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Conjugate curves have been put forward previously by authors for gear transmission. Comparedwith traditional conjugate surfaces,
the conjugate curves havemore flexibility and diversity in aspects of gear design and generation. To further extend its application in
power transmission, the geometric andmeshing properties of conjugate curves are discussed in this paper. Firstly, general principle
descriptions of conjugate curves for arbitrary axial position are introduced. Secondly, geometric analysis of conjugate curves is
carried out based on differential geometry including tangent and normal in arbitrary contact direction, characteristic point, and
curvature relationships. Then, meshing properties of conjugate curves are further revealed. According to a given plane or spatial
curve, the uniqueness of conjugated curve under different contact angle conditions is discussed.Meshing commonality of conjugate
curves is also demonstrated in terms of a class of spiral curves contacting in the given direction for various gear axes. Finally, a
conclusive summary of this study is given.

1. Introduction

The theory of plane or space curves and surfaces in the three-
dimensional Euclidean space forms the basis for development
of differential geometry [1, 2]. And its application in gear
transmission, namely, the geometry theory of conjugate
surfaces, has been widely applied to conventional gear drive
[3–5]. Working performance of conjugate surfaces affects
greatly the overall power andmotion properties of gear drive.
The mathematical principle, geometrical design, and charac-
teristic analysis about conjugate surfaces were developed by
many scholars.

Litvin et al. [6] proposed systematic methodology to
studymathematicalmodel of conjugate surfaces and analyzed
the geometrical and meshing characteristics based on dif-
ferential geometry. Chen [7] investigated surface geometry
of spatial gear pairs and discussed general property from
the practical point of view. Li [8] described spatial geometry
modeling of conjugate surfaces. The specific application in
engineering was also introduced. Di Puccio et al. [9] put
forward a rather general formulation for generation and
curvature analysis of conjugate surfaces via the alternative
formulation of the theory of gearing. In [10], Wu and Luo

studied a geometric theory of conjugate tooth surfaces and
derived curvatures equations in terms of the limit functions
of the first kind and considering themating surfaces subjected
to relative screwmotion with constant translational and rota-
tional velocities. Ito and Takahashi [11] analyzed curvatures
in hypoid gears starting from a classical differential geometry
point of view, but then introducing kinematic relationships.
By employing the theory of screws, Dooner [12] provided the
third law of gearing and formulated the limiting relationship
between the radii of curvature of conjugate surfaces, which
is valid only for the reference pitch surfaces. Duan et al. [13]
presented the conjugate principle and basic characteristic of
Bertrand conjugate surfaces. And Chen et al. [14] researched
the geometric properties of moulding conjugate surfaces.

However, in some cases, the higher overload require-
ments are difficult to meet in existing conjugate surfaces.
The convex-to-convex tooth profile is more common in
contact pattern and it has low contact strength. In additional,
there is larger sliding between general tooth surfaces which
leads to the low transmission efficiency. Many studies have
been carried out to develop various concepts, design, and
analysis approaches toward these problems [15–21]. Generally
speaking, the surface and curve are both common elements
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in nature. Compared with general surfaces, the contact
between curves has more flexibility and diversity. The related
investigations on conjugate curves have been carried out
by the authors, and basic meshing principle and theoretical
applications for gear transmission have been studied [22–25].
To further reveal general property of conjugate curves and
extend the application in gear transmission, the geometric
and meshing properties of conjugate curves are discussed in
this paper.

The remainder of this paper is organized into four
sections. In the following section, the principle descriptions
of conjugate curves for arbitrary axial position are intro-
duced. Based on differential geometry, geometric analysis of
conjugate curves is carried out including tangent and nor-
mal in arbitrary contact direction, characteristic point, and
curvature relationships in the next section. The subsequent
section reveals meshing properties of conjugate curves: the
uniqueness of conjugated curves and meshing commonality
of conjugate curves. And a conclusive summary of this study
is given in the last section.

2. Principle Descriptions of Conjugate Curves
for Arbitrary Axial Position

Conjugate curves are described as two smooth curves that
always keep continuous and tangent contact with each other
in given contact direction under motion law. Particularly, the
principle of conjugate curves was proposed only for parallel-
axes gears in [22] and its procedure graph is displayed in
Figure 1. However, for arbitrary axial position, the principle
descriptions of conjugate curves are studied.

As shown in Figure 2, 𝑆(𝑂−𝑥, 𝑦, 𝑧) and 𝑆𝑝(𝑂𝑝−𝑥𝑝, 𝑦𝑝, 𝑧𝑝)
are the fixed coordinate systems. Conjugate curves Γ1 and Γ2
are defined using coordinate systems 𝑆1(𝑂1 − 𝑥1, 𝑦1, 𝑧1) and
𝑆2(𝑂2 − 𝑥2, 𝑦2, 𝑧2) which are connected to pinion 1 and gear
2, respectively. Point 𝑃 is the contact point.

The transformationmatrix from coordinate systems 𝑆1 to
𝑆2 can be expressed as

M21 =
[
[
[

[

cos𝜙1 cos𝜙2 − sin𝜙1 sin𝜙2 cosΣ − sin𝜙1 cos𝜙2 − cos𝜙1 sin𝜙2 cosΣ − sin𝜙2 sinΣ −𝑎 cos𝜙2
cos𝜙1 sin𝜙2 + sin𝜙1 cos𝜙2 cosΣ − sin𝜙1 sin𝜙2 + cos𝜙1 cos𝜙2 cosΣ cos𝜙2 sinΣ −𝑎 sin𝜙2

− sin𝜙1 sinΣ − cos𝜙1 sinΣ cosΣ 0

0 0 0 1

]
]
]

]

, (1)

where𝜙1 and𝜙2 are the angular displacements of pinion 1 and
gear 2, respectively. 𝑎 is center distance andΣ is angle between
the axes of mating gears.

The parallel axis, intersecting axis, and crossed axis gear
transmission can be realized separately by adjusting the
center distance 𝑎 and angleΣ. Consider that the general curve
Γ1 is represented in parametric form as

Γ1 : r1 = 𝑥1 (𝜃) i1 + 𝑦1 (𝜃) j1 + 𝑧1 (𝜃) k1, (2)

where 𝜃 is curve parameter. i1, j1, and k1 are the unit vectors
of coordinate system 𝑆1.

The relative velocity of point 𝑃(1) of pinion 1 with respect
to point 𝑃(2) of gear 2 is calculated as

𝜐
(12)

1
= [−𝑦1 (1 + 𝑖21 cosΣ) − 𝑧1𝑖21 cos𝜙1 sinΣ

−𝑎𝑖21 sin𝜙1 cosΣ] i1

+ [𝑥1 (1 + 𝑖21 cosΣ) + 𝑧1𝑖21 sin𝜙1 sinΣ

−𝑎𝑖21 cos𝜙1 cosΣ] j1

+ 𝑖21 sinΣ (𝑥1 cos𝜙1 − 𝑦1 sin𝜙1 − 𝑎) k1,

(3)

where 𝑖21 is the transmission ratio and there exists 𝜙2 = 𝑖21𝜙1.
Based on the curve trihedron established in [22], the

normal vector to contact point in arbitrary direction of
contact angle is expressed as

n𝑛 = (𝑡1𝑛𝛽𝑥
1

+ 𝑡2𝑛𝛾𝑥
1

) i1 + (𝑡1𝑛𝛽𝑦
1

+ 𝑡2𝑛𝛾𝑦
1

) j1

+ (𝑡1𝑛𝛽𝑧
1

+ 𝑡2𝑛𝛾𝑧
1

) k1,
(4)

where 𝑡1 and 𝑡2 are the coefficients indicating the projection
of contact angle 𝛼0 on the direction of principal normal and
binormal vectors, respectively.

Moreover, meshing equation along given contact direc-
tion is derived as

𝑈 cos𝜙1 − 𝑉 sin𝜙1 = 𝑊, (5)

where
𝑈 = 𝑖21 sinΣ (𝑛𝑛𝑧1𝑥1 − 𝑛𝑛𝑥1𝑧1) − 𝑖21 cosΣ𝑛𝑛𝑦1𝑎;

𝑉 = −𝑖21 sinΣ (𝑛𝑛𝑦1𝑧1 − 𝑛𝑛𝑧1𝑦1) + 𝑖21 cosΣ𝑛𝑛𝑥1𝑎;

𝑊 = (1 + 𝑖21 cosΣ) (𝑛𝑛𝑥1𝑦1 − 𝑛𝑛𝑦1𝑥1) + 𝑛𝑛𝑧1𝑎𝑖21 sinΣ.

(6)

Using transformation relation r2 = M21r1 and meshing
equation simultaneously, according to original curve Γ1, the
equation of conjugated curve Γ2 is derived as (7). r2 is position
vector of point 𝑃 in 𝑆2. Considering transformation matrix
from 𝑆1 to 𝑆, the equation of line of action can also be
obtained.

The comparison analysis of general principles of con-
jugate surfaces and conjugate curves is introduced. As the
existing theoretical basis of gear geometry, the conjugate
surfaces are widely used in the design and generation of tooth
surfaces of gears. Usually, as shown in Figure 3, conjugated
surface 2 can be obtained based on original surface 1 and the
given motion law. Then the mating tooth surfaces of gear are
generated [3].

However, the conjugate curves are described as two
smooth curves that always keep continuous and tangent
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Figure 1: Principle procedure graph of conjugate curves.
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Figure 2: Coordinate systems for arbitrary axial position.

contact with each other in the given contact direction under
motion law. Conjugated curve 2 can be derived according
to original curve 1, designated contact direction, and given
motion law. Then, the tubular meshing tooth surfaces inher-
iting meshing characteristics of the conjugate curves are
generated based on equidistant-enveloping method [22, 23].
The generated tooth profiles specially can be diversity if
choosing the different equidistant orientation and position.
The theory of conjugate curves is simply represented in

Original surface 1 

Motion law

Conjugated surface 2 

Figure 3: Theory of conjugate surfaces.

Figure 4 and three different contact models of tooth profiles
are also displayed in Figure 5:

𝑥2 = 𝑥1 [cos𝜙1 cos (𝑖21𝜙1) − sin𝜙1 sin (𝑖21𝜙1) cosΣ]

+ 𝑦1 [− sin𝜙1 cos (𝑖21𝜙1) − cos𝜙1 sin (𝑖21𝜙1) cosΣ]

− 𝑧1 sin (𝑖21𝜙1) sinΣ − 𝑎 cos (𝑖21𝜙1) ,

𝑦2 = 𝑥1 [cos𝜙1 sin (𝑖21𝜙1) + sin𝜙1 cos (𝑖21𝜙1) cosΣ]

+ 𝑦1 [− sin𝜙1 sin (𝑖21𝜙1) + cos𝜙1 cos (𝑖21𝜙1) cosΣ]

+ 𝑧1 cos (𝑖21𝜙1) sinΣ − 𝑎 sin (𝑖21𝜙1) ,

𝑧2 = −𝑥1 sin𝜙1 sinΣ − 𝑦1 cos𝜙1 sinΣ + 𝑧1 cosΣ,

𝑈 cos𝜙1 − 𝑉 sin𝜙1 = 𝑊.
(7)

According to the aforementioned descriptions, the fol-
lowing analysis conclusions can be got as follows:

(1) The contact element is surface for the theory of
conjugate surfaces, while curve is the contact element
for the theory of conjugate curves.

(2) The tooth surfaces of conjugate-surface gear are gen-
erated based on the surface. But the tooth surfaces
of conjugate-curve gear are developed by means of
the spatial curve. The relation between the curve and
surface is revealed.

(3) Conjugated surface 2 is unique for original surface
1 and the meshing pair of conjugate surfaces is also
unique. However, conjugated curve 2 is unique in
the arbitrary designated contact direction for original
curve 1 and the mating conjugate curves are diversity
if choosing the various contact direction.

(4) The carrier and form of curves are varied compared
to that of surface. The ideal conjugate curves can be
obtained according to the selection of original curve
and determination of contact direction. The different
meshing tooth surfaces containing the characteristics
of conjugate curves can be generated.
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Figure 5: Three different contact models of gear: (a) convex-convex contact; (b) convex-plane contact; (c) convex-concave contact.

3. Geometric Characteristic Analysis of
Conjugate Curves

3.1. Tangent and Normal to Conjugate Curves in Arbitrary
Contact Direction. The concept of a tangent to the conjugate
curves at contact point is similar to that of general curve
based on the so-called limiting positions of rays [3]. Consider
a set of rays that are drawn through a curve point 𝑀 and
its neighboring points 𝑀𝑖 (𝑖 = 1, 2, . . . , 𝑛). As points 𝑀𝑖
approach point 𝑀, all rays come to some limit position. In
the case shown in Figure 6, there are two limiting rays with
coinciding lines of action.These two rays form the tangent to
the curve at point𝑀 and it is identified as a regular point of
the curve. A tangentT exists only at a regular point of a curve.
A curve point where the tangent T does not exist or is equal
to zero is identified as a singular point.

Then tangent T is determined and it has

T : r𝜃 = 𝑥
󸀠
(𝜃) i1 + 𝑦

󸀠
(𝜃) j1 + 𝑧

󸀠
(𝜃) k1. (8)

For conjugate curves Γ1 and Γ2, the tangentsT1 andT2 are
expressed by r1𝜃, r2𝜃, respectively.

The normal n𝑛 to conjugate curves at contact point in
arbitrary direction of contact angle is perpendicular to the
tangent to the mating curves. There is an infinite number

M•

•
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• •

Space curve
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(two limiting rays)

Rayszi

M2

M3

M4

M1

xi

yi

Figure 6: Illustration of rays and tangent.

of normals n belonging to normal plane at contact point𝑀.
For instance, vector n𝑛 is one of the set of curve normals in
Figure 7. Three orthogonal vectors can be determined: the
tangent vector 𝛼, principal normal 𝛽, and binormal 𝛾.
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Figure 7: Normal to conjugate curves in arbitrary contact direction.

The principal normal vector 𝛽 and binormal 𝛾 can be
calculated, respectively, as

𝛽 =

𝑥𝜃𝜃 (𝑦
2

𝜃
+ 𝑧
2

𝜃
) − 𝑥𝜃 (𝑦𝜃𝑦𝜃𝜃 + 𝑧𝜃𝑧𝜃𝜃)

(𝑥
2

𝜃
+ 𝑦
2

𝜃
+ 𝑧
2

𝜃
)
2

i1

+

𝑦𝜃𝜃 (𝑥
2

𝜃
+ 𝑧
2

𝜃
) − 𝑦𝜃 (𝑥𝜃𝑥𝜃𝜃 + 𝑧𝜃𝑧𝜃𝜃)

(𝑥
2

𝜃
+ 𝑦
2

𝜃
+ 𝑧
2

𝜃
)
2

j1

+

𝑧𝜃𝜃 (𝑥
2

𝜃
+ 𝑦
2

𝜃
) − 𝑧𝜃 (𝑥𝜃𝑥𝜃𝜃 + 𝑦𝜃𝑦𝜃𝜃)

(𝑥
2

𝜃
+ 𝑦
2

𝜃
+ 𝑧
2

𝜃
)
2

k1,

𝛾 =
𝑦𝜃𝑧𝜃𝜃 − 𝑧𝜃𝑦𝜃𝜃

(𝑥
2

𝜃
+ 𝑦
2

𝜃
+ 𝑧
2

𝜃
)
3/2

i1 −
𝑥𝜃𝑧𝜃𝜃 − 𝑧𝜃𝑥𝜃𝜃

(𝑥
2

𝜃
+ 𝑦
2

𝜃
+ 𝑧
2

𝜃
)
3/2

j1

+
𝑥𝜃𝑦𝜃𝜃 − 𝑦𝜃𝑥𝜃𝜃

(𝑥
2

𝜃
+ 𝑦
2

𝜃
+ 𝑧
2

𝜃
)
3/2

k1.

(9)

The normal vector to contact point in arbitrary direction
of contact angle can be represented as a linear combination of
principal normal and binormal vectors, and it has n𝑛 = 𝑡1𝛽+
𝑡2𝛾. Here, contact angle 𝛼0 is defined as the angle between
arbitrary normal vector n𝑛 and binormal vector 𝛾.

3.2. Characteristic Point. Given the curve Γ1, adding amotion
parameter 𝜆, the family of curves {Γ𝑖} is obtained [2]. The
enveloping curve Γ2 can be generated as depicted in Figure 8
if satisfying the following conditions: (1) curve Γ1 is smooth
and regular curve. (2) At every instant 𝑡, Γ1 and Γ2 touch each
other in contact point𝑀. (3) Each point of curve Γ2 is also
a contact point at a unique instant 𝑡. Obviously, it is the set
of different contact points. (4) The relation between curves
Γ1 and Γ2 can be rendered quite symmetrical, and each may
be said to be conjugated for the other if their domains are
suitably restricted.

According to (2), family of curves {Γ𝑖} can be expressed as

{Γ𝑖} : r1 = r1 (𝜃, 𝜆) . (10)

𝛼0 Γ1

Γ1

Γ1

Γ2
nn

𝛽

𝛼

𝛾

Figure 8: Envelope of a family of curves in given contact direction.

And if the enveloping curve exists, it has

r1 = r1 (𝜃 (𝜆) , 𝜆) = r1 (𝜆) . (11)

For arbitrary curve in family of curves {Γ𝑖}, its tangent
vector is written as

r1𝜃 =
𝜕r1
𝜕𝜃
. (12)

The calculation for enveloping curve is

r1 =
𝜕r1
𝜕𝜃

𝑑𝜃

𝑑𝜆
+
𝜕r1
𝜕𝜆
= r1𝜃

𝑑𝜃

𝑑𝜆
+ r1𝜆. (13)

There is common tangent between both curves at contact
point so that it has r1𝜃‖r1. Then

r1𝜃 × r1 = 0. (14)

Substituting (12) and (13) into (14) yields the result as

r1𝜃 × r1 = r1𝜃 × (
𝜕r1
𝜕𝜃

𝑑𝜃

𝑑𝜆
+
𝜕r1
𝜕𝜆
) = r1𝜃 × r1𝜆 = 0; (15)

that is,

r1𝜃 × r1𝜆 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

i1 j1 k1
𝜕𝑥1

𝜕𝜃

𝜕𝑦1

𝜕𝜃

𝜕𝑧1

𝜕𝜃

𝜕𝑥1

𝜕𝜆

𝜕𝑦1

𝜕𝜆

𝜕𝑧1

𝜕𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (16)

So the mathematical formula of enveloping curve of
family of curves {Γ𝑖} is derived as

r1 = r1 (𝜃, 𝜆) ,

r1𝜃 × r1𝜆 = Φ (𝜃, 𝜆) = 0.
(17)

Compared with the solution of conjugated curve in
Section 2, (17) has the same meaning with (7). Usually, each
family of surfaces and its enveloping surface are not generally
tangent at one point, but along a curve which is called the
characteristic line on the surface. Actually it is also the contact
curve for both surfaces proposed above. The enveloping
surface could be used as the set of family of single parameter
characteristic lines [3]. Similarly, each family of curves and its
enveloping curve are tangent with point contact and the set
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of contact points which are called characteristic points finally
forms the target curve.

According to aforementioned discussion, we can get such
following conditions.

(1) The necessary and sufficient conditions for contact
between arbitrary curve of family of curves {Γ𝑖} and its
enveloping curve are

Φ (𝜃, 𝜆) = r1𝜃 × r1𝜆 = 0 (18)

and the generation formula of enveloping curve is

r1 = r1 (𝜃, 𝜆) ,

r1𝜃 × r1𝜆 = Φ (𝜃, 𝜆) = 0.
(19)

(2) The characteristic point which is also the conjugate
contact point with generated enveloping curve exists on each
curve of family of curves {Γ𝑖}. It has

r1 = r1 (𝜃, 𝜆0) ,

r1𝜃 × r1𝜆
0

= Φ (𝜃, 𝜆0) = 0,

(20)

where 𝜆0 is the constant.

3.3. Curvature Relationships. It is well known that the curva-
ture is of great importance indicator for evaluating geometric
characteristic of curve, and it reflects the bending degree
at one point of curve. As the parameter of arc length, 𝑠 is
introduced to the derivation of curve curvature. As shown
in Figure 9,𝑀0 is arbitrary given point of curve Γ and𝑀1 is
its neighboring curve point. The correspondence parameters
of arc length are 𝑠0 and 𝑠0 + Δ𝑠, respectively. Δ𝜑 is angle
formed by the tangents taken at the given and neighboring
curve points.Δ𝑠 is arc length between the neighboring points.
Then the change rate of tangents when point𝑀0 turns the arc
length Δ𝑠 can be described as the curvature of curve Γ at this
point.

The curvature 𝜅0 of a spatial curve is determined as

𝜅0 = lim
Δ𝑠→0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Δ𝜑

Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (21)

where the subscript “0” in 𝜅0 indicates that the curvature is
considered for a small piece of the curve located in the oscu-
lating plane. Based on differential geometry, the curvature 𝜅0
can be calculated with formula 𝜅0 = |r𝑠 × r𝑠𝑠|.

To derive equations for determination of the curve
curvature 𝜅0 and curve torsion 𝜏, the parameter 𝑠 of arc
length and curve parameter 𝜃 are considered to be related by
function 𝑠(𝜃). Based on (2), the curve to be discussed can be
represented as r1(𝑠(𝜃)). Differentiation of this vector function
yields

r1𝜃 = r𝑠
𝑑𝑠

𝑑𝜃
. (22)

•

•

zi

xi

yi
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Figure 9: Curve curvature analysis.

Here 𝑑𝑠/𝑑𝜃 = |r1𝜃| because |r𝑠| = 1. Moreover, it has

r1𝜃𝜃 = r𝑠𝑠 (
𝑑𝑠

𝑑𝜃
)

2

+ r𝑠 (
𝑑
2
𝑠

𝑑𝜃2
) ,

r1𝜃𝜃𝜃 = r𝑠𝑠𝑠 (
𝑑𝑠

𝑑𝜃
)

3

+ 3r𝑠𝑠 (
𝑑𝑠

𝑑𝜃
)(
𝑑
2
𝑠

𝑑𝜃2
) + r𝑠 (

𝑑
3
𝑠

𝑑𝜃3
) .

(23)

Substituting (22) and (23) into the expression of curvature
𝜅0, we obtain the simplified result

r𝑠 × r𝑠𝑠 =
r1𝜃 × r1𝜃𝜃
(𝑑𝑠/𝑑𝜃)

3
=
r1𝜃 × r1𝜃𝜃
󵄨󵄨󵄨󵄨r1𝜃
󵄨󵄨󵄨󵄨

3
,

𝜅0 =

󵄨󵄨󵄨󵄨r1𝜃 × r1𝜃𝜃
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨r1𝜃
󵄨󵄨󵄨󵄨

3

= [(𝑥1𝜃𝑦1𝜃𝜃 − 𝑥1𝜃𝜃𝑦1𝜃)
2
+ (𝑥1𝜃𝑧1𝜃𝜃 − 𝑥1𝜃𝜃𝑧1𝜃)

2

+ (𝑦1𝜃𝑧1𝜃𝜃 − 𝑦1𝜃𝜃𝑧1𝜃)
2
]
1/2

× ((𝑥
2

1𝜃
+ 𝑦
2

1𝜃
+ 𝑧
2

1𝜃
)
3/2

)

−1

.

(24)

For the analysis of torsion of curve, the formula 𝜏 =
(r𝑠, r𝑠𝑠, r𝑠𝑠𝑠)/𝜅20 yields

𝜏 =
(r1𝜃 × r1𝜃𝜃) ⋅ r1𝜃𝜃𝜃
(r1𝜃 × r1𝜃𝜃)

2
. (25)

4. Meshing Characteristics of
Conjugate Curves

4.1. Uniqueness of Conjugated Curve. The conjugated curve is
generated in terms of the meshing equation and transforma-
tion matrixes among different coordinate systems, according
to a given original curve. The normal vector n𝑛 to conjugate
curves at contact point in arbitrary direction of contact angle
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Figure 10: Two conjugated curves for different contact angles 𝛼1, 𝛼2.

can be determined in the previous study. Particularly, from
the expression of normal vector n𝑛, we can identify that
coefficients 𝑡1 and 𝑡2 indicate the projection of contact angle
𝛼0 on the direction of principal normal and binormal vectors,
respectively.

Given the different coefficients 𝑡1 and 𝑡2, if the original
curve is determined, the corresponding conjugated curve
can be represented in various results. Then the further study
on the relationship between obtained conjugated curves is
carried out. Given the contact angles 𝛼1, 𝛼2 (where 𝛼2 = 𝛼1 +
Δ𝛼) in Figure 10, respectively, based on principle descriptions
of conjugate curves in Section 2, the conjugated curves Γ2𝑖
(𝑖 = 1, 2) which are separately related to given conditions are
expressed as

𝑥
(𝑖)

2
= 𝑥1 [cos𝜙

(𝑖)

1
cos (𝑖21𝜙

(𝑖)

1
) − sin𝜙(𝑖)

1
sin (𝑖21𝜙

(𝑖)

1
) cosΣ]

+ 𝑦1 [− sin𝜙
(𝑖)

1
cos (𝑖21𝜙

(𝑖)

1
)

− cos𝜙(𝑖)
1
sin (𝑖21𝜙

(𝑖)

1
) cosΣ]

− 𝑧1 sin (𝑖21𝜙
(𝑖)

1
) sinΣ − 𝑎 cos (𝑖21𝜙

(𝑖)

1
) ,

𝑦
(𝑖)

2
= 𝑥1 [cos𝜙

(𝑖)

1
sin (𝑖21𝜙

(𝑖)

1
) + sin𝜙(𝑖)

1
cos (𝑖21𝜙

(𝑖)

1
) cosΣ]

+ 𝑦1 [− sin𝜙
(𝑖)

1
sin (𝑖21𝜙

(𝑖)

1
)

+ cos𝜙(𝑖)
1
cos (𝑖21𝜙

(𝑖)

1
) cosΣ]

+ 𝑧1 cos (𝑖21𝜙
(𝑖)

1
) sinΣ − 𝑎 sin (𝑖21𝜙

(𝑖)

1
) ,

𝑧
(𝑖)

2
= −𝑥1 sin𝜙

(𝑖)

1
sinΣ − 𝑦1 cos𝜙

(𝑖)

1
sinΣ + 𝑧1 cosΣ,

𝜙
(𝑖)

1
= arcsin 𝑊

(𝑖)

√𝑈(𝑖)
2
+ 𝑉(𝑖)

2

− arctan 𝑉
(𝑖)

𝑈(𝑖)
.

(26)

Considering that conjugated curve Γ21 rotates about
central contact point𝑀 with angle Δ𝛼, it has this expression
after the coordinate transformation as

𝑥
(1)󸀠

2
= 𝑥
(1)

2
cosΔ𝛼 + 𝑦(1)

2
sinΔ𝛼,

𝑦
(1)󸀠

2
= − 𝑥

(1)

2
sinΔ𝛼 + 𝑦(1)

2
cosΔ𝛼,

𝑧
(1)󸀠

2
= 𝑧
(1)

2
.

(27)

Substituting (26) into (27), the derived result is written as

𝑥
(1)󸀠

2
= (𝑥1𝐴1 + 𝑦1𝐵1 − 𝑧1𝐶1) cosΔ𝛼

+ (𝑥1𝐴2 + 𝑦1𝐵2 + 𝑧1𝐶2) sinΔ𝛼

− 𝑎 cos (Δ𝛼 − 𝑖21𝜙
(1)

1
) ,

𝑦
(1)󸀠

2
= (−𝑥1𝐴1 − 𝑦1𝐵1 + 𝑧1𝐶1) sinΔ𝛼

− (𝑥1𝐴2 − 𝑦1𝐵2 − 𝑧1𝐶2) cosΔ𝛼

− 𝑎 sin (Δ𝛼 − 𝑖21𝜙
(1)

1
) ,

𝑧
(1)󸀠

2
= −𝑥1 sin𝜙

(1)

1
sinΣ − 𝑦1 cos𝜙

(1)

1
sinΣ + 𝑧1 cosΣ,

(28)

where
𝐴1 = cos𝜙

(1)

1
cos (𝑖21𝜙

(1)

1
) − sin𝜙(1)

1
sin (𝑖21𝜙

(1)

1
) cosΣ;

𝐴2 = cos𝜙
(1)

1
sin (𝑖21𝜙

(1)

1
) + sin𝜙(1)

1
cos (𝑖21𝜙

(1)

1
) cosΣ;

𝐵1 = − sin𝜙
(1)

1
cos (𝑖21𝜙

(1)

1
) − cos𝜙(1)

1
sin (𝑖21𝜙

(1)

1
) cosΣ;

𝐵2 = − sin𝜙
(1)

1
sin (𝑖21𝜙

(1)

1
) + cos𝜙(1)

1
cos (𝑖21𝜙

(1)

1
) cosΣ;

𝐶1 = sin (𝑖21𝜙
(1)

1
) sinΣ;

𝐶2 = cos (𝑖21𝜙
(1)

1
) sinΣ.

(29)

A comparison about the expressions of Γ22 and Γ󸀠
21

between (26) and (28) is worked. It can be concluded from
the simplified results that the two conjugated curves Γ21 and
Γ22 are the same and unique curves, while the difference is
that Γ22 is the rotational curve of Γ21 about contact point
𝑀 under given angle Δ𝛼. For verifying above conclusion,
the mathematical example for parallel axis gearing based on
cylindrical spiral curve is introduced and its parametric form
is represented as

r1 = 𝑅 cos 𝜃i1 + 𝑅 sin 𝜃j1 + 𝑝𝜃k1, (30)

where 𝑅 is the radius of pitch circle, 𝜃 is spiral curve param-
eter, and 𝑝 is helix parameter. Through the aforementioned
principle of conjugate curves, the equation of conjugated
curve is derived as

𝑥2 = (𝑅 − 𝑎) cos (𝑖21𝜃) ,

𝑦2 = − (𝑅 − 𝑎) sin (𝑖21𝜃) ,

𝑧2 = 𝑝𝜃.

(31)
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Figure 11: Uniqueness of conjugated curve at any contact position: (a) beginning position; (b) middle position; (c) end position.

A simplified meshing model of conjugate curves along
various contact angles for gear drive is developed by means
of Matlab software, as displayed in Figure 11, according to the
designated parameters shown in Table 1.

From Figure 11, the generated conjugated curves are
different if the selected contact angles are various. When the
gear pair rotates with fixed angular velocity, the movement
of conjugate curves with 20 degrees rotation, 30 degrees
rotation, and 40 degrees rotation can be described, respec-
tively. The engagement point is still fixed on the common
point during the whole meshing. Throughout this process,
contact point changes gradually in the axial direction, and the
line of action is always a straight line which is parallel with

gear axes. The characteristics of conjugate curves provide
more flexibility for the design of gear transmission. We can
choose the optimized design result which is suitable for
practical application in terms of appropriate parameters.

4.2. Meshing Commonality of Conjugate Curves. To analyze
intrinsic nature of conjugate curves, a class of spiral curves
contacting in the given direction for various gear axes is
discussed.

4.2.1. Gear Pair with Parallel Axis. Assuming that parameters
𝑎 ̸= 0 and Σ = 0, the gear pair with parallel axis can be
obtained, as displayed in Figure 12. A calculation procedure
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Figure 12: Conjugate spiral curves for parallel axis gear drive.

Table 1: Design parameters for conjugate curves.

Parameters Values
Radius of pitch circle R/mm 24
Tooth number of pinion 1 𝑍1 6
Tooth number of gear 2 𝑍2 30
Transmission ratio 𝑖21 5
Module𝑚𝑛/mm 4
Helix parameter 𝑝 28.6478
Central distance 𝑎/mm 144
Tooth width 𝐵/mm 50
Parameter of spiral curve 𝜃/rad 0∼1.0472
Parameter 𝑡1 −0.5
Parameter 𝑡2 −0.866

of designated spiral curve expressed in (30) for general
cylindrical gears is carried out and the conjugated curve is
derived as (31).

Here

𝑅1 = 𝑅 − 𝑎; 𝜃1 = 𝑖21𝜃. (32)

Then (31) can be written as

𝑥2 = 𝑅1 cos 𝜃1,

𝑦2 = −𝑅1 sin 𝜃1,

𝑧2 = 𝑝𝜃.

(33)

It is consistent with general form of cylindrical spiral
curve in parallel axis gear drive.

4.2.2. Gear Pair with Intersecting Axis. Assuming that param-
eters 𝑎 = 0 and Σ ̸= 0, the gear pair with intersecting axis can
be obtained, as shown in Figure 13.The selected conical spiral
curve for bevel gears is expressed in coordinate system 𝑆1, and
its parametric form is represented as

r1 = (𝑅1𝑓 − 𝑐𝜃) cos 𝜃i1 + (𝑅1𝑓 − 𝑐𝜃) sin 𝜃j1 + 𝑝𝜃k1, (34)

where 𝑅1𝑓 is the radius of pitch circle and 𝜃 and 𝑝 are also
the spiral curve and helix parameters, respectively. It has the
correlation 𝑐 = 𝑝 tan 𝛿; 𝛿 is the conical angle.

Through a series of calculation on the basis of principle of
conjugate curves, its conjugated curve is expressed as

𝑥2 = 𝑥1 [cos𝜙1 cos (𝑖21𝜙1) − sin𝜙1 sin (𝑖21𝜙1) cosΣ]

+ 𝑦1 [− sin𝜙1 cos (𝑖21𝜙1) − cos𝜙1 sin (𝑖21𝜙1) cosΣ]

− 𝑧1 sin (𝑖21𝜙1) sinΣ,

𝑦2 = 𝑥1 [cos𝜙1 sin (𝑖21𝜙1) + sin𝜙1 cos (𝑖21𝜙1) cosΣ]

+ 𝑦1 [− sin𝜙1 sin (𝑖21𝜙1) + cos𝜙1 cos (𝑖21𝜙1) cosΣ]

+ 𝑧1 cos (𝑖21𝜙1) sinΣ,

𝑧2 = −𝑥1 cos𝜙1 sinΣ − 𝑦1 sin𝜙1 sinΣ + 𝑧1 cosΣ,

𝑈 cos𝜙1 − 𝑉 sin𝜙1 = 𝑊.
(35)
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Figure 13: Conjugate spiral curves for intersecting axis gear drive.

Furthermore, substituting (34) into (35), the simplified
result with parameter 𝜃 is represented as

𝑥2 = [𝑅1𝑓 − (𝑐 + 𝑝) 𝜃] cos (𝑖21𝜃 + 2𝜃 + Σ) ,

𝑦2 = [𝑅1𝑓 − (𝑐 + 𝑝) 𝜃] sin (𝑖21𝜃 + 2𝜃 + Σ) ,

𝑧2 = (−𝑐 sinΣ + 𝑝 cosΣ) 𝜃 − 𝑅1𝑓 sinΣ.

(36)

Here

𝑐1 = 𝑐 + 𝑝; 𝜃2 = 𝑖21𝜃 + 2𝜃 + Σ;

𝑝1 = −𝑐 sinΣ + 𝑝 cosΣ.
(37)

Then (36) can be written as

𝑥2 = (𝑅1𝑓 − 𝑐1𝜃) cos 𝜃2,

𝑦2 = (𝑅1𝑓 − 𝑐1𝜃) sin 𝜃2,

𝑧2 = 𝑝1𝜃 − 𝑅1𝑓 sinΣ.

(38)

Conjugated curve attached to gear 2 is got according to
above derivation. Obviously, it is also a conical spiral curve in
form.

4.2.3. Gear Pair with CrossedAxis. Assuming that parameters
𝑎 ̸= 0 and Σ ̸= 0, it gets the gear pair with crossed axis which
is depicted in Figure 14. The general spiral curve selected
for worm gear drive is given and it has the same expression

with (30). Based on the principle of conjugate curves, its
conjugated curve is derived as

𝑥2 =
√𝑝2sin2Σ + (𝑅 − 𝑎)2 cos [𝑖21𝜃 + arctan(

𝑅 − 𝑎

𝑝 sinΣ
)] ,

𝑦2 =
√𝑝2sin2Σ + (𝑅 − 𝑎)2 sin [𝑖21𝜃 + arctan(

𝑅 − 𝑎

𝑝 sinΣ
)] ,

𝑧2 = 𝑝𝜃 cosΣ.
(39)

Here

𝑅2 =
√𝑝2sin2Σ + (𝑅 − 𝑎)2;

𝜃3 = 𝑖21𝜃 + arctan(
𝑅 − 𝑎

𝑝 sinΣ
) .

(40)

Then (39) can be written as

𝑥2 = 𝑅2 cos 𝜃3,

𝑦2 = 𝑅2 sin 𝜃3,

𝑧2 = 𝑝𝜃 cosΣ.

(41)

It also represents the similar relationship with given
original curve in form.

From what are discussed above, we can conclude that
the conjugated curves corresponding to the given spiral
curves for various gear axes are still the spiral curves. It
can be written as the same expression form with the given
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Figure 14: Conjugate spiral curves for crossed axis gear drive.

conditions. It is called meshing commonality of conjugate
curves. Moreover, based on the principle of conjugate curves,
for any chosen contact curve, the corresponding same type
of conjugated curve in the direction of arbitrary contact angle
can be identified. Freedomof selecting contact curve suggests
the possibility of optimal conjugation design.

According to the aforementioned research, it offers a
versatile way for high-performance profile design: (1) few
teeth number and large module may be obtained without
tooth undercutting. The problems of limited installation
space and lightweight design can be solved. (2)Three different
contact models of tooth profiles can be established based
on the proposed study. Particularly, the special meshing of
generated convex and concave tooth profiles makes relative
radius of curvature of the contact point longer and increases
the contact strength. The load capacity and useful life has
been evidently improved. (3) The tooth surfaces mesh in
point contact along the conjugate curves and contain the
transmission properties of conjugate curves. Due to the
selection and generation processes, the approximate pure
rolling contact between mating tooth surfaces maybe occurs.
The transmission efficiency will be improved.

The further studies on strength property, manufacturing
key technology, and performance experiment of conjugate-
curve gear drive will be carried out. And the excellent trans-
mission performance of gearing is expected to be obtained on
the basis of theoretical and experimental investigations.

5. Conclusions

(1) The principle descriptions of conjugate curves for
arbitrary axial position are introduced.With the aid of

given plane or space curve, generation principle and
mathematical model of conjugated curve are devel-
oped. It can be applied to parallel axis, intersecting
axis, and crossed axis gear drive, respectively.

(2) Based on differential geometry, geometric charac-
teristic analysis of conjugate curves is carried out.
The tangent and normal to conjugate curves in
arbitrary contact direction are discussed and general
calculation methods are provided. The enveloping
condition of family of conjugate curves with single
parameter is analyzed and characteristic point is
determined. Curvature and torsion relationships of
conjugate curves are also derived.

(3) Meshing properties of conjugate curves are further
revealed. According to a given plane or spatial curve,
the variation law of meshing function is analyzed.
The uniqueness of conjugated curves is discussed.The
conjugated curves are always the same and unique
curves for any given curve under different contact
angles, while the difference is that there exists the
rotational angle relationship with contact point 𝑀
among generated curves.

(4) Meshing commonality of conjugate curves is demon-
strated in terms of a class of spiral curves contacting
in the given direction for various gear axes. For any
chosen contact curve under various gear axes, the
conjugated curve has the same type and it can be
written as the same expression form.

(5) The proposed theory lays the foundation for design of
new types of gear drive. The further study on conju-
gate curves and applications in gear transmission will
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be carried out. Excellent transmission performance of
gearing is expected to be obtained.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This project is supported by National Key Technology R&D
Program of the Twelfth Five-year Plan of China (Grant
no. 2013BAF01B04), National Natural Science Foundation of
China (Grant no. 51205425), and Science and Technology
Project of Chongqing City Board of Education (Grant no.
KJ122202). The authors also sincerely appreciate the com-
ments and modification suggestions made by the editors and
anonymous referees.

References

[1] S. S. Chern, W. H. Chen, and K. S. Lam, Lectures on Differential
Geometry, World Scientific, Singapore, 2006.

[2] P. G. Ciarlet and T.-T. Li, Differential Geometry: Theory and
Applications, World Scientific, Singapore, 2007.

[3] F. L. Litvin and A. Fuentes, Gear Geometry and Applied Theory,
Cambridge University Press, New York, NY, USA, 2nd edition,
2004.

[4] S. P. Radzevich, Theory of Gearing: Kinetics, Geometry, and
Synthesis, CRC Press, Boca Raton, Fla, USA, 2012.

[5] D. B. Dooner, Kinematic Geometry of Gearing, John Wiley &
Sons, 2nd edition, 2012.

[6] F. L. Litvin, A. Fuentes, A. Demenego, D. Vecchiato, and Q. Fan,
“Newdevelopments in the design and generation of gear drives,”
Proceedings of the Institution of Mechanical Engineers, Part C:
Journal of Mechanical Engineering Science, vol. 215, no. 7, pp.
747–757, 2001.

[7] C. H. Chen, Theory of Conjugate Surfaces and Its Applications,
Science and Technology Press, Beijing, China, 2008.

[8] G. X. Li, Spatial Geometry Modeling and Its Application in
Engineering, Higher Education Press, Beijing, China, 2007.

[9] F. Di Puccio, M. Gabiccini, and M. Guiggiani, “Generation and
curvature analysis of conjugate surfaces via a new approach,”
Mechanism and Machine Theory, vol. 41, no. 4, pp. 382–404,
2006.

[10] D. R. Wu and J. S. Luo, A Geometric Theory of Conjugate Tooth
Surface, World Scientific Publishing, Singapore, 1992.

[11] N. Ito and K. Takahashi, “Differential geometrical conditions of
hypoid gears with conjugate tooth surfaces,” ASME Journal of
Mechanical Design, vol. 122, no. 3, pp. 323–330, 2000.

[12] D. B. Dooner, “On the three laws of gearing,” Journal of
Mechanical Design, Transactions of the ASME, vol. 124, no. 4,
pp. 733–744, 2002.

[13] Z. Duan, H. Chen, and J. Liu, “Principle and transmission
technology of Bertrand conjugate surfaces,” Chinese Journal of
Mechanical Engineering, vol. 19, no. 4, pp. 600–604, 2006.

[14] H. Chen, Z. Duan, J. Liu, and H. Wu, “Research on basic
principle of moulding-surface conjugation,” Mechanism and
Machine Theory, vol. 43, no. 7, pp. 791–811, 2008.

[15] H. Zhang, L. Hua, and X. H. Han, “Computerized design and
simulation of meshing of modified double circular-arc helical
gears by tooth end relief with helix,” Mechanism and Machine
Theory, vol. 45, no. 1, pp. 46–64, 2010.

[16] C. F. Chen and C. B. Tsay, “Tooth profile design for the
manufacture of helical gear sets with small numbers of teeth,”
International Journal ofMachine Tools andManufacture, vol. 45,
no. 12-13, pp. 1531–1541, 2005.

[17] R. Imin and M. Geni, “Stress analysis of gear meshing impact
based on SPH method,”Mathematical Problems in Engineering,
vol. 2014, Article ID 328216, 7 pages, 2014.

[18] D. Park and A. Kahraman, “A surface wear model for hypoid
gear pairs,”Wear, vol. 267, no. 9-10, pp. 1595–1604, 2009.

[19] J.Wang, L. Hou, S.M. Luo, and R. Y.Wu, “Active design of tooth
profiles using parabolic curve as the line of action,”Mechanism
and Machine Theory, vol. 67, no. 9, pp. 47–63, 2013.

[20] Q. B. Wang, P. Hu, Y. M. Zhang et al., “A model to determine
mesh characteristics in a gear pair with tooth profile error,”
Advances in Mechanical Engineering, vol. 2014, Article ID
751476, 10 pages, 2014.

[21] C. F. Chen and C. B. Tsay, “Computerized tooth profile gen-
eration and analysis of characteristics of elliptical gears with
circular arc teeth,” Journal of Materials Processing Technology,
vol. 148, no. 2, pp. 226–234, 2004.

[22] B. Chen, D. Liang, and Y. E. Gao, “The principle of conjugate
curves for gear transmission,” Journal of Mechanical Engineer-
ing, vol. 50, no. 1, pp. 130–136, 2014.

[23] B. K. Chen, Y. E. Gao, and D. Liang, “The generation principle
of tooth surfaces of conjugate-curve gear transmission,” Journal
of Mechanical Engineering, vol. 50, no. 3, pp. 18–24, 2014.

[24] D. Liang, B. K. Chen, and Y. E. Gao, “The generation principle
and mathematical model of a new involute-helix gear drive,”
Proceedings of the Institution of Mechanical Engineers, Part C:
Journal of Mechanical Engineering Science, vol. 227, no. 12, pp.
2834–2843, 2013.

[25] B. Chen, D. Liang, and Z. Li, “A study on geometry design
of spiral bevel gears based on conjugate curves,” International
Journal of Precision Engineering and Manufacturing, vol. 15, no.
3, pp. 477–482, 2014.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


