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We study the impact of stochastic noise and connection weight matrices uncertainty on global exponential stability of hybrid BAM
neural networks with reaction diffusion terms. Given globally exponentially stable hybrid BAM neural networks with reaction
diffusion terms, the question to be addressed here is how much stochastic noise and connection weights matrices uncertainty the
neural networks can tolerate while maintaining global exponential stability.The upper threshold of stochastic noise and connection
weights matrices uncertainty is defined by using the transcendental equations. We find that the perturbed hybrid BAM neural
networks with reaction diffusion terms preserve global exponential stability if the intensity of both stochastic noise and connection
weights matrices uncertainty is smaller than the defined upper threshold. A numerical example is also provided to illustrate the
theoretical conclusion.

1. Introduction

The bidirectional associative memory (BAM) neural net-
works were first introduced by Kosko in which the neurons
in one layer are fully interconnected to the neurons in the
other layer, while there are no interconnection among the
neurons in the same layers [1–3]. The BAM neural net-
works widely have applications in pattern recognition, robot,
signal processing, associative memory, solving optimization
problems, and automatic control engineering. For most
successful applications of BAM neural networks, the stability
analysis on BAM neural networks is usually a prerequisite.
The exponential stability and periodic oscillatory solution
of BAM neural networks with delays were studied by Cao
et al. [4, 5]. Moreover, in BAM neural networks, diffusion
phenomena can hardly be avoided when electrons are mov-
ing in asymmetric electromagnetic fields. The BAM neural
networks with reaction diffusion terms described by partial
differential equations were investigated by many authors [6–
11]. Sometimes, it is necessary to assess the parameters of the

neural network that may experience abrupt changes caused
by certain phenomena such as component failure or repair,
change of subsystem interconnection, and environmental
disturbance. The continuous-time Markov chains have been
used to model these parameter jumps [12–14]. These neural
networks with Markov chains are usually called hybrid
neural networks. The almost surely exponential stability,
moment exponential stability, and stabilization of hybrid
neural networks were also researched; see, for example, [15–
17]. By making use of impulsive control, Zhu and Cao [18]
considered the stability of hybrid neural networks withmixed
delay.

For neural networks with stochastic noise, the system
is usually described by stochastic differential equations. The
stability of stochastic neural networks with delay or reaction
diffusion terms was extensively analyzed by using the Itô
formula and the linear matrix inequality (LMI) methods [18–
22]. As is well known, stochastic noise is often the sources
of instability and may destabilize the stable neural networks
[23]. For stable hybrid BAM neural networks with reaction
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diffusion terms, it is interesting to determine howmuch noise
the stochastic neural networks can tolerate whilemaintaining
global exponential stability.

Moreover, the connection weights of neurons depend
on certain resistance and capacitance values which include
uncertainty. The robust stability about parameter matrices
uncertainty in neural networks was investigated by many
authors [24, 25]. If the uncertainty in connection weights
matrices is too large, the neural networks may be unstable.
Therefore, for stable hybrid BAM neural networks with
reaction diffusion terms, it is also interesting to determine
how much connection weights matrices uncertainty the
neural networks can also tolerate while maintaining global
exponential stability.

In this paper, we will study the impact of stochastic noise
and connection weight matrices uncertainty of hybrid BAM
neural networks with reaction diffusion terms. We give the
upper threshold of stochastic noise and connection weights
matrices uncertainty defined by using the transcendental
equations. We find that the perturbed hybrid BAM neural
networks with reaction diffusion terms preserve global expo-
nential stability if the intensity of both stochastic noise and
connection weights matrices uncertainty is smaller than the
defined upper threshold.

The remainder of this paper is organized as follows. Some
preliminaries are given in Section 2. Section 3 discusses the
impact of the stochastic noise on global exponential stability
of these neural networks. Section 4 discusses the impact of
the connection weight matrices uncertainty and stochastic
noise on global exponential stability of these neural networks.
Finally, an example with numerical simulation is given to
illustrate the effectiveness of the obtained results in Section 5.

2. Preliminaries

Throughout this paper, unless otherwise specified, let
(Ω,F, {F

𝑡
}
𝑡≥0
,P) be complete probability space with a

filtration {F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is
increasing and right continuous while F

0
contains all P-

null sets). Let 𝑊(𝑡) be a scalar Brownian motion (Wiener
process) defined on the probability space. Let 𝐴𝑇 denote the
transpose of 𝐴. If 𝐴 is a matrix, its operator norm is denoted
by ‖𝐴‖ = sup{|𝐴𝑥| : |𝑥| = 1}, where | ⋅ | is the Euclidean
norm. Let 𝑟(𝑡), 𝑡 ≥ 0, be a right-continuous Markov chain
on the probability space taking values in a finite state space
S = {1, 2, . . . , 𝑁} with the generator Γ = (𝛾

𝑝𝑞
)
𝑁×𝑁

given by

P {𝑟 (𝑡 + Δ) = 𝑞 | 𝑟 (𝑡) = 𝑝}

= {
𝛾
𝑝𝑞
Δ + 𝑜 (Δ) if 𝑝 ̸= 𝑞

1 + 𝛾
𝑝𝑝
Δ + 𝑜 (Δ) if 𝑝 = 𝑞,

(1)

where Δ > 0. Here, 𝛾
𝑝𝑞
> 0 is the transition rate from 𝑝 to 𝑞

if 𝑝 ̸= 𝑞 while

𝛾
𝑝𝑝
= −∑
𝑞 ̸= 𝑝

𝛾
𝑝𝑞
. (2)

We assume that the Markov chain 𝑟(⋅) is independent of the
Brownian motion 𝑊(⋅). It is well known that almost every
sample path of 𝑟(⋅) is a right-continuous step function with
finite number of simple jumps in any finite subinterval of
R
+
:= [0, +∞).
In this paper, we will consider the following hybrid BAM

neural networks with reaction diffusion terms:

𝜕𝑢̃
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑙

∑
𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕𝑢̃
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) 𝑢̃

𝑖
(𝑡, 𝑥)

+

𝑛

∑
𝑗=1

𝑐
𝑗𝑖
(𝑟 (𝑡)) 𝑓

𝑗
(Ṽ
𝑗
(𝑡, 𝑥)) + 𝐼

𝑖
,

𝜕Ṽ
𝑗
(𝑡, 𝑥)

𝜕𝑡
=

𝑙

∑
𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
∗

𝑗𝑘
(𝑟 (𝑡))

𝜕Ṽ
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑏
𝑗
(𝑟 (𝑡)) Ṽ

𝑗
(𝑡, 𝑥)

+

𝑚

∑
𝑖=1

𝑒
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑖
(𝑢̃
𝑖
(𝑡, 𝑥)) + 𝐽

𝑗
,

(3)

where 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑡 ≥ 𝑡
0
≥ 0,

𝑡
0
∈ R
+
, and the initial value 𝑟(𝑡

0
) = 𝑖

0
∈ S. Consider

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑙
) ∈ Ω

0
⊂ R𝑙; Ω

0
is a compact set with

smooth boundary 𝜕Ω
0
in space R𝑙, and 0 < mesΩ

0
<

+∞. 𝑢̃(𝑡, 𝑥) = (𝑢̃
1
(𝑡, 𝑥), . . . , 𝑢̃

𝑚
(𝑡, 𝑥)) ∈ R𝑚 and Ṽ(𝑡, 𝑥) =

(Ṽ
1
(𝑡, 𝑥), . . . , Ṽ

𝑛
(𝑡, 𝑥)) ∈ R𝑛 𝑢̃

𝑖
(𝑡, 𝑥), Ṽ

𝑗
(𝑡, 𝑥), are the state of

the 𝑖th neurons and the 𝑗th neurons at times 𝑡 and in space
𝑥, respectively. 𝑓

𝑗
and 𝑔

𝑖
denote the signal functions on the

𝑗th neurons and the 𝑖th neurons at times 𝑡 and in space 𝑥,
respectively. 𝐼

𝑖
and 𝐽

𝑗
denote the external input on the 𝑖th

neurons and the 𝑗th neurons, respectively. 𝑎
𝑖
(𝑟(𝑡)) > 0 and

𝑏
𝑗
(𝑟(𝑡)) > 0 denote the rates with which the 𝑖th neurons and

the 𝑗th neurons will reset its potential to the resting state in
isolation when disconnected from the networks and external
inputs, respectively. 𝑐

𝑗𝑖
(𝑟(𝑡)) and 𝑒

𝑖𝑗
(𝑟(𝑡)) denote the strength

of the 𝑗th neurons on the 𝑖th neurons and the 𝑖th neurons on
the 𝑗th neurons, respectively. Smooth functions 𝐷

𝑖𝑘
(𝑟(𝑡)) :=

𝐷
𝑖𝑘
(𝑟(𝑡), 𝑥, 𝑢) ≥ 0 and 𝐷

∗

𝑗𝑘
(𝑟(𝑡)) := 𝐷

∗

𝑗𝑘
(𝑟(𝑡), 𝑥, 𝑢) ≥ 0

correspond to the transmission diffusion operator along the
𝑖th neurons and the 𝑗th neurons, respectively.

The initial conditions and boundary conditions are given
by

𝑢̃
𝑖
(𝑡
0
, 𝑥) = 𝜙

𝑖
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑖 = 1, 2, . . . , 𝑚,

Ṽ
𝑗
(𝑡
0
, 𝑥) = 𝜓

𝑗
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑗 = 1, 2, . . . , 𝑛,

𝜕𝑢̃
𝑖
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0
= (

𝜕𝑢̃
𝑖
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕𝑢̃
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,



Mathematical Problems in Engineering 3

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑖 = 1, 2, . . . , 𝑚,

𝜕Ṽ
𝑗
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (
𝜕Ṽ
𝑗
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕Ṽ
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑗 = 1, 2, . . . , 𝑛.

(4)

The neuron activation functions 𝑓 and 𝑔 are global
Lipschitz continuous; that is, there exist constants𝐾 > 0 and
𝐿 > 0, such that

󵄨󵄨󵄨󵄨󵄨
𝑓 (Ṽ) − 𝑓 (Ṽ∗)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐾

󵄨󵄨󵄨󵄨Ṽ − Ṽ∗󵄨󵄨󵄨󵄨 , ∀Ṽ, Ṽ∗ ∈ R
𝑛

󵄨󵄨󵄨󵄨𝑔 (𝑢̃) − 𝑔 (𝑢̃
∗
)
󵄨󵄨󵄨󵄨 ≤ 𝐿

󵄨󵄨󵄨󵄨𝑢̃ − 𝑢̃
∗󵄨󵄨󵄨󵄨 , ∀𝑢̃, 𝑢̃

∗
∈ R
𝑚
.

(5)

Then, the neural networks (3) have a unique state
(𝑢̃(𝑡, 𝑥; 𝑡

0
, 𝜙(𝑥)) and Ṽ(𝑡, 𝑥; 𝑡

0
, 𝜓(𝑥))) for any initial values

(𝜙(𝑥), 𝜓(𝑥)) (see [26, 27]).
In addition, we assume that the neural networks (3) have

an equilibrium point 𝑢∗ = (𝑢∗
1
, . . . , 𝑢∗

𝑚
) ∈ R𝑚, V∗ =

(V∗
1
, . . . , V∗

𝑛
) ∈ R𝑛.

Let𝑢(𝑡, 𝑥) = 𝑢̃(𝑡, 𝑥)−𝑢∗, V(𝑡, 𝑥) = Ṽ(𝑡, 𝑥)−V∗, 𝑓(V(𝑡, 𝑥)) =
𝑓(V(𝑡, 𝑥) + V∗) − 𝑓(V∗), 𝑔(𝑢(𝑡, 𝑥)) = 𝑔(𝑢(𝑡, 𝑥) + 𝑢∗) −

𝑓(𝑢∗), 𝐷
𝑖𝑘
(𝑟(𝑡)) = 𝐷

𝑖𝑘
(𝑟(𝑡), 𝑥, 𝑢(𝑡, 𝑥) + 𝑢∗), and 𝐷∗

𝑖𝑘
(𝑟(𝑡)) =

𝐷
∗

𝑖𝑘
(𝑟(𝑡), 𝑥, V(𝑡, 𝑥) + V∗), and then (3) can be rewritten as

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑙

∑
𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) 𝑢

𝑖
(𝑡, 𝑥)

+

𝑛

∑
𝑗=1

𝑐
𝑗𝑖
(𝑟 (𝑡)) 𝑓

𝑗
(V
𝑗
(𝑡, 𝑥))

𝜕V
𝑗
(𝑡, 𝑥)

𝜕𝑡
=

𝑙

∑
𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
∗

𝑗𝑘
(𝑟 (𝑡))

𝜕V
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑏
𝑗
(𝑟 (𝑡)) V

𝑗
(𝑡, 𝑥)

+

𝑚

∑
𝑖=1

𝑒
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑖
(𝑢
𝑖
(𝑡, 𝑥)) .

(6)

The initial conditions and boundary conditions are given
by

𝑢
𝑖
(𝑡
0
, 𝑥) = 𝜙

𝑖
(𝑥) = 𝜙

𝑖
(𝑥) − 𝑢

∗

𝑖
,

𝑥 ∈ Ω
0
, 𝑡
0
∈ R
+
, 𝑖 = 1, 2, . . . , 𝑚,

V
𝑗
(𝑡
0
, 𝑥) = 𝜓

𝑗
(𝑥) = 𝜓

𝑗
(𝑥) − V∗

𝑗
,

𝑥 ∈ Ω
0
, 𝑡
0
∈ R
+
, 𝑗 = 1, 2, . . . , 𝑛,

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0
= (

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑖 = 1, 2, . . . , 𝑚,

𝜕V
𝑗
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (
𝜕V
𝑗
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕V
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑗 = 1, 2, . . . , 𝑛.

(7)

Hence, the origin is an equilibrium point of (6). The stability
of the equilibrium point of (3) is equivalent to the stability of
the origin of the state space of (6).

From (5), we give the assumption about activations
functions 𝑓 and 𝑔.

Assumption (H1). The neuron activation functions 𝑓 and 𝑔
are global Lipschitz continuous; that is, there exist constants
𝐾 > 0 and 𝐿 > 0, such that
󵄨󵄨󵄨󵄨𝑓 (V) − 𝑓 (V

∗
)
󵄨󵄨󵄨󵄨 ≤ 𝐾

󵄨󵄨󵄨󵄨V − V∗󵄨󵄨󵄨󵄨 , ∀V, V∗ ∈ R
𝑛
, 𝑓 (0) = 0,

󵄨󵄨󵄨󵄨𝑔 (𝑢) − 𝑔 (𝑢
∗
)
󵄨󵄨󵄨󵄨 ≤ 𝐿

󵄨󵄨󵄨󵄨𝑢 − 𝑢
∗󵄨󵄨󵄨󵄨 , ∀𝑢, 𝑢

∗
∈ R
𝑚
, 𝑔 (0) = 0.

(8)

We consider the following function vector space:

𝑈 =

{{

{{

{

V (𝑡, 𝑥) : [𝑡
0
, +∞) × Ω

0
󳨀→ R𝑛,

V (𝑡, 𝑥) is continuous on 𝑡 and
twice continuous differentiable on 𝑥.

(9)

For every pair of (V, 𝑧) in𝑈 and every given 𝑡 ∈ R
+
, define

inner product for V and 𝑧 with

⟨V, 𝑧⟩ = ∫
Ω0

(V (⋅, 𝑥))𝑇𝑧 (⋅, 𝑥) 𝑑𝑥 ∈ R
+
. (10)

Obviously, it satisfies inner product axiom, and the norm can
be deduced by

‖V (⋅, 𝑥)‖
2
= √⟨V (⋅, 𝑥) , V (⋅, 𝑥)⟩

= √∫
Ω0

|V (⋅, 𝑥)|2𝑑𝑥 = √
𝑛

∑
𝑖=1

∫
Ω0

󵄨󵄨󵄨󵄨V𝑖 (⋅, 𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥.

(11)

Definition 1. The neural networks (6) are said to be global
exponentially stable if for any 𝜙, 𝜓, there exist 𝛼 > 0 and
𝛽 > 0, such that

󵄩󵄩󵄩󵄩𝑢(𝑡, 𝑥; 𝑡0, 𝜙)
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩V(𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩
2

2

≤ 𝛼 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

2
) exp (−𝛽 (𝑡 − 𝑡

0
)) , ∀𝑡 ≥ 𝑡

0
.

(12)

For the purpose of simplicity, we rewrite (6) as follows:

𝜕𝑢

𝜕𝑡
= ∇ ⋅ (𝐷 (𝑟 (𝑡)) ∘ ∇𝑢) − 𝐴 (𝑟 (𝑡)) 𝑢 (𝑡, 𝑥)

+ 𝐶 (𝑟 (𝑡)) 𝑓 (V (𝑡, 𝑥))

𝜕V
𝜕𝑡

= ∇ ⋅ (𝐷
∗
(𝑟 (𝑡)) ∘ ∇V) − 𝐵 (𝑟 (𝑡)) V (𝑡, 𝑥)

+ 𝐸 (𝑟 (𝑡)) 𝑔 (𝑢 (𝑡, 𝑥)) .

(13)
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The initial conditions and boundary conditions are given
by

𝑢 (𝑡
0
, 𝑥) = 𝜙 (𝑥) = 𝜙 (𝑥) − 𝑢

∗
, 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
,

V (𝑡
0
, 𝑥) = 𝜓 (𝑥) = 𝜓 (𝑥) − V∗, 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
,

𝜕𝑢 (𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0
= (

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕𝑢 (𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
,

𝜕V (𝑡, 𝑥)
𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0
= (

𝜕V (𝑡, 𝑥)
𝜕𝑥
1

, . . . ,
𝜕V (𝑡, 𝑥)
𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
,

(14)

where

𝐷 (𝑟 (𝑡)) = (𝐷
𝑖𝑘
(𝑟 (𝑡) , 𝑥, 𝑢))

𝑚×𝑙
,

𝐷
∗
(𝑟 (𝑡)) = (𝐷

∗

𝑗𝑘
(𝑟 (𝑡) , 𝑥, V))

𝑛×𝑙
,

𝑢 (𝑡, 𝑥) = (𝑢
1
(𝑡, 𝑥) , . . . , 𝑢

𝑚
(𝑡, 𝑥))

𝑇

,

V (𝑡, 𝑥) = (V
1
(𝑡, 𝑥) , . . . , V

𝑛
(𝑡, 𝑥))

𝑇

,

∇𝑢 = (∇𝑢
1
, . . . , ∇𝑢

𝑚
)
𝑇

, ∇V = (∇V
1
, . . . , ∇V

𝑛
)
𝑇

,

∇𝑢
𝑖
= (

𝜕𝑢
𝑖

𝜕𝑥
1

, . . . ,
𝜕𝑢
𝑖

𝜕𝑥
𝑙

)

𝑇

, ∇V
𝑗
= (

𝜕V
𝑗

𝜕𝑥
1

, . . . ,
𝜕V
𝑗

𝜕𝑥
𝑙

)

𝑇

,

𝐴 (𝑟 (𝑡)) = diag (𝑎
1
(𝑟 (𝑡)) , . . . , 𝑎

𝑚
(𝑟 (𝑡))) ,

𝐵 (𝑟 (𝑡)) = diag (𝑏
1
(𝑟 (𝑡)) , . . . , 𝑏

𝑛
(𝑟 (𝑡))) ,

𝐶 (𝑟 (𝑡)) = (𝑐
𝑗𝑖
(𝑟 (𝑡)))

𝑛×𝑚
,

𝐸 (𝑟 (𝑡)) = (𝑒
𝑖𝑗
(𝑟 (𝑡)))

𝑚×𝑛
,

𝑓 (V) = (𝑓
1
(V
1
) , . . . , 𝑓

𝑛
(V
𝑛
))
𝑇

,

𝑔 (𝑢) = (𝑔
1
(𝑢
1
) , . . . , 𝑔

𝑚
(𝑢
𝑚
))
𝑇

,

(𝐷 (𝑟 (𝑡)) ∘ ∇𝑢) = (𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕𝑢
𝑖

𝜕𝑥
𝑘

) ,

(𝐷
∗
(𝑟 (𝑡)) ∘ ∇V) = (𝐷∗

𝑗𝑘
(𝑟 (𝑡))

𝜕V
𝑗

𝜕𝑥
𝑘

) .

(15)

Here, ∘ denotes Hadamard product of matrix 𝐷 and ∇𝑢 and
𝐷∗ and ∇V.

3. Noise Impact on Stability

In this section, we consider the noise-induced neural net-
works (6) described by the stochastic partial differential
equations

d𝑢̄
𝑖
(𝑡, 𝑥) =

{

{

{

𝑙

∑
𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕𝑢̄
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) 𝑢̄

𝑖
(𝑡, 𝑥)

+

𝑛

∑
𝑗=1

𝑐
𝑗𝑖
(𝑟 (𝑡)) 𝑓

𝑗
(V̄
𝑗
(𝑡, 𝑥))

}

}

}

d𝑡

+ 𝜎𝑢̄
𝑖
(𝑡, 𝑥) d𝑊(𝑡) ,

dV̄
𝑗
(𝑡, 𝑥) = {

𝑙

∑
𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
∗

𝑗𝑘
(𝑟 (𝑡))

𝜕V̄
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑏
𝑗
(𝑟 (𝑡)) V̄

𝑗
(𝑡, 𝑥)

+

𝑚

∑
𝑖=1

𝑒
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑖
(𝑢̄
𝑖
(𝑡, 𝑥))} d𝑡

+ 𝜎V̄
𝑗
(𝑡, 𝑥) d𝑊(𝑡) .

(16)

The initial conditions and boundary conditions are given
by

𝑢̄
𝑖
(𝑡
0
, 𝑥) = 𝜙

𝑖
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑖 = 1, 2, . . . , 𝑚,

V̄
𝑗
(𝑡
0
, 𝑥) = 𝜓

𝑗
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑗 = 1, 2, . . . , 𝑛,

𝜕𝑢̄
𝑖
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0
= (

𝜕𝑢̄
𝑖
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕𝑢̄
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑖 = 1, 2, . . . , 𝑚,

𝜕V̄
𝑗
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (
𝜕V̄
𝑗
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕V̄
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑗 = 1, 2, . . . , 𝑛,

(17)

where 𝜎 is the noise intensity.
We rewrite (16) as follows:

d𝑢̄ (𝑡, 𝑥) = {∇ ⋅ (𝐷 (𝑟 (𝑡)) ∘ ∇𝑢̄) − 𝐴 (𝑟 (𝑡)) 𝑢̄ (𝑡, 𝑥)

+𝐶 (𝑟 (𝑡)) 𝑓 (V̄ (𝑡, 𝑥))} d𝑡 + 𝜎𝑢̄ (𝑡, 𝑥) d𝑊(𝑡) ,

dV̄ (𝑡, 𝑥) = {∇ ⋅ (𝐷
∗
(𝑟 (𝑡)) ∘ ∇V̄) − 𝐵 (𝑟 (𝑡)) V̄ (𝑡, 𝑥)

+𝐸 (𝑟 (𝑡)) 𝑔 (𝑢̄ (𝑡, 𝑥))} d𝑡 + 𝜎V̄ (𝑡, 𝑥) d𝑊(𝑡) .

(18)
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For the globally exponentially stable neural networks (6), we
will characterize how much stochastic noise the neural net-
works (16) can tolerate while maintaining global exponential
stability.

Definition 2. The neural networks (16) are said to be almost
surely globally exponentially stable, if for any 𝜙 and 𝜓 the
Lyapunov exponent

lim sup
𝑡→∞

log (󵄩󵄩󵄩󵄩𝑢̄ (𝑡, 𝑥; 𝑡0, 𝜙)
󵄩󵄩󵄩󵄩2 +

󵄩󵄩󵄩󵄩V̄ (𝑡, 𝑥; 𝑡0, 𝜓)
󵄩󵄩󵄩󵄩2)

𝑡
< 0, a.s.

(19)

Definition 3. The neural networks (16) are said to be mean
square globally exponentially stable, if, for any 𝜙 and 𝜓, the
Lyapunov exponent

lim sup
𝑡→∞

logE {󵄩󵄩󵄩󵄩𝑢̄ (𝑡, 𝑥; 𝑡0, 𝜙)
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩V̄ (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩
2

2
}

𝑡
< 0, (20)

where (𝑢̄(𝑡, 𝑥; 𝑡
0
, 𝜙), V̄(𝑡, 𝑥; 𝑡

0
, 𝜓)) is the state of neural net-

works (16).

From the above definitions, it is clear that the almost
sure global exponential stability of the neural networks (16)
implies the mean square global exponential stability of the
neural networks (16) (see [26, 27]) but not vice versa.

Theorem 4. Under Assumption (H1), the mean square global
exponential stability of neural networks (16) implies the almost
sure global exponential stability of the neural networks (16).

Proof. For any (𝜙(𝑥), 𝜓(𝑥)) ̸≡ (0, 0), we denote the state
(𝑢̄(𝑡, 𝑥; 𝑡

0
, 𝜙), V̄(𝑡, 𝑥; 𝑡

0
, 𝜓)) of (16) as (𝑢̄(𝑡, 𝑥), V̄(𝑡, 𝑥)). By

Definition 3, there exist 𝜆 > 0 and 𝐶 > 0, such that

E {‖𝑢̄ (𝑡, 𝑥)‖
2

2
+ ‖V̄ (𝑡, 𝑥)‖2

2
}

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

2
) 𝑒
−𝜆(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
.

(21)

Let 𝑟(𝑡) = 𝑝 ∈ S. Construct average Lyapunov functional

𝑉 (𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝)

= ∫
Ω0

|𝑢̄ (𝑡, 𝑥)|
2d𝑥 + ∫

Ω0

|V̄ (𝑡, 𝑥)|2d𝑥

= ∫
Ω0

𝑚

∑
𝑖=1

𝑢̄
2

𝑖
(𝑡, 𝑥) d𝑥 + ∫

Ω0

𝑛

∑
𝑗=1

V̄2
𝑗
(𝑡, 𝑥) d𝑥.

(22)

Let 𝑛 = 1, 2, . . ., by Itô formula and Assumption (H1), for 𝑡
0
+

𝑛 − 1 ≤ 𝑡 ≤ 𝑡
0
+ 𝑛,

𝑉 (𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝)

= 𝑉 (𝑢̄ (𝑡
0
+ 𝑛 − 1, 𝑥) , V̄ (𝑡

0
+ 𝑛 − 1, 𝑥) , 𝑝)

+ ∫
𝑡

𝑡0+𝑛−1

∫
Ω0

2𝑢̄
𝑇
(𝑠, 𝑥) [∇ ⋅ (𝐷 (𝑟 (𝑠)) ∘ ∇𝑢̄) − 𝐴 (𝑟 (𝑠)) 𝑢̄

+𝐶 (𝑟 (𝑠)) 𝑓 (V̄)] d𝑥d𝑠

+ 𝜎
2
∫
𝑡

𝑡0+𝑛−1

∫
Ω0

|𝑢̄ (𝑠, 𝑥)|
2d𝑥d𝑠

+ ∫
𝑡

𝑡0+𝑛−1

∫
Ω0

2V̄𝑇 (𝑠, 𝑥) [∇ ⋅ (𝐷∗ (𝑟 (𝑠)) ∘ ∇V̄) − 𝐵 (𝑟 (𝑠)) V̄

+𝐸 (𝑟 (𝑠)) 𝑔 (𝑢̄)] d𝑥d𝑠

+ 𝜎
2
∫
𝑡

𝑡0+𝑛−1

∫
Ω0

|V̄ (𝑠, 𝑥)|2d𝑥d𝑠

+ 2𝜎∫
𝑡

𝑡0+𝑛−1

∫
Ω0

|𝑢̄ (𝑠, 𝑥)|
2d𝑥d𝑊(𝑠)

+ 2𝜎∫
𝑡

𝑡0+𝑛−1

∫
Ω0

|V̄ (𝑠, 𝑥)|2d𝑥d𝑊(𝑠)

+

𝑁

∑
𝑞=1

𝛾
𝑝𝑞
∫
𝑡

𝑡0+𝑛−1

∫
Ω0

(|𝑢̄ (𝑠, 𝑥)|
2
+ |V̄ (𝑠, 𝑥)|2) d𝑥d𝑠.

(23)

By boundary condition and Gauss formula, we get

2∫
Ω0

𝑢̄
𝑇
(𝑠, 𝑥) [∇ ⋅ (𝐷 (𝑟 (𝑠)) ∘ ∇𝑢̄)] d𝑥

= 2

𝑚

∑
𝑖=1

𝑙

∑
𝑘=1

∫
Ω0

𝑢̄
𝑖

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕𝑢̄
𝑖

𝜕𝑥
𝑘

) d𝑥

= 2

𝑚

∑
𝑖=1

∫
Ω0

∇ ⋅ (𝑢̄
𝑖
𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕𝑢̄
𝑖

𝜕𝑥
𝑘

)

𝑙

𝑘=1

d𝑥

− 2

𝑚

∑
𝑖=1

∫
Ω0

(𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕𝑢̄
𝑖

𝜕𝑥
𝑘

)

𝑙

𝑘=1

⋅ ∇𝑢̄
𝑖
d𝑥

= 2

𝑚

∑
𝑖=1

∫
𝜕Ω0

(𝑢̄
𝑖
𝐷
𝑖𝑘
(𝑟 (𝑠))

𝜕𝑢̄
𝑖

𝜕𝑥
𝑘

)

𝑙

𝑘=1

d𝑥

− 2

𝑚

∑
𝑖=1

𝑙

∑
𝑘=1

∫
Ω0

𝐷
𝑖𝑘
(𝑟 (𝑠)) (

𝜕𝑢̄
𝑖

𝜕𝑥
𝑘

)

2

d𝑥

= −2

𝑚

∑
𝑖=1

𝑙

∑
𝑘=1

∫
Ω0

𝐷
𝑖𝑘
(𝑟 (𝑠)) (

𝜕𝑢̄
𝑖

𝜕𝑥
𝑘

)

2

d𝑥,

(24)

2∫
Ω0

V̄𝑇 (𝑠, 𝑥) [∇ ⋅ (𝐷∗ (𝑟 (𝑠)) ∘ ∇V̄)] d𝑥

= 2

𝑛

∑
𝑗=1

𝑙

∑
𝑘=1

∫
Ω0

V̄
𝑗

𝜕

𝜕𝑥
𝑘

(𝐷
∗

𝑗𝑘
(𝑟 (𝑠))

𝜕V̄
𝑗

𝜕𝑥
𝑘

) d𝑥

= 2

𝑛

∑
𝑗=1

∫
Ω0

∇ ⋅ (V̄
𝑗
𝐷
∗

𝑗𝑘
(𝑟 (𝑠))

𝜕V̄
𝑗

𝜕𝑥
𝑘

)

𝑙

𝑘=1

d𝑥

− 2

𝑛

∑
𝑗=1

∫
Ω0

(𝐷
∗

𝑗𝑘
(𝑟 (𝑠))

𝜕V̄
𝑗

𝜕𝑥
𝑘

)

𝑙

𝑘=1

⋅ ∇V̄
𝑗
d𝑥
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= 2

𝑛

∑
𝑗=1

∫
𝜕Ω0

(V̄
𝑗
𝐷
∗

𝑗𝑘
(𝑟 (𝑠))

𝜕V̄
𝑗

𝜕𝑥
𝑘

)

𝑙

𝑘=1

d𝑥

− 2

𝑛

∑
𝑗=1

𝑙

∑
𝑘=1

∫
Ω0

𝐷
∗

𝑗𝑘
(𝑟 (𝑠)) (

𝜕V̄
𝑗

𝜕𝑥
𝑘

)

2

d𝑥

= −2

𝑛

∑
𝑗=1

𝑙

∑
𝑘=1

∫
Ω0

𝐷
∗

𝑗𝑘
(𝑟 (𝑠)) (

𝜕V̄
𝑗

𝜕𝑥
𝑘

)

2

d𝑥.

(25)

By Hölder’s inequality, we have

∫
Ω0

2𝑢̄(𝑡, 𝑥)
𝑇
𝐶 (𝑟 (𝑠)) 𝑓 (V̄ (𝑡, 𝑥)) d𝑥

≤ max
𝑝∈S

󵄩󵄩󵄩󵄩𝐶 (𝑝)
󵄩󵄩󵄩󵄩 [∫
Ω0

|𝑢̄ (𝑡, 𝑥)|
2d𝑥 + 𝐾2 ∫

Ω0

|V̄ (𝑡, 𝑥)|2d𝑥] ,

(26)

∫
Ω0

2V̄(𝑡, 𝑥)𝑇𝐸 (𝑟 (𝑠)) 𝑔 (𝑢̄ (𝑡, 𝑥)) d𝑥

≤ max
𝑝∈S

󵄩󵄩󵄩󵄩𝐸 (𝑝)
󵄩󵄩󵄩󵄩 [∫
Ω0

|V̄ (𝑡, 𝑥)|2d𝑥 + 𝐿2 ∫
Ω0

|𝑢̄ (𝑡, 𝑥)|
2d𝑥] .

(27)

Substituting (24)–(27) into (23), we get

𝑉 (𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝)

= 𝑉 (𝑢̄ (𝑡
0
+ 𝑛 − 1, 𝑥) , V̄ (𝑡

0
+ 𝑛 − 1, 𝑥) , 𝑝)

+max
𝑝∈S

[2
󵄩󵄩󵄩󵄩𝐴 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐶 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐸 (𝑝)

󵄩󵄩󵄩󵄩 𝐿
2
+ 𝜎
2
]

× ∫
𝑡

𝑡0+𝑛−1

∫
Ω0

|𝑢̄ (𝑠, 𝑥)|
2d𝑥d𝑠

+max
𝑝∈S

[2
󵄩󵄩󵄩󵄩𝐵 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐸 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐶 (𝑝)

󵄩󵄩󵄩󵄩𝐾
2
+ 𝜎
2
]

× ∫
𝑡

𝑡0+𝑛−1

∫
Ω0

|V̄ (𝑠, 𝑥)|2d𝑥d𝑠

+ 2 |𝜎| ∫
𝑡

𝑡0+𝑛−1

∫
Ω0

(|𝑢̄ (𝑠, 𝑥)|
2
+ |V̄ (𝑠, 𝑥)|2) d𝑥d𝑊(𝑠) ,

(28)

where we use ∑𝑁
𝑞=1

𝛾
𝑝𝑞
= 0.

From (28), we have

E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 (𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝))

≤ 𝑉 (𝑢̄ (𝑡
0
+ 𝑛 − 1, 𝑥) , V̄ (𝑡

0
+ 𝑛 − 1, 𝑥) , 𝑝)

+ 𝐶
1
∫
𝑡0+𝑛

𝑡0+𝑛−1

E𝑉 (𝑢̄ (𝑠, 𝑥) , V̄ (𝑠, 𝑥) , 𝑟 (𝑠)) d𝑠

+ 2 |𝜎|E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

∫
𝑡

𝑡0+𝑛−1

𝑉 (𝑢̄ (𝑠, 𝑥) , V̄ (𝑠, 𝑥) ,

𝑟 (𝑠)) d𝑊(𝑠) ) ,

(29)

where 𝐶
1
= [2‖𝐴‖+2‖𝐵‖+ ‖𝐶‖+ ‖𝐶‖𝐾2 +‖𝐸‖+ ‖𝐸‖𝐿2 +2𝜎2]

and ‖𝐴‖ = max
𝑝∈S‖𝐴(𝑝)‖.

On the other hand, by the Burkholder-Davis-Gundy
inequality [27] and 2√𝑎𝑏 ≤ (𝑎/𝜀) + 𝜀𝑏(𝑎 > 0, 𝑏 > 0, 𝜀 > 0),
we have

2 |𝜎|E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

∫
𝑡

𝑡0+𝑛−1

𝑉 (𝑢̄ (𝑠, 𝑥) , V̄ (𝑠, 𝑥) , 𝑟 (𝑠)) d𝑊(𝑠))

≤ 4√2E(∫
𝑡0+𝑛

𝑡0+𝑛−1

4𝜎
2
𝑉
2
(𝑢̄ (𝑠, 𝑥) , V̄ (𝑠, 𝑥) , 𝑟 (𝑠)) d𝑠)

1/2

≤ 4√2E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 (𝑢̄ (𝑠, 𝑥) , V̄ (𝑠, 𝑥) , 𝑟 (𝑠))

×∫
𝑡0+𝑛

𝑡0+𝑛−1

4𝜎
2
𝑉 (𝑢̄ (𝑠, 𝑥) , V̄ (𝑠, 𝑥) , 𝑟 (𝑠)) d𝑠)

1/2

≤
1

2
E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 (𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝))

+ 64𝜎
2
∫
𝑡0+𝑛

𝑡0+𝑛−1

E𝑉 (𝑢̄ (𝑠, 𝑥) , V̄ (𝑠, 𝑥) , 𝑟 (𝑠)) d𝑠.

(30)

Substituting the above inequality into (29), we get

E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 (𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝))

≤ 2E𝑉 (𝑢̄ (𝑡
0
+ 𝑛 − 1, 𝑥) , V̄ (𝑡

0
+ 𝑛 − 1, 𝑥) , 𝑝)

+ 2 [𝐶
1
+ 64𝜎

2
] ∫
𝑡0+𝑛

𝑡0+𝑛−1

E𝑉 (𝑠) d𝑠.

(31)

By induction and themean square global exponential stability
of neural networks (16),

E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 (𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝))

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

2
) (2 + 2 [𝐶

1
+ 64𝜎

2
]) 𝑒
−𝜆(𝑛−1)

.

(32)

Let 𝜀 ∈ (0, 𝜆), by Chebyshev’s inequality [27], it follows from
(32) that

P{ sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 (𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝) > 𝑒−(𝜆−𝜀)(𝑛−1)}
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≤ 𝑒
−(𝜆−𝜀)(𝑛−1)

E( sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

𝑉 (𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝))

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

2
) (2 + 2 [𝐶

1
+ 64𝜎

2
]) 𝑒
−𝜀(𝑛−1)

.

(33)

By Borel-Cantelli Lemma [27], for almost all 𝜔 ∈ Ω,

sup
𝑡0+𝑛−1≤𝑡≤𝑡0+𝑛

2𝑉 (𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝) ≤ 2𝑒−(𝜆−𝜀)(𝑛−1) (34)

holds for all but finitely many 𝑛. Hence, there exists an 𝑛
0
=

𝑛
0
(𝜔), for all 𝜔 ∈ Ω, excluding a P-null set, for the above

inequality that holds whenever 𝑛 ≥ 𝑛
0
. Consequently, for

almost all 𝜔 ∈ Ω,

log 2𝑉 (𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝)
𝑡

≤ −
(𝜆 − 𝜀) (𝑛 − 1)

𝑡
0
+ 𝑛 − 1

+
2

𝑡
0
+ 𝑛 − 1

,

(35)

if 𝑡
0
+ 𝑛 − 1 ≤ 𝑡 ≤ 𝑡

0
+ 𝑛. Therefore,

lim sup
𝑡→∞

log (‖𝑢̄ (𝑡, 𝑥)‖
2
+ ‖V̄ (𝑡, 𝑥)‖

2
)

𝑡
≤ −

(𝜆 − 𝜀)

2
a.s. (36)

Theorem 5. Let Assumption (H1) hold and the neural net-
works (6) be globally exponentially stable. Then, the neural
networks (16) is mean square globally exponentially stable and
also almost surely globally exponentially stable, if there exist
𝜇
𝑞
> 0, (𝑞 ∈ S) and |𝜎| < 𝜎̄, where 𝜎̄ is a unique positive

solution of the transcendental equation

4𝜎̄
2𝛼𝜇

𝛽
exp

{

{

{

2Δ (𝜇𝐶
2
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆

}

}

}

+ 2𝛼 exp {−𝛽Δ} = 1,

(37)

Δ >
ln (2𝛼)
𝛽

> 0, (38)

where 𝐶
2
= [2‖𝐴‖ + 2‖𝐵‖ + (1 +𝐾2)‖𝐶‖ + (1 + 𝐿2)‖𝐸‖ + 2𝜎̄2],

‖𝐴‖ = max
𝑝∈S ‖𝐴(𝑝)‖, and so forth and 𝜇 = max

𝑝∈S 𝜇𝑝 and
𝜇̆ = min

𝑝∈S 𝜇𝑝.

Proof. For any (𝜙(𝑥), 𝜓(𝑥)), we denote the state
(𝑢̄(𝑡, 𝑥; 𝑡

0
, 𝜙), V̄(𝑡, 𝑥; 𝑡

0
, 𝜓)) of (16) as (𝑢̄(𝑡, 𝑥), V̄(𝑡, 𝑥)) and

the state (𝑢(𝑡, 𝑥; 𝑡
0
, 𝜙), V(𝑡, 𝑥; 𝑡

0
, 𝜓)) of (6) as (𝑢(𝑡, 𝑥), V(𝑡, 𝑥)).

From (6) and (18) and stochastic Fubini’s Theorem, we
have

∫
Ω0

(𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)) d𝑥 + ∫
Ω0

(V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)) d𝑥

= ∫
𝑡

𝑡0

∫
Ω0

∇ ⋅ (𝐷 (𝑟 (𝑠)) ∘ ∇ (𝑢 − 𝑢̄)) d𝑥d𝑠

+ ∫
𝑡

𝑡0

∫
Ω0

[ − 𝐴 (𝑟 (𝑠)) (𝑢 (𝑠, 𝑥) − 𝑢̄ (𝑠, 𝑥))

+𝐶 (𝑟 (𝑠)) (𝑓 (V (𝑠, 𝑥)) − 𝑓 (V̄ (𝑠, 𝑥)))] d𝑥d𝑠

− ∫
𝑡

𝑡0

∫
Ω0

𝜎𝑢̄ (𝑠, 𝑥) d𝑥d𝑊(𝑠)

+ ∫
𝑡

𝑡0

∫
Ω0

∇ ⋅ (𝐷
∗
(𝑟 (𝑠)) ∘ ∇ (V − V̄)) d𝑥d𝑠

+ ∫
𝑡

𝑡0

∫
Ω0

[ − 𝐵 (𝑟 (𝑠)) (V (𝑠, 𝑥) − V̄ (𝑠, 𝑥))

+𝐸 (𝑟 (𝑠)) (𝑔 (𝑢 (𝑠, 𝑥)) − 𝑔 (𝑢̄ (𝑠, 𝑥)))] d𝑥d𝑠

− ∫
𝑡

𝑡0

∫
Ω0

𝜎V̄ (𝑠, 𝑥) d𝑥d𝑊(𝑠) .

(39)

Construct average Lyapunov functional

𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , 𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑟 (𝑡))

= ∫
Ω0

𝜇
𝑟(𝑡)
[|𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)|

2
+ |V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)|2] d𝑥,

(40)

where 𝜇
𝑟(𝑡)

> 0.
By applying generalized Itô formula [27], we have

d𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , 𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝)

= ∫
Ω0

2𝜇
𝑝
(𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥))

𝑇
(∇ ⋅ (𝐷 (𝑝) ∘ ∇ (𝑢 − 𝑢̄))) d𝑥d𝑡

+ ∫
Ω0

2𝜇
𝑝
(𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥))

𝑇

× [ − 𝐴 (𝑝) (𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥))

+𝐶 (𝑝) (𝑓 (V (𝑡, 𝑥)) − 𝑓 (V̄ (𝑡, 𝑥)))] d𝑥d𝑡

+ ∫
Ω0

𝜎
2
𝜇
𝑝
|𝑢̄ (𝑡, 𝑥)|

2d𝑥d𝑡

− 2∫
Ω0

𝜎(𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥))
𝑇
𝑢̄ (𝑡, 𝑥) d𝑥d𝑊(𝑡)

+ ∫
Ω0

2𝜇
𝑝
(V (𝑡, 𝑥) − V̄ (𝑡, 𝑥))𝑇

× (∇ ⋅ (𝐷
∗
(𝑝) ∘ ∇ (V − V̄))) d𝑥d𝑡

+ ∫
Ω0

2𝜇
𝑝
(V (𝑡, 𝑥) − V̄ (𝑡, 𝑥))𝑇

× [ − 𝐵 (𝑝) (V (𝑡, 𝑥) − V̄ (𝑡, 𝑥))

+𝐸 (𝑝) (𝑔 (𝑢 (𝑡, 𝑥)) − 𝑔 (𝑢̄ (𝑡, 𝑥)))] d𝑥d𝑡

+ ∫
Ω0

𝜎
2
𝜇
𝑝
|V̄ (𝑡, 𝑥)|2d𝑥d𝑡
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− 2∫
Ω0

𝜎(V (𝑡, 𝑥) − V̄ (𝑡, 𝑥))𝑇V̄ (𝑡, 𝑥) d𝑥d𝑊(𝑡)

+

𝑁

∑
𝑞=1

𝛾
𝑝𝑞
𝜇
𝑞
∫
Ω0

[|𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)|
2

+|V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)|2] d𝑥.
(41)

By boundary condition and (24), we have

2𝜇
𝑝
∫
Ω0

(𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥))
𝑇
(∇ ⋅ (𝐷 (𝑝) ∘ ∇ (𝑢 − 𝑢̄))) d𝑥d𝑡

= −2𝜇
𝑝

𝑚

∑
𝑖=1

𝑙

∑
𝑘=1

∫
Ω0

𝐷
𝑖𝑘
(𝑝)(

𝜕 (𝑢
𝑖
− 𝑢̄
𝑖
)

𝜕𝑥
𝑘

)

2

d𝑥.

(42)

By boundary condition and (25), we have

2𝜇
𝑝
∫
Ω0

(V (𝑡, 𝑥) − V̄ (𝑡, 𝑥))𝑇 (∇ ⋅ (𝐷∗ (𝑝) ∘ ∇ (V − V̄))) d𝑥d𝑡

= −2𝜇
𝑝

𝑛

∑
𝑗=1

𝑙

∑
𝑘=1

∫
Ω0

𝐷
∗

𝑗𝑘
(𝑝) (

𝜕(V
𝑗
− V̄
𝑗
)

𝜕𝑥
𝑘

)

2

d𝑥.

(43)

By Hölder’s inequality, we get

2𝜇
𝑝
∫
Ω0

(𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥))
𝑇
𝐶 (𝑝)

× (𝑓 (V (𝑡, 𝑥)) − 𝑓 (V̄ (𝑡, 𝑥))) d𝑥

≤ max
𝑝∈S

(𝜇
𝑝

󵄩󵄩󵄩󵄩𝐶 (𝑝)
󵄩󵄩󵄩󵄩) [∫
Ω0

|𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)|
2d𝑥

+𝐾
2
∫
Ω0

|V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)|2d𝑥] ,

(44)

2𝜇
𝑝
∫
Ω0

(V (𝑡, 𝑥) − V̄ (𝑡, 𝑥))𝑇𝐸 (𝑝)

× (𝑔 (𝑢 (𝑡, 𝑥)) − 𝑔 (𝑢̄ (𝑡, 𝑥))) d𝑥

≤ max
𝑝∈S

(𝜇
𝑝

󵄩󵄩󵄩󵄩𝐸 (𝑝)
󵄩󵄩󵄩󵄩) [∫
Ω0

|V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)|2d𝑥

+𝐿
2
∫
Ω0

|𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)|
2d𝑥] .

(45)

From (42)–(45) and Assumption (H1), we obtain that

d𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , 𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝)

≤ (𝜇𝐶
1
+max
𝑝∈S

𝑁

∑
𝑞=1

𝛾
𝑝𝑞
𝜇
𝑞
)

× ∫
Ω0

(|𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)|
2
+ |V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)|2) d𝑥d𝑡

+ 2𝜎
2
𝜇∫
Ω0

(|𝑢 (𝑡, 𝑥)|
2
+ |V (𝑡, 𝑥)|2) d𝑥d𝑡

− 2∫
Ω0

𝜎(𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥))
𝑇
𝑢̄ (𝑡, 𝑥) d𝑥d𝑊(𝑡)

− 2∫
Ω0

𝜎(V (𝑡, 𝑥) − V̄ (𝑡, 𝑥))𝑇V̄ (𝑡, 𝑥) d𝑥d𝑊(𝑡) .

(46)

When 𝑡 ≤ 𝑡
0
+ 2Δ, we have

E𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , 𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑟 (𝑡))

≤ (𝜇𝐶
1
+max
𝑝∈S

𝑁

∑
𝑞=1

𝛾
𝑝𝑞
𝜇
𝑞
)

× ∫
𝑡

𝑡0

E∫
Ω0

(|𝑢 (𝑠, 𝑥) − 𝑢̄ (𝑠, 𝑥)|
2

+|V (𝑠, 𝑥) − V̄ (𝑠, 𝑥)|2) d𝑥d𝑠

+ 2𝜎
2
𝜇∫
𝑡

𝑡0

𝛼 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

2
) exp (−𝛽 (𝑠 − 𝑡

0
)) d𝑠

− 2𝜎E∫
𝑡

𝑡0

∫
Ω0

(𝑢 (𝑠, 𝑥) − 𝑢̄ (𝑠, 𝑥))
𝑇
𝑢̄ (𝑠, 𝑥) d𝑥d𝑊(𝑠)

− 2𝜎E∫
𝑡

𝑡0

∫
Ω0

(V (𝑠, 𝑥) − V̄ (𝑠, 𝑥))𝑇V̄ (𝑠, 𝑥) d𝑥d𝑊(𝑠) .

(47)

By stochastic Fubini’s Theorem, we have

E∫
𝑡

𝑡0

∫
Ω0

(𝑢 (𝑠, 𝑥) − 𝑢̄ (𝑠, 𝑥))
𝑇
𝑢̄ (𝑠, 𝑥) d𝑥d𝑊(𝑠) = 0,

E∫
𝑡

𝑡0

∫
Ω0

(V (𝑠, 𝑥) − V̄ (𝑠, 𝑥))𝑇V̄ (𝑠, 𝑥) d𝑥d𝑊(𝑠) = 0.

(48)

By (47), one get

E𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , 𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑟 (𝑡))

≤
(𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆

× ∫
𝑡

𝑡0

E𝑉 (𝑢 (𝑠, 𝑥) , V (𝑠, 𝑥) , 𝑢̄ (𝑠, 𝑥) , V̄ (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠

+
2𝜎2𝛼𝜇 (

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

2
)

𝛽
.

(49)

When 𝑡
0
+Δ ≤ 𝑡 ≤ 𝑡

0
+2Δ, by applying Gronwall’s inequality,

we have

E (‖𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)‖
2

2
+ ‖V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)‖2

2
)

= E𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , 𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑟 (𝑡))

≤
2𝜎2𝛼𝜇 (

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

2
)

𝛽
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× exp
(𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆
(𝑡 − 𝑡
0
)

≤ sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖𝑢̄(𝑡, 𝑥)‖
2
+ ‖V̄(𝑡, 𝑥)‖2)

×
2𝜎2𝛼𝜇

𝛽
exp

2Δ (𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆
.

(50)

By the global exponential stability of (6), we have

E (‖𝑢̄ (𝑡, 𝑥)‖
2

2
+ ‖V̄ (𝑡, 𝑥)‖2

2
)

≤ 2E (‖𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)‖
2

2
+ ‖V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)‖2

2
)

+ 2E (‖𝑢 (𝑡, 𝑥)‖
2

2
+ ‖V (𝑡, 𝑥)‖2

2
)

≤ sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖𝑢̄ (𝑡, 𝑥)‖
2
+ ‖V̄ (𝑡, 𝑥)‖2)

×
4𝜎2𝛼𝜇

𝛽
exp

2Δ (𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆

+ 2𝛼 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

2
) exp {−𝛽 (𝑡 − 𝑡

0
)} .

(51)

Moreover,

E (‖𝑢̄ (𝑡, 𝑥)‖
2

2
+ ‖V̄ (𝑡, 𝑥)‖2

2
)

≤

{{{{

{{{{

{

4𝜎
2𝛼𝜇

𝛽
exp

{

{

{

2Δ (𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆

}

}

}

+ 2𝛼 exp {−𝛽Δ}
}}}}

}}}}

}

× sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖𝑢̄ (𝑡, 𝑥)‖
2
+ ‖V̄ (𝑡, 𝑥)‖2) .

(52)

From (37), when |𝜎| < 𝜎̄, we have

4𝜎2𝛼𝜇

𝛽
exp

{

{

{

2Δ (𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆

}

}

}

+ 2𝛼 exp {−𝛽Δ} < 1.

(53)

Let

𝛾 = (− log
{{{{

{{{{

{

4𝜎
2𝛼𝜇

𝛽

× exp
{

{

{

2Δ (𝜇𝐶
1
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆

}

}

}

+ 2𝛼 exp {−𝛽Δ}
}}}}

}}}}

}

)

× (Δ)
−1
> 0.

(54)

By (52), we have

sup
𝑡0+Δ≤𝑡≤𝑡0+2Δ

E (‖𝑢̄ (𝑡, 𝑥)‖
2

2
+ ‖ V̄ (𝑡, 𝑥) ‖2

2
)

≤ exp (−𝛾Δ)( sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖𝑢̄ (𝑡, 𝑥)‖
2

2
+ ‖V̄ (𝑡, 𝑥)‖2

2
)) .

(55)

For any positive integer 𝑚 = 1, 2, . . ., from the existence and
uniqueness of the flow of (16) (see [28]), when 𝑡 ≥ 𝑡

0
+ (𝑚 −

1)Δ, we have

(𝑢̄ (𝑡, 𝑥; 𝑡
0
, 𝜙) , V̄ (𝑡, 𝑥; 𝑡

0
, 𝜓))

= (𝑢̄ (𝑡, 𝑥; 𝑡
0
+ (𝑚 − 1) Δ, 𝑢̄ (𝑡

0
+ (𝑚 − 1) Δ, 𝑥; 𝑡

0
, 𝜙)) ,

V̄ (𝑡, 𝑥; 𝑡
0
+ (𝑚 − 1) Δ, V̄ (𝑡

0
+ (𝑚 − 1) Δ, 𝑥; 𝑡

0
, 𝜓))) .

(56)

From (55) and (56),

sup
𝑡0+𝑚Δ≤𝑡≤𝑡0+(𝑚+1)Δ

E (
󵄩󵄩󵄩󵄩𝑢̄ (𝑡, 𝑥; 𝑡0, 𝜙)

󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩V̄ (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩
2

2
)

= sup
𝑡0+(𝑚−1)Δ+Δ≤𝑡≤𝑡0+(𝑚−1)Δ+2Δ

E
󵄩󵄩󵄩󵄩𝑢̄ (𝑡, 𝑥; 𝑡0 + (𝑚 − 1) Δ,

𝑢̄ (𝑡
0
+ (𝑚 − 1) Δ, 𝑥; 𝑡

0
, 𝜙))

󵄩󵄩󵄩󵄩
2

2

+ sup
𝑡0+(𝑚−1)Δ+Δ≤𝑡≤𝑡0+(𝑚−1)Δ+2Δ

E
󵄩󵄩󵄩󵄩V̄ (𝑡, 𝑥; 𝑡0 + (𝑚 − 1) Δ ,

V̄ (𝑡
0
+ (𝑚 − 1) Δ, 𝑥; 𝑡

0
, 𝜓))

󵄩󵄩󵄩󵄩
2

2

≤ exp (−𝛾Δ)( sup
𝑡0+(𝑚−1)Δ≤𝑡≤𝑡0+𝑚Δ

E (
󵄩󵄩󵄩󵄩𝑢̄ (𝑡, 𝑥; 𝑡0, 𝜙)

󵄩󵄩󵄩󵄩
2

2

+
󵄩󵄩󵄩󵄩V̄ (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩
2

2
))

...

≤ exp (−𝛾𝑚Δ)( sup
𝑡0≤𝑡≤𝑡0+Δ

E (
󵄩󵄩󵄩󵄩𝑢̄ (𝑡, 𝑥; 𝑡0, 𝜙)

󵄩󵄩󵄩󵄩
2

2

+
󵄩󵄩󵄩󵄩V̄ (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩
2

2
)) .

(57)

Hence, for any 𝑡 ≥ 𝑡
0
+ Δ, there exists a positive integer 𝑚,

such that 𝑡
0
+ 𝑚Δ ≤ 𝑡 ≤ 𝑡

0
+ (𝑚 + 1)Δ, and we have
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E (
󵄩󵄩󵄩󵄩𝑢̄ (𝑡, 𝑥; 𝑡0, 𝜙)

󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩V̄ (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩
2

2
)

≤ exp (−𝛾𝑚Δ)

× ( sup
𝑡0≤𝑡≤𝑡0+Δ

E (
󵄩󵄩󵄩󵄩𝑢̄ (𝑡, 𝑥; 𝑡0, 𝜙)

󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩V̄ (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩
2

2
))

≤ exp {−𝛾𝑡 + 𝛾𝑡
0
+ 𝛾Δ}

× ( sup
𝑡0≤𝑡≤𝑡0+Δ

E (
󵄩󵄩󵄩󵄩𝑢̄ (𝑡, 𝑥; 𝑡0, 𝜙)

󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩V̄ (𝑡, 𝑥; 𝑡0, 𝜓)

󵄩󵄩󵄩󵄩
2

2
))

≤ 𝐶
3
exp {𝛾Δ} exp {−𝛾 (𝑡 − 𝑡

0
)} ,

(58)

where 𝐶
3
= sup

𝑡0≤𝑡≤𝑡0+Δ
E(‖𝑢̄(𝑡, 𝑥; 𝑡

0
, 𝜙)‖
2

2
+ ‖V̄(𝑡, 𝑥; 𝑡

0
, 𝜓)‖
2

2
).

The above inequality also holds for 𝑡
0
≤ 𝑡 ≤ 𝑡

0
+ Δ.

Therefore, the neural networks (16) are mean square
globally exponentially stable, and by Theorem 4, the neural
networks (16) are also almost surely globally exponentially
stable.

4. Connection Weight Matrices Uncertainty
and Noise Impact on Stability

In this section, we first consider the parameter uncertainty
intensity which is added to the self-feedback matrix (𝐴, 𝐵)𝑇
of the neural networks (16). Then, the neural networks (16)
are changed as

d𝑢̄
𝑖
(𝑡, 𝑥) = {

𝑙

∑
𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕𝑢̄
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− (1 + 𝜆) 𝑎
𝑖
(𝑟 (𝑡)) 𝑢̄

𝑖
(𝑡, 𝑥)

+

𝑛

∑
𝑗=1

𝑐
𝑗𝑖
(𝑟 (𝑡)) 𝑓

𝑗
(V̄
𝑗
(𝑡, 𝑥))

}

}

}

d𝑡

+ 𝜎𝑢̄
𝑖
(𝑡, 𝑥) d𝑊(𝑡)

dV̄
𝑗
(𝑡, 𝑥) = {

𝑙

∑
𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
∗

𝑗𝑘
(𝑟 (𝑡))

𝜕V̄
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− (1 + 𝜆) 𝑏
𝑗
(𝑟 (𝑡)) V̄

𝑗
(𝑡, 𝑥)

+

𝑚

∑
𝑖=1

𝑒
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑖
(𝑢̄
𝑖
(𝑡, 𝑥))} d𝑡

+ 𝜎V̄
𝑗
(𝑡, 𝑥) d𝑊(𝑡) .

(59)

The initial conditions and boundary conditions are given
by

𝑢̄
𝑖
(𝑡
0
, 𝑥) = 𝜙

𝑖
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑖 = 1, 2, . . . , 𝑚,

V̄
𝑗
(𝑡
0
, 𝑥) = 𝜓

𝑗
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑗 = 1, 2, . . . , 𝑛,

𝜕𝑢̄
𝑖
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0
= (

𝜕𝑢̄
𝑖
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕𝑢̄
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑖 = 1, 2, . . . , 𝑚,

𝜕V̄
𝑗
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (
𝜕V̄
𝑗
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕V̄
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑗 = 1, 2, . . . , 𝑛,

(60)

where 𝜆 is the self-feedback matrix (𝐴, 𝐵)
𝑇 uncertainty

intensity and 𝜎 is the noise intensity.
We rewrite (59) as follows:

d𝑢̄ (𝑡, 𝑥) = {∇ ⋅ (𝐷 (𝑟 (𝑡)) ∘ ∇𝑢̄) − (1 + 𝜆)𝐴 (𝑟 (𝑡)) 𝑢̄ (𝑡, 𝑥)

+𝐶 (𝑟 (𝑡)) 𝑓 (V̄ (𝑡, 𝑥))} d𝑡 + 𝜎𝑢̄ (𝑡, 𝑥) d𝑊(𝑡)

dV̄ (𝑡, 𝑥) = {∇ ⋅ (𝐷
∗
(𝑟 (𝑡)) ∘ ∇V̄) − (1 + 𝜆) 𝐵 (𝑟 (𝑡)) V̄ (𝑡, 𝑥)

+ 𝐸 (𝑟 (𝑡)) 𝑔 (𝑢̄ (𝑡, 𝑥))} d𝑡 + 𝜎V̄ (𝑡, 𝑥) d𝑊(𝑡) .

(61)

For the global exponential stability of neural networks
(6), we will characterize how much the intensity of both
the self-feedback matrix (𝐴, 𝐵)𝑇 uncertainty and stochastic
noise the stochastic neural networks (59) can tolerate while
maintaining global exponential stability.

Theorem 6. Let Assumption (H1) hold and let the neural
networks (6) be globally exponentially stable. Then, the neural
networks (59) are mean square globally exponential stability
and also almost sure globally exponential stability, if there exists
𝜇
𝑞
> 0, (𝑞 ∈ S), and (𝜆, 𝜎) is in the inner of the closed curve

described by the following transcendental equation:

4𝜇 (𝜎2 + 𝜆2 (
󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼

𝛽

× exp
{

{

{

2Δ (𝜇𝐶
4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆

}

}

}

,

+ 2𝛼 exp {−𝛽Δ} = 1,

(62)

Δ >
ln (2𝛼)
𝛽

> 0, (63)

where𝐶
4
= [(3+2𝜆2)(‖𝐴‖+‖𝐵‖)+(1+𝐾2)‖𝐶‖+(1+𝐿2)‖𝐸‖+

2𝜎2], ‖𝐴‖ = max
𝑝∈S ‖𝐴(𝑝)‖, and so forth and 𝜇 = max

𝑝∈S 𝜇𝑝
and 𝜇̆ = min

𝑝∈S 𝜇𝑝.

Proof. For any (𝜙(𝑥), 𝜓(𝑥)), we denote the state
(𝑢̄(𝑡, 𝑥; 𝑡

0
, 𝜙), V̄(𝑡, 𝑥; 𝑡

0
, 𝜓)) of (59) as (𝑢̄(𝑡, 𝑥), V̄(𝑡, 𝑥)) and

the state (𝑢(𝑡, 𝑥; 𝑡
0
, 𝜙), V(𝑡, 𝑥; 𝑡

0
, 𝜓)) of (6) as (𝑢(𝑡, 𝑥), V(𝑡, 𝑥)).

From (6) and (61) and stochastic Fubini’s Theorem, we
have

∫
Ω0

(𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)) d𝑥 + ∫
Ω0

(V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)) d𝑥

= ∫
𝑡

𝑡0

∫
Ω0

∇ ⋅ (𝐷 (𝑟 (𝑠)) ∘ ∇ (𝑢 − 𝑢̄)) d𝑥d𝑠
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+ ∫
𝑡

𝑡0

∫
Ω0

[ − 𝐴 (𝑟 (𝑠)) (𝑢 (𝑠, 𝑥) − 𝑢̄ (𝑠, 𝑥))

+𝐶 (𝑟 (𝑠)) (𝑓 (V (𝑠, 𝑥)) − 𝑓 (V̄ (𝑠, 𝑥)))] d𝑥d𝑠

− ∫
𝑡

𝑡0

∫
Ω0

𝜎𝑢̄ (𝑠, 𝑥) d𝑥d𝑊(𝑠)

+ ∫
𝑡

𝑡0

∫
Ω0

𝜆𝐴 (𝑟 (𝑠)) 𝑢̄ (𝑠, 𝑥) d𝑥d𝑠

+ ∫
𝑡

𝑡0

∫
Ω0

∇ ⋅ (𝐷
∗
(𝑟 (𝑠)) ∘ ∇ (V − V̄)) d𝑥d𝑠

+ ∫
𝑡

𝑡0

∫
Ω0

[ − 𝐵 (𝑟 (𝑠)) (V (𝑠, 𝑥) − V̄ (𝑠, 𝑥))

+𝐸 (𝑟 (𝑠)) (𝑔 (𝑢 (𝑠, 𝑥)) − 𝑔 (𝑢̄ (𝑠, 𝑥)))] d𝑥d𝑠

− ∫
𝑡

𝑡0

∫
Ω0

𝜎V̄ (𝑠, 𝑥) d𝑥d𝑊(𝑠)

+ ∫
𝑡

𝑡0

∫
Ω0

𝜆𝐵 (𝑟 (𝑠)) V̄ (𝑠, 𝑥) d𝑥d𝑠.

(64)

Construct the average Lyapunov functional

𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , 𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑟 (𝑡))

= ∫
Ω0

𝜇
𝑟(𝑡)
[|𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)|

2
+ |V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)|2] d𝑥,

(65)

where 𝜇
𝑟(𝑡)

> 0.
By applying generalized Itô formula [27], we have

d𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , 𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝)󵄨󵄨󵄨󵄨(21)

= ∫
Ω0

2𝜇
𝑝
(𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥))

𝑇
(∇ ⋅ (𝐷 (𝑝) ∘ ∇ (𝑢 − 𝑢̄))) d𝑥d𝑡

+ ∫
Ω0

2𝜇
𝑝
(𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥))

𝑇

× [−𝐴 (𝑝) (𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥))

+ 𝐶 (𝑝) (𝑓 (V (𝑡, 𝑥)) − 𝑓 (V̄ (𝑡, 𝑥)))

+𝜆𝐴 (𝑝) 𝑢̄ (𝑡, 𝑥)] d𝑥d𝑡

+ ∫
Ω0

𝜎
2
𝜇
𝑝
|𝑢̄ (𝑡, 𝑥)|

2d𝑥d𝑡

− 2∫
Ω0

𝜎(𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥))
𝑇
𝑢̄ (𝑡, 𝑥) d𝑥d𝑊(𝑡)

+ ∫
Ω0

2𝜇
𝑝
(V (𝑡, 𝑥) − V̄ (𝑡, 𝑥))𝑇

× (∇ ⋅ (𝐷
∗
(𝑝) ∘ ∇ (V − V̄))) d𝑥d𝑡

+ ∫
Ω0

2𝜇
𝑝
(V (𝑡, 𝑥) − V̄ (𝑡, 𝑥))𝑇

× [−𝐵 (𝑝) (V (𝑡, 𝑥) − V̄ (𝑡, 𝑥))

+ 𝐸 (𝑝) (𝑔 (𝑢 (𝑡, 𝑥)) − 𝑔 (𝑢̄ (𝑡, 𝑥)))

+𝜆𝐵 (𝑝) V̄ (𝑡, 𝑥)] d𝑥d𝑡

+ ∫
Ω0

𝜎
2
𝜇
𝑝
|V̄ (𝑡, 𝑥)|2d𝑥d𝑡

− 2∫
Ω0

𝜎(V (𝑡, 𝑥) − V̄ (𝑡, 𝑥))𝑇V̄ (𝑡, 𝑥) d𝑥d𝑊(𝑡)

+

𝑁

∑
𝑞=1

𝛾
𝑝𝑞
𝜇
𝑞
∫
Ω0

[|𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)|
2

+|V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)|2] d𝑥.
(66)

By Hölder’s inequality, we get

∫
Ω0

2𝜇
𝑝
(𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥))

𝑇
𝜆𝐴 (𝑝) 𝑢̄ (𝑡, 𝑥) d𝑥

≤ max
𝑝∈S

󵄩󵄩󵄩󵄩󵄩
𝜇
𝑝
𝐴 (𝑝)

󵄩󵄩󵄩󵄩󵄩
[∫
Ω0

|𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)|
2d𝑥

+𝜆
2
∫
Ω0

|𝑢̄ (𝑡, 𝑥)|
2d𝑥]

= max
𝑝∈S

󵄩󵄩󵄩󵄩󵄩
𝜇
𝑝
𝐴 (𝑝)

󵄩󵄩󵄩󵄩󵄩
[∫
Ω0

|𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)|
2d𝑥

+𝜆
2
∫
Ω0

|𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥) − 𝑢 (𝑡, 𝑥)|
2d𝑥]

≤ max
𝑝∈S

󵄩󵄩󵄩󵄩󵄩
𝜇
𝑝
𝐴 (𝑝)

󵄩󵄩󵄩󵄩󵄩
[(1 + 2𝜆

2
)∫
Ω0

|𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)|
2d𝑥

+2𝜆
2
∫
Ω0

|𝑢 (𝑡, 𝑥)|
2d𝑥] ,

∫
Ω0

2𝜇
𝑝
(V (𝑡, 𝑥) − V̄ (𝑡, 𝑥))𝑇𝜆𝐵 (𝑝) V̄ (𝑡, 𝑥) d𝑥

≤ max
𝑝∈S

󵄩󵄩󵄩󵄩󵄩
𝜇
𝑝
𝐵 (𝑝)

󵄩󵄩󵄩󵄩󵄩
[∫
Ω0

|V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)|2d𝑥

+𝜆
2
∫
Ω0

|V̄ (𝑡, 𝑥)|2d𝑥]

= max
𝑝∈S

󵄩󵄩󵄩󵄩󵄩
𝜇
𝑝
𝐵 (𝑝)

󵄩󵄩󵄩󵄩󵄩
[∫
Ω0

|V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)|2d𝑥

+ 𝜆
2
∫
Ω0

|V (𝑡, 𝑥) − V̄ (𝑡, 𝑥) − V (𝑡, 𝑥)|2d𝑥]

≤ max
𝑝∈S

󵄩󵄩󵄩󵄩󵄩
𝜇
𝑝
𝐵 (𝑝)

󵄩󵄩󵄩󵄩󵄩
[(1 + 2𝜆

2
) ∫
Ω0

|V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)|2d𝑥

+ 2𝜆
2
∫
Ω0

|V (𝑡, 𝑥)|2d𝑥] .
(67)
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From (42), (43), and (67) and Assumption (H1), we obtain
that

d𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , 𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑝)

≤ (𝜇𝐶
4
+max
𝑝∈S

𝑁

∑
𝑞=1

𝛾
𝑝𝑞
𝜇
𝑞
)

× ∫
Ω0

(|𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)|
2

+ |V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)|2) d𝑥d𝑡

+ 2𝜇 (𝜎
2
+ 𝜆
2
(
󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
))

× ∫
Ω0

(|𝑢 (𝑡, 𝑥)|
2
+ |V (𝑡, 𝑥)|2) d𝑥d𝑡

− 2∫
Ω0

𝜎(𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥))
𝑇
𝑢̄ (𝑡, 𝑥) d𝑥d𝑊(𝑡)

− 2∫
Ω0

𝜎(V (𝑡, 𝑥) − V̄ (𝑡, 𝑥))𝑇V̄ (𝑡, 𝑥) d𝑥d𝑊(𝑡) .

(68)

When 𝑡 ≤ 𝑡
0
+ 2Δ, we have

E𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , 𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑟 (𝑡))

≤ (𝜇𝐶
4
+max
𝑝∈S

𝑁

∑
𝑞=1

𝛾
𝑝𝑞
𝜇
𝑞
)

× ∫
𝑡

𝑡0

E∫
Ω0

(|𝑢 (𝑠, 𝑥) − 𝑢̄ (𝑠, 𝑥)|
2

+|V (𝑠, 𝑥) − V̄ (𝑠, 𝑥)|2) d𝑥d𝑠

+ 2𝜇 (𝜎
2
+ 𝜆
2
(
󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
))

× ∫
𝑡

𝑡0

𝛼 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

2
) exp (−𝛽 (𝑠 − 𝑡

0
)) d𝑠

− 2𝜎E∫
𝑡

𝑡0

∫
Ω0

(𝑢 (𝑠, 𝑥) − 𝑢̄ (𝑠, 𝑥))
𝑇
𝑢̄ (𝑠, 𝑥) d𝑥d𝑊(𝑠)

− 2𝜎E∫
𝑡

𝑡0

∫
Ω0

(V (𝑠, 𝑥) − V̄ (𝑠, 𝑥))𝑇V̄ (𝑠, 𝑥) d𝑥d𝑊(𝑠) .

(69)

By stochastic Fubini’s Theorem, we have

E∫
𝑡

𝑡0

∫
Ω0

(𝑢 (𝑠, 𝑥) − 𝑢̄ (𝑠, 𝑥))
𝑇
𝑢̄ (𝑠, 𝑥) d𝑥d𝑊(𝑠) = 0,

E∫
𝑡

𝑡0

∫
Ω0

(V (𝑠, 𝑥) − V̄ (𝑠, 𝑥))𝑇V̄ (𝑠, 𝑥) d𝑥d𝑊(𝑠) = 0.

(70)

By (69), one get

E𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , 𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑟 (𝑡))

≤
(𝜇𝐶
4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆

× ∫
𝑡

𝑡0

E𝑉 (𝑢 (𝑠, 𝑥) , V (𝑠, 𝑥) , 𝑢̄ (𝑠, 𝑥) , V̄ (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠

+
2𝜇 (𝜎2 + 𝜆2 (

󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼 (

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

2
)

𝛽
.

(71)

When 𝑡
0
+Δ ≤ 𝑡 ≤ 𝑡

0
+2Δ, by applying Gronwall’s inequality,

we have

E (‖𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)‖
2

2
+ ‖V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)‖2

2
)

= E𝑉 (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥) , 𝑢̄ (𝑡, 𝑥) , V̄ (𝑡, 𝑥) , 𝑟 (𝑡))

≤
2𝜇 (𝜎2 + 𝜆2 (

󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼 (

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

2
)

𝛽

× exp
(𝜇𝐶
4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆
(𝑡 − 𝑡
0
)

≤ sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖𝑢̄ (𝑡, 𝑥)‖
2
+ ‖V̄ (𝑡, 𝑥)‖2)

×
2𝜇 (𝜎2 + 𝜆2 (

󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼

𝛽

× exp
2Δ (𝜇𝐶

4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆
.

(72)

By the global exponential stability of (6), we have

E (‖𝑢̄ (𝑡, 𝑥)‖
2

2
+ ‖V̄ (𝑡, 𝑥)‖2

2
)

≤ 2E (‖𝑢 (𝑡, 𝑥) − 𝑢̄ (𝑡, 𝑥)‖
2

2
+ ‖V (𝑡, 𝑥) − V̄ (𝑡, 𝑥)‖2

2
)

+ 2E (‖𝑢 (𝑡, 𝑥)‖
2

2
+ ‖V (𝑡, 𝑥)‖2

2
)

≤ sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖𝑢̄ (𝑡, 𝑥)‖
2
+ ‖V̄ (𝑡, 𝑥)‖2)

×
4𝜇 (𝜎2 + 𝜆2 (

󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼

𝛽

× exp
2Δ (𝜇𝐶

4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆

+ 2𝛼 (
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩
2

2
) exp {−𝛽 (𝑡 − 𝑡

0
)} .

(73)
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Moreover,

E (‖𝑢̄ (𝑡, 𝑥)‖
2

2
+ ‖V̄ (𝑡, 𝑥)‖2

2
)

≤

{{{{

{{{{

{

4𝜇 (𝜎
2 + 𝜆2 (

󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼

𝛽

× exp
{

{

{

2Δ (𝜇𝐶
4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆

}

}

}

+ 2𝛼 exp {−𝛽Δ}
}}}}

}}}}

}

× sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖𝑢̄ (𝑡, 𝑥)‖
2
+ ‖V̄ (𝑡, 𝑥)‖2) .

(74)

From (62), when (𝜆, 𝜎) is in the inner of the closed curve
described by the transcendental equation, we have

4𝜇 (𝜎2 + 𝜆2 (
󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐵
󵄩󵄩󵄩󵄩󵄩
)) 𝛼

𝛽

× exp
{

{

{

2Δ (𝜇𝐶
4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆

}

}

}

+ 2𝛼 exp {−𝛽Δ} < 1.

(75)

Let

𝛾 = (− log
{{{

{{{

{

4𝜇 (𝜎
2 + 𝜆2 (‖ 𝐴 ‖ + ‖ 𝐵 ‖)) 𝛼

𝛽

× exp
{

{

{

2Δ (𝜇𝐶
4
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆

}

}

}

+2𝛼 exp {−𝛽Δ}
}}}}

}}}}

}

)(Δ)
−1
> 0.

(76)

By (74), we have

sup
𝑡0+Δ≤𝑡≤𝑡0+2Δ

E (‖𝑢̄ (𝑡, 𝑥)‖
2

2
+ ‖V̄ (𝑡, 𝑥)‖2

2
)

≤ exp (−𝛾Δ)( sup
𝑡0≤𝑡≤𝑡0+Δ

E (‖𝑢̄ (𝑡, 𝑥)‖
2

2
+ ‖V̄ (𝑡, 𝑥)‖2

2
)) .

(77)

Similar to the proof of Theorem 5, we can prove that the
neural networks (59) are mean square globally exponen-
tially stable and also almost surely globally exponentially
stable.

To continue, we consider the parameter uncertainty
intensity which is added to the connection weight matrix
(𝐶, 𝐸)

𝑇 of the neural networks (16).Then, the neural networks
(16) are changed as

d𝑢̄
𝑖
(𝑡, 𝑥) =

{

{

{

𝑙

∑
𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘
(𝑟 (𝑡))

𝜕𝑢̄
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑎
𝑖
(𝑟 (𝑡)) 𝑢̄

𝑖
(𝑡, 𝑥)

+

𝑛

∑
𝑗=1

(1 + 𝛿) 𝑐
𝑗𝑖
(𝑟 (𝑡)) 𝑓

𝑗
(V̄
𝑗
(𝑡, 𝑥))

}

}

}

d𝑡

+ 𝜎𝑢̄
𝑖
(𝑡, 𝑥) d𝑊(𝑡) ,

dV̄
𝑗
(𝑡, 𝑥) = {

𝑙

∑
𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
∗

𝑗𝑘
(𝑟 (𝑡))

𝜕V̄
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑘

)

− 𝑏
𝑗
(𝑟 (𝑡)) V̄

𝑗
(𝑡, 𝑥)

+

𝑚

∑
𝑖=1

(1 + 𝛿) 𝑒
𝑖𝑗
(𝑟 (𝑡)) 𝑔

𝑖
(𝑢̄
𝑖
(𝑡, 𝑥))} d𝑡

+ 𝜎V̄
𝑗
(𝑡, 𝑥) d𝑊(𝑡) .

(78)

The initial conditions and boundary conditions are given
by

𝑢̄
𝑖
(𝑡
0
, 𝑥) = 𝜙

𝑖
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑖 = 1, 2, . . . , 𝑚,

V̄
𝑗
(𝑡
0
, 𝑥) = 𝜓

𝑗
(𝑥) , 𝑥 ∈ Ω

0
, 𝑡
0
∈ R
+
, 𝑗 = 1, 2, . . . , 𝑛,

𝜕𝑢̄
𝑖
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0
= (

𝜕𝑢̄
𝑖
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕𝑢̄
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑖 = 1, 2, . . . , 𝑚,

𝜕V̄
𝑗
(𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0

= (
𝜕V̄
𝑗
(𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕V̄
𝑗
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

𝑇

= 0,

(𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
, 𝑗 = 1, 2, . . . , 𝑛,

(79)

where 𝛿 is the connection weight matrix (𝐶, 𝐸)𝑇 uncertainty
intensity and 𝜎 is the noise intensity.

We rewrite (78) as follows:

d𝑢̄ (𝑡, 𝑥) = {∇ ⋅ (𝐷 (𝑟 (𝑡)) ∘ ∇𝑢̄) − 𝐴 (𝑟 (𝑡)) 𝑢̄ (𝑡, 𝑥)

+ (1 + 𝛿) 𝐶 (𝑟 (𝑡)) 𝑓 (V̄ (𝑡, 𝑥))} d𝑡
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+ 𝜎𝑢̄ (𝑡, 𝑥) d𝑊(𝑡) ,

dV̄ (𝑡, 𝑥) = {∇ ⋅ (𝐷
∗
(𝑟 (𝑡)) ∘ ∇V̄) − 𝐵 (𝑟 (𝑡)) V̄ (𝑡, 𝑥)

+ (1 + 𝛿) 𝐸 (𝑟 (𝑡)) 𝑔 (𝑢̄ (𝑡, 𝑥))} d𝑡

+ 𝜎V̄ (𝑡, 𝑥) d𝑊(𝑡) .

(80)

For the global exponential stability of neural networks (6),
we will characterize how much the intensity of both the
connection weight matrix (𝐶, 𝐸)𝑇 uncertainty and stochastic
noise the stochastic neural networks (78) can tolerate while
maintaining global exponential stability.

Theorem 7. Let Assumption (H1) hold and let the neural
networks (6) be global exponential stability. Then, the neural
networks (78) are mean square globally exponentially stable
and also almost surely globally exponentially stable, if there
exists 𝜇

𝑞
> 0, (𝑞 ∈ S), and (𝛿, 𝜎) is in the inner of the closed

curve described by the following transcendental equation:

4𝜇 (𝜎
2 + 𝛿2 (𝐾2

󵄩󵄩󵄩󵄩󵄩
𝐶
󵄩󵄩󵄩󵄩󵄩
+ 𝐿2

󵄩󵄩󵄩󵄩󵄩
𝐸
󵄩󵄩󵄩󵄩󵄩
)) 𝛼

𝛽

× exp
{

{

{

2Δ (𝜇𝐶
5
+max

𝑝∈S∑
𝑁

𝑞=1
𝛾
𝑝𝑞
𝜇
𝑞
)

𝜇̆

}

}

}

+ 2𝛼 exp {−𝛽Δ} = 1,

Δ >
ln (2𝛼)
𝛽

> 0,

(81)

where 𝐶
5
= [2(‖𝐴‖ + ‖𝐵‖) + (2 + (1 + 2𝛿2)𝐾2)‖𝐶‖ + (2 + (1 +

2𝛿2)𝐿2)‖𝐸‖ + 2𝜎2], ‖𝐴‖ = max
𝑝∈S ‖𝐴(𝑝)‖, and so forth and

𝜇 = max
𝑝∈S 𝜇𝑝 and 𝜇̆ = min

𝑝∈S 𝜇𝑝.

The proof is similar to the proof of Theorem 6.

5. Illustrate Example

Example 1. Consider hybrid BAM neural networks with
reaction diffusion terms

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
= 𝐷 (𝑟 (𝑡))

𝜕
2𝑢 (𝑡, 𝑥)

𝜕𝑥2
− 𝑎 (𝑟 (𝑡)) 𝑢 (𝑡, 𝑥)

+ 𝑐 (𝑟 (𝑡)) 𝑓 (V (𝑡, 𝑥)) ,

𝜕V (𝑡, 𝑥)
𝜕𝑡

= 𝐷
∗

𝑘
(𝑟 (𝑡))

𝜕2V (𝑡, 𝑥)
𝜕𝑥2

− 𝑏 (𝑟 (𝑡)) V (𝑡, 𝑥)

+ 𝑒 (𝑟 (𝑡)) 𝑔 (𝑢 (𝑡, 𝑥)) .

(82)

The initial conditions and boundary conditions are given
by

𝑢 (0, 𝑥) = sin (𝑥) , 𝑥 ∈ [−5, 5] ,

V (0, 𝑥) = cos (𝑥) − 1, 𝑥 ∈ [−5, 5] ,

𝜕𝑢 (𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0
=
𝜕𝑢 (𝑡, 𝑥)

𝜕𝑥
= 0, (𝑡, 𝑥) ∈ [𝑡

0
, +∞) × 𝜕Ω

0
,

𝜕V (𝑡, 𝑥)
𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω0
=
𝜕V (𝑡, 𝑥)
𝜕𝑥

= 0, (𝑡, 𝑥) ∈ [𝑡
0
, +∞) × 𝜕Ω

0
,

(83)

where

Γ = (
−2 2

1 −1
) ,

(
𝐷 (1) 0

0 𝐷
∗
(1)
) = (

0.002 0

0 0.003
) ,

(
𝐷 (2) 0

0 𝐷
∗
(2)
) = (

0.001 0

0 0.002
) ,

(
𝑎 (1) 0

0 𝑏 (1)
) = (

0.2 0

0 0.3
) ,

(
0 𝑐 (1)

𝑒 (1) 0
) = (

0 0.2

0.2 0
) ,

(
𝑎 (2) 0

0 𝑏 (2)
) = (

0.3 0

0 0.2
) ,

(
0 𝑐 (2)

𝑒 (2) 0
) = (

0 0.2

0.2 0
) ,

(84)

and 𝑓(V) = sin(V), 𝑔(𝑢) = (1/2)(|𝑢 + 1| − |𝑢 − 1|), and 𝐾 =

𝐿 = 1. According to Theorem 1 in [9] andTheorem 1 in [29],
the neural networks (82) are global exponential stability with
𝛼 = 1 and 𝛽 = 1.

In the presence of stochastic noise and self-feedback
matrix (𝐴, 𝐵)𝑇 uncertainty, the neural networks (82) become

d𝑢 (𝑡, 𝑥) = {𝐷 (𝑟 (𝑡))
𝜕2𝑢 (𝑡, 𝑥)

𝜕𝑥2

− (𝑎 (𝑟 (𝑡)) + 𝜆) 𝑢 (𝑡, 𝑥)

+ 𝑐 (𝑟 (𝑡)) 𝑓 (V (𝑡, 𝑥))} d𝑡

+ 𝜎𝑢 (𝑡, 𝑥) d𝑊(𝑡) ,

dV (𝑡, 𝑥) = {𝐷
∗
(𝑟 (𝑡))

𝜕2V (𝑡, 𝑥)
𝜕𝑥2

− (𝑏 (𝑟 (𝑡)) + 𝜆) V (𝑡, 𝑥)

+ 𝑒 (𝑟 (𝑡)) 𝑔 (𝑢 (𝑡, 𝑥))} d𝑡

+ 𝜎V (𝑡, 𝑥) d𝑊(𝑡) .

(85)

According to Theorem 6, let Δ = 0.7 > log(2𝛼)/𝛽 = 0.6931

and 𝜇
1
= 1 and 𝜇

2
= 2. From (62), we have

8 (𝜎
2
+ 0.6𝜆

2
) exp {10.08 + 3.36𝜆2 + 5.6𝜎2}

+ 2 exp {−0.7} = 1.
(86)
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Figure 1:The stability regionwith (𝜆, 𝜎) of the neural networks (85).
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Figure 2: Surface curve of 𝑢(𝑡, 𝑥) of the neural networks (85) in
model 1.

Then,we can obtain its closed curve for (𝜆, 𝜎). Figure 1 depicts
the stability region for (𝜆, 𝜎) in (85).

Figures 2, 3, 4, and 5 depict the surface curves of the
neural networks (85) with (𝜆, 𝜎) = (−10−4, 10−4). It shows
that the state of the neural networks (85) is mean square
globally exponential stability and almost surely globally
exponential stable, as the parameter (𝜆, 𝜎) in the inner of the
curve of Figure 1.

Figures 6, 7, 8 and 9 show the surface curves of the neural
networks (85) with (𝜆, 𝜎) = (−0.1, 1.5). It shows that when
the conditions inTheorem 6 do not hold, the neural networks
(85) become unstable.
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Figure 3: Surface curve of V(𝑡, 𝑥) of the neural networks (85) in
model 1.
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Figure 4: Surface curve of 𝑢(𝑡, 𝑥) of the neural networks (85) in
model 2.
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Figure 5: Surface curve of V(𝑡, 𝑥) of the neural networks (85) in
model 2.
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Figure 6: Surface curve of 𝑢(𝑡, 𝑥) of the neural networks (82) in
model 1.
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Figure 7: Surface curve of V(𝑡, 𝑥) of the neural networks (82) in
model 1.
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Figure 8: Surface curve of 𝑢(𝑡, 𝑥) of the neural networks (82) in
model 2.
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Figure 9: Surface curve of V(𝑡, 𝑥) of the neural networks (82) in
model 2.
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