐿 (𝑦 (𝑡) − 𝑦 (𝑡))

= (𝐴 − 𝐿𝐶) 𝑒
𝑥
(𝑡) + 𝜃Φ (𝑥) − (𝜃 + 𝛽 (𝑥))Φ (𝑥)

= (𝐴 − 𝐿𝐶) 𝑒
𝑥
(𝑡) + 𝜃Φ (𝑥) − (𝜃 + 𝛽 (𝑥))Φ (𝑥)

+ (𝜃 + 𝛽 (𝑥))Φ (𝑥) − (𝜃 + 𝛽 (𝑥))Φ (𝑥)

≤ (𝐴 − 𝐿𝐶) 𝑒
𝑥
(𝑡) − 𝑧Φ (𝑥) + (𝜃 + 𝛽 (𝑥))𝐺𝑒

𝑥
(𝑡)

= (𝐴 − 𝐿𝐶 + (𝜃 + 𝛽 (𝑥))𝐺) 𝑒
𝑥
(𝑡) − 𝑧Φ (𝑥)

= 𝐴𝑒
𝑥
(𝑡) − 𝑧Φ (𝑥) .

(35)

Consequently, when no AF occurs, we have

𝑒
𝑥
(𝑡) = 𝑒

𝐴𝑡

𝑥
𝑒
0
+ ∫

𝑡

0

𝑒
−𝐴(𝑡−𝜏)

𝑥
(−𝑧 (𝜏)Φ (𝑥 (𝜏))) 𝑑𝜏

≤ 𝑒
𝜆max(𝐴)𝑡
𝑥

𝑒
0
+ 𝑒
−𝜆min(𝐴)𝑡
𝑥

∫

𝑡

0

𝑒
𝐴𝜏

𝑥
(−𝑧 (𝜏)Φ (𝑥)) 𝑑𝜏

≤ 𝑒
𝜆max(𝐴)𝑡
𝑥

𝑒
0
+ 𝑒
−𝜆min(𝐴)𝑡
𝑥

𝜃Φ (𝑥)𝐴
−1

∫

𝑡

0

𝑒
𝐴𝜏

𝑥
𝑑𝐴𝜏

= 𝑒
𝜆max(𝐴)𝑡
𝑥

𝑒
0
+ 𝑒
−𝜆min(𝐴)𝑡
𝑥

𝜃Φ (𝑥)𝐴
−1

× (𝑒
𝜆max(𝐴)𝑡
𝑥

− 1) = 𝑒max.

(36)

Hence, decision on the occurrence of AF in carriages is made
if at least one term of the estimation error 𝑒

𝑥
(𝑡) exceeds its

corresponding error bound 𝑒max(𝑡).

3.2. Adaptive Control for UnknownAF. After detection ofAF,
the key task of AF compensation control is to design a direct
adaptive control law such that all trajectories of the closed-
loop system (16) are bounded and lim

𝑡→∞
𝑥(𝑡) = 𝑥

𝑚
. Using

the AMFDD (21), the AF system (16) is as follows:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
𝑓
𝑖
(𝑡) 𝑢
𝑖
(𝑡) + 𝑧Φ (𝑥)

= 𝐴𝑥 (𝑡) + ∑

𝑖 ̸= 𝑗
1
,...,𝑗
𝑝

𝑏
𝑖
𝑢
𝑖
(𝑡)

+ ∑

𝑗=𝑗
1
,...,𝑗
𝑝

𝑓
𝑗
(𝑡) 𝑏
𝑗
𝑢
𝑗
(𝑡) + 𝑧Φ (𝑥)

= 𝐴𝑥 (𝑡) + 𝐵
󸀠

(𝑡) 𝑢 (𝑡) + 𝑧Φ (𝑥) ,

(37)

where 𝐵󸀠(𝑡) = [𝑏
󸀠

1
𝑏
󸀠

2
𝑏
󸀠

3
⋅ ⋅ ⋅ 𝑏

󸀠

𝑛
] ∈ 𝑅

2𝑛×𝑛 is unknown
constant matrix with 𝑓(𝑡), 𝑡 ∈ (𝑡

𝑗−1
, 𝑡
𝑗
), and 𝑧, which is

exponential convergence, is defined in (24).
Before addressing the control problem for unknown AF,

we must first derive the existence of controllers for the
system (37) with knownAF to obtain some basic plant-model
matching conditions which are useful for controller parame-
terization in adaptive designs for unknown AF. Without AF,
matching equations of HST system (37) are satisfied:

𝐴 +

𝑛

∑

𝑖=1

𝑏
𝑖
𝐾
∗𝑇

1𝑖
= 𝐴
𝑚
,

𝑛

∑

𝑖=1

𝑏
𝑖
𝑘
∗

2𝑖
= 𝐵
𝑚
,

(38)

and 𝐾
∗

1
= [𝐾

∗

11
𝐾
∗

12
⋅ ⋅ ⋅ 𝐾

∗

1𝑛
] ∈ 𝑅

2𝑛×𝑛 and 𝑘
∗

2
=

[𝑘
∗

21
𝑘
∗

22
⋅ ⋅ ⋅ 𝑘

∗

2𝑛
]
𝑇

∈ 𝑅
𝑛. We see Assumptions 3 implies

that there exist constant vectors 𝐾∗
𝑠1𝑗

and nonzero constant
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𝑘
∗

𝑠2𝑗
such that when only one AF occurs, the following

matching equations are satisfied:

𝐴 +

𝑛

∑

𝑖 ̸= 𝑗

𝑏
𝑖
𝐾
∗𝑇

1𝑖
+ 𝑏
󸀠

𝑗
𝐾
∗𝑇

𝑠1𝑗
= 𝐴
𝑚
,

𝑛

∑

𝑖 ̸= 𝑗

𝑏
𝑖
𝑘
∗

2𝑖
+ 𝑏
󸀠

𝑗
𝑘
∗

𝑠2𝑗
= 𝐵
𝑚
.

(39)

Using (38) and (39), we obtain

𝑏
󸀠

𝑗
= −

𝑘
∗

2𝑗

𝑘
∗

𝑠2𝑗

𝑏
𝑗
= −

𝐾
∗𝑇

1𝑗

𝐾
∗𝑇

𝑠1𝑗

𝑏
𝑗
,

𝐾
∗𝑇

1𝑗

𝑘
∗

2𝑗

=

𝐾
∗𝑇

𝑠1𝑗

𝑘
∗

𝑠2𝑗

.

(40)

Now we develop an adaptive control scheme for the
system (37) with unknown AF. We propose the controller
structure:

𝑢 (𝑡) = 𝐾
𝑇

1
(𝑡) 𝑥 (𝑡) + 𝑘

2
(𝑡) 𝑟 (𝑡) + 𝑘

3
(𝑡) , (41)

where

𝐾
1
(𝑡) = [𝐾

11
(𝑡) 𝐾

12
(𝑡) ⋅ ⋅ ⋅ 𝐾

1𝑛
(𝑡)] ∈ 𝑅

2𝑛×𝑛

,

𝑘
2
(𝑡) = [𝑘

21
(𝑡) 𝑘
22
(𝑡) ⋅ ⋅ ⋅ 𝑘

2𝑛
(𝑡)]
𝑇

∈ 𝑅
𝑛

(42)

are adaptive estimates of the unknown parameters𝐾∗
1
and 𝑘∗
2
,

and

𝑘
3
(𝑡) = [𝑘

31
(𝑡) 𝑘
32
(𝑡) ⋅ ⋅ ⋅ 𝑘

3𝑛
(𝑡)]
𝑇

∈ 𝑅
𝑛 (43)

is a design vector. Define the parameter errors

𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥
𝑚
(𝑡) ,

𝐾̃
1𝑖
(𝑡) = 𝐾

1𝑖
(𝑡) − 𝐾

∗

1𝑖
,

𝑘̃
2𝑖
(𝑡) = 𝑘

2𝑖
(𝑡) − 𝑘

∗

2𝑖
,

(44)

for 𝑖 = 1, . . . , 𝑛. Substituting the control law (41) into the
system (37), we obtain

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵
󸀠

(𝑡) 𝑢 (𝑡) + 𝑧Φ (𝑥)

= 𝐴𝑥 (𝑡) + 𝐵
󸀠

𝐾
𝑇

1
(𝑡) 𝑥 (𝑡) + 𝐵

󸀠

𝑘
2
(𝑡) 𝑟 (𝑡)

+ 𝑧Φ (𝑥) + 𝐵
󸀠

𝑘
3
(𝑡) .

(45)

Using (40) and (44), the system (45) is as follows:

𝑥̇ (𝑡) = (𝐴 + 𝐵
󸀠

𝐾
𝑇

1
) 𝑥 (𝑡) + 𝐵

󸀠

𝑘
2
𝑟 (𝑡) + 𝑧Φ (𝑥) + 𝐵

󸀠

𝑘
3

= (𝐴 + 𝐵
󸀠

𝐾
∗𝑇

1
) 𝑥 (𝑡) + 𝐵

󸀠

𝑘
∗

2
𝑟 (𝑡) + 𝐵

󸀠

𝐾̃
𝑇

1
(𝑡) 𝑥 (𝑡)

+ 𝐵
󸀠

𝑘̃
2
(𝑡) 𝑟 (𝑡) + 𝑧Φ (𝑥) + 𝐵

󸀠

𝑘
3
(𝑡)

= 𝐴
𝑚
𝑥 (𝑡) + 𝐵

𝑚
𝑟 (𝑡) + 𝐵

󸀠

𝐾̃
𝑇

1
(𝑡) 𝑥 (𝑡)

+ 𝐵
󸀠

𝑘̃
2
(𝑡) 𝑟 (𝑡) + 𝑧Φ (𝑥) + 𝐵

󸀠

𝑘
3
(𝑡)

= 𝐴
𝑚
𝑥 (𝑡) + 𝐵

𝑚
𝑟 (𝑡) +

𝑛

∑

𝑖=1

−𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑏
𝑖
𝐾̃
𝑇

1𝑖
(𝑡) 𝑥 (𝑡)

+

𝑛

∑

𝑖=1

−𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑏
𝑖
𝑘̃
2𝑖
(𝑡) 𝑟 (𝑡) + 𝑧Φ (𝑥)

+

𝑛

∑

𝑖=1

−𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑏
𝑖
𝑘
3𝑖
(𝑡) .

(46)

Then, we have the tracking error equation:

̇𝑒 (𝑡) = 𝑥̇ (𝑡) − 𝑥̇
𝑚
(𝑡)

= 𝐴
𝑚
𝑒 (𝑡) +

𝑛

∑

𝑖=1

−𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑏
𝑖
𝐾̃
𝑇

1𝑖
(𝑡) 𝑥 (𝑡)

+

𝑛

∑

𝑖=1

−𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑏
𝑖
𝑘̃
2𝑖
(𝑡) 𝑟 (𝑡)

+ 𝑧Φ (𝑥) +

𝑛

∑

𝑖=1

−𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑏
𝑖
𝑘
3𝑖
(𝑡) .

(47)

Consider a positive definite function

𝑉 = 𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡) +

𝑛

∑

𝑖=1

1

󵄨󵄨󵄨󵄨𝑘
∗

𝑠2𝑖

󵄨󵄨󵄨󵄨

𝐾̃
𝑇

1𝑖
(𝑡) Γ
−1

1𝑖
𝐾̃
1𝑖
(𝑡)

+

𝑛

∑

𝑖=1

1

󵄨󵄨󵄨󵄨𝑘
∗

𝑠2𝑖

󵄨󵄨󵄨󵄨

𝑘̃
2

2𝑖
(𝑡) 𝛾
−1

2𝑖
.

(48)

According to [25], we assume that the sign of parameter 𝑘∗
𝑠2𝑗

is known, and 𝑘0
𝑠2𝑗

is a known upper bound on |𝑘∗
𝑠2𝑗
|. Choose

the adaptive laws as

𝐾̇
1𝑖
(𝑡) = −sgn [𝑘∗

𝑠2𝑖
] Γ
1𝑖
𝑥𝑒
𝑇

(𝑡) 𝑃𝐵
𝑚
,

𝑘̇
2𝑖
(𝑡) = −sgn [𝑘∗

𝑠2𝑖
] 𝛾
2𝑖
𝑟 (𝑡) 𝑒
𝑇

(𝑡) 𝑃𝐵
𝑚
,

(49)

where 𝑃 ∈ 𝑅
2𝑛×2𝑛, 𝑃 = 𝑃

𝑇

> 0 such that

𝑃𝐴
𝑚
+ 𝐴
𝑇

𝑚
𝑃 = −𝑄 (50)
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for any constant 𝑄 ∈ 𝑅
2𝑛×2𝑛 such that 𝑄 = 𝑄

𝑇

> 0, Γ
1𝑖
is

constantmatrix such thatΓ
1𝑖
= Γ
𝑇

1𝑖
> 0, and 𝛾

2𝑖
> 0 is constant.

Then, we have

𝑉̇ ≤ −𝑒
𝑇

(𝑡) 𝑄𝑒 (𝑡) + 2𝑒
𝑇

(𝑡) 𝑃𝜃Φ (𝑥)

+2𝑒
𝑇

(𝑡) 𝑃

𝑛

∑

𝑖=1

−𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑏
𝑖
𝑘
3𝑖
(𝑡) ,

(51)

where 𝜃 is defined in (29). We choose

𝑘
3𝑖
(𝑡) = sgn [𝑘∗

𝑠2𝑖
] 𝑘
0

𝑖
|Φ (𝑥)|

2

𝑒
𝑇

(𝑡) 𝑃𝐵
𝑚
, (52)

and we obtain

𝑉̇ ≤ −𝑒
𝑇

(𝑡) 𝑄𝑒 (𝑡) + 2𝑒
𝑇

(𝑡) 𝑃𝜃Φ (𝑥)

− 2𝑒
𝑇

(𝑡) 𝑃𝐵

𝑛

∑

𝑖=1

𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑘
3𝑖
(𝑡)

= −𝑒
𝑇

(𝑡) 𝑄𝑒 (𝑡) +

󵄨󵄨󵄨󵄨󵄨
𝜃
󵄨󵄨󵄨󵄨󵄨

2

‖𝑃‖
2

2
󵄨󵄨󵄨󵄨𝑒
𝑇
(𝑡) 𝑃𝐵

𝑚

󵄨󵄨󵄨󵄨

2

∑
𝑛

𝑖=1
(1/

󵄨󵄨󵄨󵄨𝑘
∗

𝑠2𝑖

󵄨󵄨󵄨󵄨) 𝑘
0

𝑖

|𝑒 (𝑡)|
2

−

󵄨󵄨󵄨󵄨󵄨
𝜃
󵄨󵄨󵄨󵄨󵄨

2

‖𝑃‖
2

2
󵄨󵄨󵄨󵄨𝑒
𝑇
(𝑡) 𝑃𝐵

𝑚

󵄨󵄨󵄨󵄨

2

∑
𝑛

𝑖=1
(1/

󵄨󵄨󵄨󵄨𝑘
∗

𝑠2𝑖

󵄨󵄨󵄨󵄨) 𝑘
0

𝑖

|𝑒 (𝑡)|
2

+ 2
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑇

(𝑡) 𝑃𝜃Φ (𝑥)
󵄨󵄨󵄨󵄨󵄨
− 2

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑇

(𝑡) 𝑃𝐵
𝑚

󵄨󵄨󵄨󵄨󵄨

2

𝑛

∑

𝑖=1

1

󵄨󵄨󵄨󵄨𝑘
∗

𝑠2𝑖

󵄨󵄨󵄨󵄨

𝑘
0

𝑖
|Φ (𝑥)|

2

= −𝑒
𝑇

(𝑡) 𝑄𝑒 (𝑡) +

󵄨󵄨󵄨󵄨󵄨
𝜃
󵄨󵄨󵄨󵄨󵄨

2

‖𝑃‖
2

2
󵄨󵄨󵄨󵄨𝑒
𝑇
(𝑡) 𝑃𝐵

𝑚

󵄨󵄨󵄨󵄨

2

∑
𝑛

𝑖=1
(1/

󵄨󵄨󵄨󵄨𝑘
∗

𝑠2𝑖

󵄨󵄨󵄨󵄨) 𝑘
0

𝑖

|𝑒 (𝑡)|
2

−(

󵄨󵄨󵄨󵄨󵄨
𝜃
󵄨󵄨󵄨󵄨󵄨
‖𝑃‖

√2
󵄨󵄨󵄨󵄨𝑒
𝑇
(𝑡) 𝑃𝐵

𝑚

󵄨󵄨󵄨󵄨

2

∑
𝑛

𝑖=1
(1/

󵄨󵄨󵄨󵄨𝑘
∗

𝑠2𝑖

󵄨󵄨󵄨󵄨) 𝑘
0

𝑖

|𝑒 (𝑡)|

−√2
󵄨󵄨󵄨󵄨𝑒
𝑇
(𝑡) 𝑃𝐵

𝑚

󵄨󵄨󵄨󵄨

2

𝑛

∑

𝑖=1

1

󵄨󵄨󵄨󵄨𝑘
∗

𝑠2𝑖

󵄨󵄨󵄨󵄨

𝑘
0

𝑖
|Φ (𝑥)|)

2

≤ −𝑒
𝑇

(𝑡) 𝑄𝑒 (𝑡) +

󵄨󵄨󵄨󵄨󵄨
𝜃
󵄨󵄨󵄨󵄨󵄨

2

‖𝑃‖
2

2
󵄨󵄨󵄨󵄨𝑒
𝑇
(𝑡) 𝑃𝐵

𝑚

󵄨󵄨󵄨󵄨

2

∑
𝑛

𝑖=1
(1/

󵄨󵄨󵄨󵄨𝑘
∗

𝑠2𝑖

󵄨󵄨󵄨󵄨) 𝑘
0

𝑖

|𝑒 (𝑡)|
2

≤ −𝑒
𝑇

(𝑡) 𝑄𝑒 (𝑡) + 𝜙
0
,

(53)

where

𝜙
0
=

󵄨󵄨󵄨󵄨󵄨
𝜃
󵄨󵄨󵄨󵄨󵄨

2

2
󵄨󵄨󵄨󵄨𝐵𝑚

󵄨󵄨󵄨󵄨

2

∑
𝑛

𝑖=1
(1/

󵄨󵄨󵄨󵄨𝑘
0

𝑠2𝑖

󵄨󵄨󵄨󵄨) 𝑘
0

𝑖

. (54)

Hence, 𝑉̇ ≤ 0 whenever |𝑒| > √𝜙
0
/𝜆min(𝑄), which means

that the tracking error 𝑒(𝑡) will converge to a set of a small
size if 𝑘0

𝑖
is chosen to be large.

Theorem 6. For HST system (37) with Assumptions 1–4 and
AF (12) satisfying (56), the controller is given by the control
law (41) and the adaptation laws (49) and (52); then we have
the following.

(1) HST system (37) is internally stable and all closed-loop
signals are bounded.

(2) If 𝑘0
𝑖
is chosen to be large, the tracking error 𝑒(𝑡) will

converge to a set of a small size.

Remark 7. The convergence time 𝑡
𝑒
is defined by

𝑡
𝑒
= {𝑡
𝑒
| |𝑒 (𝑡)| ≤ 𝛿} , (55)

where 𝛿 is a design parameter, and we assume the minimum
switch time 𝑡min must satisfy

𝑡
𝑗,min > 𝑡

𝑒
. (56)

3.3. Adaptive Control for Unknown AF and CIS. In this
subsection, we consider unknown AF (12) and CIS simulta-
neously for HST system (37). In many practical applications,
CIS occurs after AF (12), for example, when signal 𝑢(𝑡)
generated by the adaptive fault-tolerant control law (41)
cannot be implemented due to some physical constraints in
HST traction system.

Due to CIS, adaptive fault-tolerant control law, which is
different from (41), is as follows:

𝑢
𝑠

(𝑡) = sat (𝑢 (𝑡) , 𝑢min, 𝑢max) , (57)

where 𝑢min and 𝑢max are the minimum and maximum values
of 𝑢(𝑡), and 𝑢(𝑡) is defined in (41). Saturation function
sat(𝑢(𝑡), 𝑢min, 𝑢max) is linear with unity slope between its
lower and upper bound; that is,

sat (𝑢 (𝑡) , 𝑢min, 𝑢max) =
{{

{{

{

𝑢min, 𝑢 (𝑡) < 𝑢min,

𝑢 (𝑡) , 𝑢min ≤ 𝑢 (𝑡) ≤ 𝑢max,

𝑢max, 𝑢 (𝑡) > 𝑢max,

(58)

and we consider CIS error 𝜂 = [𝜂
1

𝜂
2

⋅ ⋅ ⋅ 𝜂
𝑛
]
𝑇

∈ 𝑅
𝑛

described by

𝜂
𝑖
(𝑡) = 𝑢

𝑠

𝑖
(𝑡) − 𝑢

𝑖
(𝑡) , (59)

and |𝜂
𝑖
(𝑡)| < 𝜂. Now we develop an adaptive control scheme

for the system (37) with unknown AF (12) and CIS (57). We
suppose there are 𝑞 CIS in HST, that is, 𝑗 = 𝑗

1
, . . . , 𝑗

𝑞
, and

propose the controller structure:

𝑢
𝑠

𝑗
(𝑡) =

{{{{

{{{{

{

𝐾
𝑇

1𝑗
(𝑡) 𝑥 (𝑡) + 𝑘

2𝑗
(𝑡) 𝑟 (𝑡) + 𝑘

4𝑗
(𝑡) + 𝑘

3𝑗
(𝑡)

𝑗 ̸= 𝑗
1
, . . . , 𝑗

𝑞

𝐾
𝑇

1𝑗
(𝑡) 𝑥 (𝑡) + 𝑘

2𝑗
(𝑡) 𝑟 (𝑡) + 𝜂

𝑗
(𝑡) + 𝑘

3𝑗
(𝑡)

𝑗 = 𝑗
1
, . . . , 𝑗

𝑞
,

(60)
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where 𝐾
1𝑗
(𝑡), 𝑘
2𝑗
(𝑡), and 𝑘

3𝑗
(𝑡) are defined in (49) and (52).

𝑘
4
= [𝑘
41

𝑘
42

⋅ ⋅ ⋅ 𝑘
4𝑛
]
𝑇

∈ 𝑅
𝑛. We obtain

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵
󸀠

(𝑡) 𝑢
𝑠

(𝑡) + 𝑧Φ (𝑥)

= 𝐴
𝑚
𝑥 (𝑡) + 𝐵

𝑚
𝑟 (𝑡) +

𝑛

∑

𝑖=1

−𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑏
𝑖
𝐾̃
𝑇

1𝑖
(𝑡) 𝑥 (𝑡)

+

𝑛

∑

𝑖=1

−𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑏
𝑖
𝑘̃
2𝑖
(𝑡) 𝑟 (𝑡) +

𝑛

∑

𝑖=1

−𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑏
𝑖
𝑘
3𝑖
(𝑡) + 𝑧Φ (𝑥)

+ ∑

𝑗 ̸= 𝑗
1
,...,𝑗
𝑞

−𝑘
∗

2𝑗

𝑘
∗

𝑠2𝑗

𝑏
𝑗
𝑘
4𝑗
(𝑡) + ∑

𝑗=𝑗
1
,...,𝑗
𝑞

−𝑘
∗

2𝑗

𝑘
∗

𝑠2𝑗

𝑏
𝑗
𝜂
𝑗
(𝑡) .

(61)

We have the tracking error equation:

̇𝑒 (𝑡) = 𝑥̇ (𝑡) − 𝑥̇
𝑚
(𝑡)

= 𝐴
𝑚
𝑒 (𝑡) +

𝑛

∑

𝑖=1

−𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑏
𝑖
𝐾̃
𝑇

1𝑖
(𝑡) 𝑥 (𝑡)

+

𝑛

∑

𝑖=1

−𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑏
𝑖
𝑘̃
2𝑖
(𝑡) 𝑟 (𝑡) +

𝑛

∑

𝑖=1

−𝑘
∗

2𝑖

𝑘
∗

𝑠2𝑖

𝑏
𝑖
𝑘
3𝑖
(𝑡)

+ 𝑧Φ (𝑥) + ∑

𝑗 ̸= 𝑗
1
,...,𝑗
𝑞

−𝑘
∗

2𝑗

𝑘
∗

𝑠2𝑗

𝑏
𝑗
𝑘
4𝑗
(𝑡)

+ ∑

𝑗=𝑗
1
,...,𝑗
𝑞

−𝑘
∗

2𝑗

𝑘
∗

𝑠2𝑗

𝑏
𝑗
𝜂
𝑗
(𝑡) .

(62)

Consider a positive definite function:

𝑉 = 𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡) +

𝑛

∑

𝑖=1

1

󵄨󵄨󵄨󵄨𝑘
∗

𝑠2𝑖

󵄨󵄨󵄨󵄨

𝐾̃
𝑇

1𝑖
(𝑡) Γ
−1

1𝑖
𝐾̃
1𝑖
(𝑡)

+

𝑛

∑

𝑖=1

1

󵄨󵄨󵄨󵄨𝑘
∗

𝑠2𝑖

󵄨󵄨󵄨󵄨

𝑘̃
2

2𝑖
(𝑡) 𝛾
−1

2𝑖
,

(63)

and using (49) and (52), we have

𝑉̇ ≤ −𝑒
𝑇

(𝑡) 𝑄𝑒 (𝑡) +

󵄨󵄨󵄨󵄨󵄨
𝜃
󵄨󵄨󵄨󵄨󵄨

2

‖𝑃‖
2

2
󵄨󵄨󵄨󵄨𝑒
𝑇
(𝑡) 𝑃𝐵

𝑚

󵄨󵄨󵄨󵄨

2

∑
𝑛

𝑖=1
(1/
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and we assume
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(65)
We choose the design signal 𝑘

4𝑗
(𝑡) as

𝑘
4𝑗
(𝑡) = 𝑘

0

𝑠2𝑗
𝜂
0
sgn [𝑒𝑇 (𝑡) 𝑃𝐵

𝑚
] sgn [𝑘∗

𝑠2𝑗
] . (66)

Since the control signal 𝑘
4𝑗
(𝑡) in (66) is not continuous,

according to [61, 62], to avoid system chatterings caused
by such discontinuous control laws, the following common
approximations will be used for sgn(⋅) function:

sgn [𝑥] ≈ 𝑥

|𝑥| + 𝜀
, 𝜀 > 0. (67)

We obtain
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(68)

where 𝛽
0
= ∑
𝑗 ̸= 𝑗
1
,...,𝑗
𝑞

(𝑘
0

𝑠2𝑗
/|𝑘
∗

𝑠2𝑗
|)𝜂
0
is a constant. Hence 𝑉̇ <

0, whenever

|𝑒| > √
𝜙
0
+ 2𝛽
0
𝜀

𝜆min (𝑄)
, (69)

which means |𝑒| decreases to a lower bound proportional to
√𝜀 and 𝑘0

𝑖
.

Theorem 8. For HST system (37) with Assumptions 1–4 and
AF (12) and CIS (57), the controller is given by the control law
(60) and the adaptation laws (49), (52), and (66); then we have
the following.

(1) HST system (37) is internally stable and all closed-loop
signals are bounded.

(2) If √𝜀 is chosen to be small and 𝑘0
𝑖
is chosen to be large,

the tracking error 𝑒(𝑡) will converge to a set of a small
size.
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Figure 3: The position tracking error of the carriages.
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Figure 4: The velocity tracking error of the carriages.

4. Simulations

To prove the effectiveness of proposed controller, a train
model of CRH2 [59], which consists of two powered car-
riages, is used. The parameters in this simulation are given
in Table 1.

The unknown parameters, which should not be ignored,
are shown as follows:

𝑐
0
= 5.2N/kg,

𝑐V = 0.038N ⋅ s/ (m ⋅ kg) ,

𝑐
𝑎
= 0.00112N2 ⋅ s/ (m2 ⋅ kg) .

(70)

We consider the AF in the first carriage is as follows:

𝑓
1
(𝑡) 𝑢
1
(𝑡) = {

1, 0 ≤ 𝑡 < 30,

0.6, 30 ≤ 𝑡 ≤ 50
(71)

and CIS in the second carriage is as follows:

𝑢
2
(𝑡) ∈ (−40𝑘𝑁, 40𝑘𝑁) . (72)

In order to exhibit the advantage of the proposed adaptive
fault-tolerant control, a fault-tolerant control using neural
networks [63] (FTCNN) is introduced. Using FTCNN, per-
formance of the system (37) under AF (71) and CIS (72) is
shown in Figures 3 and 4.Themaximumposition and velocity
tracking errors afterAF attain to 2mand 2.5m/s, respectively.

The AMFDD (21) and adaptive fault-tolerant control law
(60) with adaptation laws (49), (52), and (66) are applied to



Mathematical Problems in Engineering 11

Table 1: Parameters of high-speed trains.

Symbol Implication Value
𝑛 Number of carriages 2
𝑚
𝑖
(𝑖 = 1, 2) Mass of powered carriages 8500 kg

𝑘 Elasticity coefficient 2 × 10
7N/m

𝑏 Damping coefficient 5 × 10
6 N⋅s/m
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Figure 6: The velocity tracking error of the carriages.

handle unknownAF (71) andCIS (72) inHST system. Figures
5 and 6 show the system responses which indicate that even
when there are unknownAF, the tracking errors still converge
to zero. It is shown that the developed adaptive fault-tolerant
control law (60) with adaptation laws (49), (52), and (66)
ensures that, in addition to closed-loop signal boundedness,
the position and velocity tracking errors converge to zero as

the time goes by, despite of the plant uncertainties, AF, and
CIS.

5. Conclusion

In this paper, an adaptive state feedback and tracking control
with AMFDD module is proposed to deal with a class of
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HST in the presence of unknown CIS and AF. That is, some
of the plant inputs are influenced by hopping function. An
AMFDD module using I&I observer is introduced based on
the model of HST to detect AF, and a corresponding adaptive
control law based on the AMFDD information is switched on
to realize the fault-tolerant control. The proposed adaptive
FTC guarantees the boundedness of all signals in the HST
system.
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