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This paper aims to efficiently implement themaximum likelihood estimator (MLE) forHurst exponent, a vital parameter embedded
in the process of fractional Brownian motion (FBM) or fractional Gaussian noise (FGN), via a combination of the Levinson
algorithm and Cholesky decomposition. Many natural and biomedical signals can often be modeled as one of these two processes.
It is necessary for users to estimate the Hurst exponent to differentiate one physical signal from another. Among all estimators for
estimating the Hurst exponent, the maximum likelihood estimator (MLE) is optimal, whereas its computational cost is also the
highest. Consequently, a faster but slightly less accurate estimator is often adopted. Analysis discovers that the combination of the
Levinson algorithm and Cholesky decomposition can avoid storing any matrix and performing any matrix multiplication and thus
save a great deal of computer memory and computational time. In addition, the first proposed MLE for the Hurst exponent was
based on the assumptions that the mean is known as zero and the variance is unknown. In this paper, all four possible situations
are considered: known mean, unknown mean, known variance, and unknown variance. Experimental results show that the MLE
through efficiently implementing numerical computation can greatly enhance the computational performance.

1. Introduction

Signals of nature [1–6], medicine [7–14], business [15–18],
and society [19–22] usually appear to be a strong long-
term correlation. These signals can be differentiated by
only one indicator, fractal dimension or Hurst exponent;
therefore, many researchers are attracted to the study of
how to estimate fractal dimension or Hurst exponent. In
order to analyze the characteristics of fractal signals, users
can determine the fractal dimension (𝐷). Among estimators,
the box-counting technique [23–27] is a direct nonmodeling
method. In general, engineers are fond of adopting indirect
modeling methods like fractional Brownian motion (FBM)
or fractional Gaussian noise (FGN), because they are more
meaningful than direct nonmodeling methods. FBM or FGN
first estimates the Hurst exponent (𝐻), a real number in (0,
1), and then calculates the fractal dimension via the relation
𝐷 = 2−𝐻 [28].TheHurst exponent is the only one parameter

dominating the characteristics of FBM or FGN. FBM is a
statistically self-similar nonstationary randomprocess, which
makes analysis difficult [29, 30], but the increment of FBM,
FGN, is a strict-sense stationary process and has power
spectral density (PSD) behaving asymptotically as 𝑓1−2𝐻 [29,
31].

In real applications, signals must be sampled in advance;
sampled FBM is called discrete-time fractional Brownian
motion (DFBM), and sampled FGN is called discrete-time
fractional Gaussian noise (DFGN), which has been proven
to be a regular process [32]. Many natural and biomedical
signals can bemodeled asDFBMorDFGN [7–12, 33]. Among
estimators, the maximum likelihood estimator (MLE) [29]
provides the optimal accuracy; one of its approximate ver-
sions, called the Whittle estimator [34, 35], provides the
second optimal accuracy. The aim of the Whittle estimator
is to provide faster estimation with slight inaccuracy. Other

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 490568, 10 pages
http://dx.doi.org/10.1155/2014/490568



2 Mathematical Problems in Engineering

quick versions include the variance method [29, 31, 36],
moving-average (MA) method [33], and autoregressive (AR)
method [32, 37].

Although the accuracy of estimating the Hurst exponent
by the MLE is the best, it is easy to induce computa-
tional problems and enormous computational expenditure.
For example, evaluating the inverse of an autocovariance
matrix may be numerically unstable, especially when 𝐻 is
close to 1. Under this situation, the autocovariance matrix
almost becomes singular because the autocovariance matrix
of DFGN changes very slowly [35]. This problem will cause
computational inaccuracy, leading to wrong explanations for
physical signals of interest. On the other hand, the cost often
makes users hesitate to apply the MLE to quick response
systems, and thus the theoretical value of theMLE is generally
much higher than its practical applications.

When taking a closer look at the structure of the auto-
covariance matrix, a combination of the Levinson algorithm
[38] and Cholesky decomposition [39] can solve computa-
tional problems and reduce computational cost. Accordingly,
users will be encouraged to adopt the MLE even in the
quick response situations, and then the MLE has a better
opportunity to become the first choice in the future, especially
when computer speed continues to be increased up to a
certain level.

When the MLE was first proposed by Lundahl et al. [29],
the analysis and evaluation of the MLE were based on the
assumptions that the mean of DFGN is zero and the variance
is unknown. It is only applicable to physical signals modeled
as DFBM, but not suitable for the model of DFGN. When
signals are modeled as DFGN, it is easy for users to obtain
wrong estimation results, unless they take the sample mean
out of the original signals beforehand. Therefore, it is nec-
essary for practical signals to give a complete consideration
of four possible cases, including known mean, unknown
mean, known variance, and unknown variance; moreover,
each unknown mean also considers two approaches for
comparison: the sample mean and the mean estimated by
MLE. In terms of the practical situation of a realization of
physical signals, users can choose one case to estimate the
Hurst exponent and then the fractal dimension.

The rest of this paper is organized as follows. Section 2
briefly describesmathematical preliminaries. Section 3 intro-
duces practical considerations for the MLE. Section 4 shows
how to implement the MLE in an efficient way. Section 5
discusses experimental results. Finally, Section 6 concludes
the paper with some facts.

2. Mathematical Preliminaries

In this section, some related models are reviewed, including
FBM, FGN, DFBM, andDFGN. For consistency, the notation
{𝑥(𝑡), 𝑡 ∈ R} is used to denote a continuous-time random
process and {𝑥[𝑛], 𝑛 ∈ Z} a discrete-time random process.

FBM, represented by 𝐵
𝐻
(𝑡, 𝜔) where 𝜔 belongs to a

sample space Ω, is a generalization of Brownian motion. For
conciseness, the short notation 𝐵

𝐻
(𝑡) is adopted in place of

𝐵
𝐻
(𝑡, 𝜔). According to Mandelbrot and Van Ness [31], FBM

is formally defined by the following relations:

𝐵
𝐻

(0) = 𝑏
0
,

𝐵
𝐻

(𝑡) − 𝐵
𝐻

(0)

=
1

Γ (𝐻 + 1/2)
{∫

0

−∞

[(𝑡 − 𝑠)
𝐻−1/2

− (−𝑠)
𝐻−1/2

] 𝑑𝐵 (𝑠)

+∫

𝑡

0

(𝑡 − 𝑠)
𝐻−1/2

𝑑𝐵 (𝑠)} ,

(1)

where 𝐻 is the Hurst exponent with a value lying between
0 and 1 and the increments of FBM, 𝑑𝐵(𝑡), are zero mean,
Gaussian, and independent increments of ordinary Brownian
motion. Its symmetric form is described as follows:

𝐵
𝐻

(𝑡
2
) − 𝐵
𝐻

(𝑡
1
)

=
1

Γ (𝐻 + 1/2)
{∫

𝑡
2

0

(𝑡
2
− 𝑠)
𝐻−1/2

𝑑𝐵 (𝑠)

−∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝐻−1/2

𝑑𝐵 (𝑠)} .

(2)

When 𝐻 equals 0.5, FBM becomes the ordinary Brownian
motion. Unfortunately, FBM is a nonstationary process,
whose Wigner-Ville spectrum (WVS) is given by the follow-
ing expression [30]:

𝑆
𝐵
𝐻
(Ω, 𝑡) = (1 − 2

1−2𝐻 cos 2Ω𝑡)
1

|Ω|
2𝐻+1

. (3)

In spite of FBM being a time-varying process, the increment
of FBM is a stationary and self-similar process, called FGN.

In real applications, discrete data are collected; sampled
data of FBM are expressed as 𝐵

𝐻
[𝑛] = 𝐵

𝐻
(𝑛𝑇
𝑠
), where 𝑇

𝑠
is

the sampling time. The increments of DFBM, called DFGN,
are denoted by 𝑋

𝐻
[𝑛] = 𝐵

𝐻
[𝑛] − 𝐵

𝐻
[𝑛 − 1]. DFGN is a

normally distributed and stationary process with zero mean,
whose autocorrelation functions (ACFs) are given by the
following equation:

𝑟
𝐻 [𝑘] = 𝐸 {𝑥

𝐻 [𝑛 + 𝑘] 𝑥𝐻 [𝑛]}

=
𝜎
2

2
(|𝑘 + 1|

2𝐻
− 2|𝑘|

2𝐻
+ |𝑘 − 1|

2𝐻
) ,

(4)

where 𝜎
2

= var(𝑋
𝐻
[𝑘]) [29, 40]. The ACF, 𝑟

𝐻
[𝑘], behaves

asymptotically as 𝑘2𝐻−2 = 𝑘
−𝛼, 𝛼 ∈ (0, 2) [40].

3. Practical Considerations for the MLE

It is well known from the properties of DFGN that the prob-
ability density function (PDF) of DFGN can be expressed as
follows [29]:

𝑝 (x; 𝐻) =
1

(2𝜋)
𝑁/2

|R|
1/2

exp {−
1

2
x𝑇R−1x} , (5)
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where x = [𝑥0 𝑥
1

⋅ ⋅ ⋅ 𝑥
𝑁−1]
𝑇 is the dataset and R is the

autocovariance matrix; that is, R = 𝐸[xx𝑇] or [R]
𝑖𝑗

= 𝑟
𝐻
(|𝑖 −

𝑗|), where 𝑟
𝐻
(𝑘) is the ACF as expressed by (4).

In real applications, some physical signals can bemodeled
as either DFBM or DFGN. If the signals of interest are
modeled as DFBM, their increment, DFGN, will not be
affected by displacement. However, if the signals of interest
are modeled as DFGN, signal displacement will result in a
very severe error unless the displacement problem of signals
is considered in advance.The reason for displacementmay be
modeling error, measurement error, inappropriate operation,
or apparatus baseline calibrating error, and so forth. In
order to avoid the error resulting from displacement, two
approaches are considered to estimate displacement: one is
to maximize PDF over the mean; the other is to simply
take the sample mean out of signals. Considering that the
PDF of DFGN has two explicit parameters, the mean and
variance, each parameter may be known or unknown, and
each unknown mean includes two approaches, all together,
there are four cases covering six approaches.

3.1. Case 1: KnownMean (Displacement) andKnownVariance.
Under this case, there are no mean and variance necessary
to be estimated before estimating the Hurst exponent. In
theory, this is the best case since information about the mean
and variance is provided. For convenience, the logarithm of
PDF will be maximized instead of PDF, which produces the
same result since logarithmic operation still preserves the
monotonic property of a function.Without loss of generality,
displacement is set to be 0. From (5), the logarithm of PDF is
as follows:

log 𝑝 (x; 𝐻) = −
𝑁

2
log (2𝜋) −

1

2
log |R| −

1

2
x𝑇R−1x. (6)

Since constant terms and coefficients do not affect the
maximum, a compact form is described as follows:

max
𝐻

{log 𝑝 (x; 𝐻)} = max
𝐻

{− log |R| − x𝑇R−1x}

= max
𝐻

{− log 
R

− x𝑇R−1x} ,

(7)

where

R = 𝜎
2R, (8)

and 𝜎
2 is known to users.

3.2. Case 2: Known Mean (Displacement) and Unknown
Variance. Thecase first proposed by Lundahl et al. [29] is like
this. Likewise, displacement is assumed to be 0. The Hurst
exponent can be estimated by using the following equation:

max
𝐻

[max
𝜎
2

{log 𝑝 (x; 𝐻, 𝜎
2
)}] . (9)

It is well known that the logarithm of PDF is expressed as
follows:

log 𝑝 (x; 𝐻, 𝜎
2
) = −

𝑁

2
log (2𝜋) −

𝑁

2
log𝜎
2

−
1

2
log 

R
−

1

2𝜎2
x𝑇R−1x.

(10)

By maximizing the log 𝑝(x; 𝐻) over 𝜎2, it follows that

�̂�
2
=

1

𝑁
x𝑇R−1x. (11)

By substituting (11) into (10), the final function to be maxi-
mized is

max
𝜎
2

{log𝑝 (x; 𝐻, 𝜎
2
)}

= log𝑝 (x; 𝐻, �̂�
2
)

= −
𝑁

2
log (2𝜋) −

𝑁

2
log (�̂�

2
) −

1

2
log 

R
−

𝑁

2
.

(12)

Likewise, the terms that do not affect maximization will be
omitted, and thus a compact form is described as follows:

max
𝐻

[max
𝜎
2

{log𝑝 (x; 𝐻, 𝜎
2
)}]

= max
𝐻

[− log 
R

− 𝑁 log(
1

𝑁
x𝑇R−1x)] .

(13)

3.3. Case 3: Unknown Mean (Displacement) and Known
Variance. Let measurement data be z = x + 𝜇, where x can
be modeled as DFGN with zero mean and 𝜇 is a column
vector with each element being constant 𝜇; that is, 𝜇 =

[𝜇 𝜇 ⋅ ⋅ ⋅ 𝜇]
𝑇.TheHurst exponent can be estimated by using

the following two approaches based on two estimators about
𝜇.

Approach 1. First maximize the logarithm of PDF over 𝜇 by
taking derivative with respect to 𝜇, and then maximize the
logarithm of the maximum PDF on estimated 𝜇 over 𝐻, that
is,

max
𝐻

[max
𝜇

{log 𝑝 (z; 𝐻, 𝜇)}] . (14)

The unknown displacement of DFGN is assumed to be 𝜇,
and thus the PDF will be
log𝑝 (z; 𝐻, 𝜇)

= −
𝑁

2
log (2𝜋) −

1

2
log Rz

 −
1

2
(z − 𝜇)

𝑇R−1z (z − 𝜇) ,

(15)

where Rz = 𝐸[(z − 𝜇)(z − 𝜇)
𝑇
] = 𝐸[xx𝑇] = R. Therefore, (15)

can be simplified as

log𝑝 (z; 𝐻, 𝜇)

= −
𝑁

2
log (2𝜋) −

1

2
log |R| −

1

2
(z − 𝜇)

𝑇R−1 (z − 𝜇) .

(16)
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First, maximize the log𝑝(z; 𝐻, 𝜇) over 𝜇 by taking deriva-
tive with respect to 𝜇 and the operation is equivalent to
maximizing the (z − 𝜇)

𝑇R−1(z − 𝜇). The estimator of 𝜇 is
derived from the Appendix as follows:

𝜇 =
1

‖A‖𝑠

𝑁−1

∑

𝑘=0

a𝑘
𝑠
𝑧
𝑘
, (17)

where A = R−1, a
𝑘

= [𝑎0𝑘 𝑎
1𝑘

⋅ ⋅ ⋅ 𝑎
(𝑁−1)𝑘]

𝑇

, ‖a
𝑘
‖
𝑠

=

∑
𝑁−1

𝑖=0
𝑎
𝑖𝑘
and ‖A‖

𝑠
= ∑
𝑁−1

𝑘=0
‖a
𝑘
‖
𝑠
. It is easy to check that

𝜇 =
1


A𝑠

𝑁−1

∑

𝑘=0

a𝑘
𝑠
𝑧
𝑘
, (18)

where A = R−1, a
𝑘

= [𝑎0𝑘 𝑎
1𝑘

⋅ ⋅ ⋅ 𝑎
(𝑁−1)𝑘]

𝑇

, ‖a
𝑘
‖
𝑠

=

∑
𝑁−1

𝑖=0
𝑎
𝑖𝑘
and ‖A‖

𝑠
= ∑
𝑁−1

𝑘=0
‖a
𝑘
‖
𝑠
. Next, by substituting (17)

into (16), the final function to be maximized is

max
𝜇

{log𝑝 (z; 𝐻, 𝜇)}

= log𝑝 (z; 𝐻, 𝜇)

= −
𝑁

2
log (2𝜋) −

1

2
log |R| −

1

2
(z − �̂�)

𝑇R−1 (z − �̂�) .

(19)

Likewise, the terms without affectingmaximization are omit-
ted, and thus a compact form is described as follows:

max
𝐻

[max
𝜇

{log𝑝 (z; 𝐻, 𝜇)}]

= max
𝐻

{log𝑝 (z; 𝐻, 𝜇)}

= max
𝐻

[− log 
R

− (z − �̂�)
𝑇R−1 (z − �̂�)] .

(20)

Approach 2. Use the sample mean to replace the previous
estimator of 𝜇. Other procedures are the same as the ones
of Approach 1. The sample mean is the simplest method to
estimate the mean, which is

𝜇 =
1

𝑁

𝑁−1

∑

𝑘=0

𝑧
𝑘
. (21)

3.4. Case 4: Unknown Mean (Displacement) and Unknown
Variance. This case is the most general in real applications.
Like Case 3, measurement data are assumed to be z =

x + 𝜇 and the unknown variance is 𝜎
2. Similarly, the Hurst

exponent is estimated by using the following two approaches.

Approach 1. Like Case 3, how to estimate the Hurst exponent
is described as follows:

max
𝐻

[max
𝜎
2
,𝜇

{log𝑝 (z; 𝐻, 𝜎
2
, 𝜇)}] . (22)

First, maximize the log 𝑝(x; 𝐻, 𝜇) over 𝜎
2 and 𝜇 by

taking derivatives with respect to 𝜎
2 and 𝜇, respectively, and

then the estimators of 𝜎2 and 𝜇 are derived as follows:

�̂�
2
=

1

𝑁
(z − �̂�)

𝑇R−1 (z − �̂�) , 𝜇 =
1


A𝑠

𝑁−1

∑

𝑘=0

a𝑘
𝑠
𝑧
𝑘
.

(23)

Likewise, the terms that do not affect maximization are
omitted, and thus a compact form is described as follows:

max
𝐻

[max
𝜎
2
,𝜇

{log𝑝 (z; 𝐻, 𝜎
2
, 𝜇)}]

= max
𝐻

[− log 
R

− 𝑁 log(
1

𝑁
(z − �̂�)

𝑇R−1 (z − �̂�))] .

(24)

Approach 2. Use the sample mean to replace the previous
estimator of 𝜇. Other procedures are the same as the ones of
Approach 1.

The final step of each case is to estimate the Hurst
exponent, but it needs some tips. A direct maximization over
𝐻 is unfeasible because the Hurst exponent is an implicit
parameter. Therefore, the golden section search [41] was
adopted to find out the maxima of (7), (13), (20), and (24)
in this paper.

4. Efficient Procedures for the MLE

In this section, the computational stability and efficiency of
using the MLE for the Hurst exponent are studied. Since
computing the inverse and determinant of an autocovariance
matrix is sensitive to the data size, especially when 𝐻 is
close to 1 [35]. Also, for a large dataset, storing the whole
autocovariance matrix requires a large amount of computer
memory. Therefore, a reliable and efficient procedure is
necessary for estimating the Hurst exponent, especially when
users use an ordinary computer with less memory and lower
CPU speed. After carefully studying the structure of an auto-
covariance matrix, a combination of the Levinson algorithm
and Cholesky decomposition can be applied to efficiently
compute the inverse and determinant of an autocovariance
matrix, and then the iterative structures of the two algorithms
can be exploited to estimate the Hurst exponent without
storing anymatrix and performing anymatrixmultiplication.
For convenience, some notations are listed below for further
quotation:

R−1 = L𝑇DL = (D1/2L)
𝑇

(D1/2L) ≡ W𝑇W,

D = diag (𝑃
−1

0
, 𝑃
−1

1
, . . . , 𝑃

−1

𝑁−1
) ,
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L =

[
[
[
[

[

1 0 ⋅ ⋅ ⋅ 0

𝑎
1
(1) 1 ⋅ ⋅ ⋅ 0

...
... d

...
𝑎
𝑁−1

(𝑁 − 1) 𝑎
𝑁−1

(𝑁 − 2) ⋅ ⋅ ⋅ 1

]
]
]
]

]

=

[
[
[
[
[
[

[

a𝑇
0

a𝑇
1

...
a𝑇
𝑁−1

]
]
]
]
]
]

]

,

a𝑇
𝑖

= [𝑎𝑖 (𝑖) ⋅ ⋅ ⋅ 𝑎
𝑖
(1) 1 0 ⋅ ⋅ ⋅ 0] ,

𝑖 = 0, 1, . . . , 𝑁 − 1,

W =

[
[
[
[
[

[

𝑃
1/2

0
0 ⋅ ⋅ ⋅ 0

𝑃
1/2

1
𝑎
1
(1) 𝑃

1/2

1
⋅ ⋅ ⋅ 0

...
... d

...
𝑃
1/2

𝑁−1
𝑎
𝑁−1

(𝑁 − 1) 𝑃
1/2

𝑁−1
𝑎
𝑁−1

(𝑁 − 2) ⋅ ⋅ ⋅ 𝑃
1/2

𝑁−1

]
]
]
]
]

]

=

[
[
[
[
[
[

[

w𝑇
0

w𝑇
1

...
w𝑇
𝑁−1

]
]
]
]
]
]

]

(25)

W𝑇
𝑖

= 𝑃
1/2

𝑖
a𝑇
𝑖
, 𝑖 = 0, 1, . . . , 𝑁 − 1, (26)


R

=

𝑁−1

∏

𝑖=0

𝑃
𝑖
, (27)

where 𝑎
𝑀
(𝑘), 𝑘 = 1, 2, . . . ,𝑀 are the predictor coefficients

of order 𝑀 and 𝑃
𝑖
, 𝑖 = 0, 1, . . . , 𝑁 − 1 are the predic-

tion error powers of order 𝑁 − 1. These coefficients are
iteratively computed by the Levinson algorithm. It is worth
noting that when numerically calculating log |R|, ∑

𝑁−1

𝑖=0
log𝑃
𝑖

is computed instead of log(𝑃
0
𝑃
1
⋅ ⋅ ⋅ 𝑃
𝑁−1

) because the term
𝑃
0
𝑃
1
⋅ ⋅ ⋅ 𝑃
𝑁−1

easily approaches to zero numerically as the
data size grows larger. Thus, using the following equation to
compute log |R| is essential:

log 
R

=

𝑁−1

∑

𝑖=0

log𝑃
𝑖
. (28)

Obviously, the Levinson algorithm and Cholesky decom-
position can be used to save the time of computing the inverse
and determinant of the autocovariance matrix. However,
estimating the Hurst exponent by the currently mentioned
structure of implementation still needs matrix computation
and storing, which requires excessive computational time and
computer memory. When taking a closer look at the term
x𝑇R−1x of (7) or (13), a magic and helpful form appears as
follows:

x𝑇R−1x = (Wx)𝑇 (Wx) ≡ y𝑇y, (29)

where

y ≡ [𝑦0 𝑦
1

⋅ ⋅ ⋅ 𝑦
𝑁−1]
𝑇

, (30)

𝑦
𝑖
= w𝑇
𝑖
x, 𝑖 = 0, 1, . . . , 𝑁 − 1. (31)

With (31), storing any matrix in the process of computa-
tion is no longer necessary, which is also a very efficient step.

In this paper, the golden section search was adopted
to find out the maxima of (7), (13), (20), and (24). In the
process of searching for each maximum, computing the
inner terms of (7), (13), (20), or (24) is necessary, such as
− log |R| − x𝑇R−1x, − log |R| − 𝑁 log(x𝑇R−1x/𝑁), − log |R| −

(z − �̂�)
𝑇R−1(z−�̂�) or− log |R|−𝑁 log((z − �̂�)

𝑇R−1(z−�̂�)/𝑁).
In order to efficiently estimate the Hurst exponent by

using (7) or (13), first compute a
𝑖
, 𝑖 = 0, 1, . . . , 𝑁− 1, by using

the Levinson algorithm, thenw
𝑖
by using (26), y by using (30)

and (31), x𝑇R−1x by using (29), and log |R| by using (28).The
details of determining the Hurst exponent by using the MLE
are described in the following procedure.

Procedure 1. By efficiently computing − log |R| − x𝑇R−1x or
− log |R| − 𝑁 log(x𝑇R−1x/𝑁), consider the following stpes:

(1) initialize 𝑖 = 0;
(2) compute a

𝑖
and 𝑃

𝑖
by using the Levinson algorithm;

(3) compute w𝑇
𝑖
by using (26);

(4) compute 𝑦
𝑖
= w𝑇
𝑖
x;

(5) add a new element into the vector y like (30);
(6) perform 𝑖 = 𝑖 + 1; if 𝑖 ≤ 𝑁 − 1, then go to Step 2 or go

to the next step;

(7) compute x𝑇R−1x using (29) and log |R| using (28);

(8) compute − log |R| − x𝑇R−1x for (7) or − log |R| −

𝑁 log(x𝑇R−1x/𝑁) for (13).

Obviously, it is unnecessary to store any matrix and
execute any matrix multiplication in a series of computation
except for vector storing and multiplication. The efficient
procedure not only saves computer memory but also storing
time.

Next, an efficient procedure for computing (20) or (24)
is considered. Each procedure considers two approaches
to estimating the mean: the sample mean and the mean
estimated by MLE. For the first approach, users first take the
sample mean out of the original signals and then call the
function evaluation of (7) or (13). For the second approach,
users must use an efficient implementing procedure for (17)
to estimate the mean. Based on the composition structure of
themean estimated byMLE, (17) can be decomposed into the
following equation:

𝜇 =
1𝑇Az
1𝑇A1

=
1𝑇W𝑇Wz
1𝑇W𝑇W1

=
(W1)𝑇 (Wz)
(W1)𝑇 (W1)

, (32)

where

1 = [1 1 ⋅ ⋅ ⋅ 1]
𝑇

, (33)

W1 = [w𝑇
0
1 w𝑇
1
1 ⋅ ⋅ ⋅ w𝑇

𝑁−1
1]
𝑇

. (34)
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When carefully observing the term (z − �̂�)
𝑇R−1(z − �̂�), it

can be decomposed into the following equation:

(z − �̂�)
𝑇R−1 (z − �̂�) = (Wz − W�̂�)𝑇 (Wz − W�̂�) , (35)

where

Wz = [w𝑇
0
z w𝑇
1
z ⋅ ⋅ ⋅ w𝑇

𝑁−1
z]
𝑇

, (36)

W�̂� = 𝜇W1. (37)

In order to efficiently compute (20) or (24), first, compute
a
𝑖
, 𝑖 = 0, 1, . . . , 𝑁 − 1, by using the Levinson algorithm, then,

w
𝑖
by using (26), W1 by using (34), Wz by using (36), 𝜇 by

using (32),W�̂� by using (37), (z − �̂�)
𝑇R−1(z−�̂�) by using (35),

and log |R| by using (28).The details of determining theHurst
exponent by using the MLE are described in the following
procedure.

Procedure 2. By efficiently computing − log |R|− (z − �̂�)
𝑇R−1

(z − �̂�) or − log |R| − 𝑁 log((z − �̂�)
𝑇R−1(z − �̂�)/𝑁), consider

the following steps:

(1) initialize 𝑖 = 0;
(2) compute a

𝑖
and 𝑃
𝑖
using the Levinson algorithm;

(3) compute w𝑇
𝑖
by using (26);

(4) compute w𝑇
𝑖
1 and w𝑇

𝑖
z;

(5) add a new element into the vector W1 like (34) and
Wz like (36);

(6) perform 𝑖 = 𝑖 + 1; if 𝑖 ≤ 𝑁 − 1, then go to Step 2 or go
to the next step;

(7) compute 𝜇 by using (32) andW�̂� by using (37);

(8) compute (z − �̂�)
𝑇R−1(z − �̂�) by using (35) and log |R|

by using (28);

(9) compute − log |R| − (z − �̂�)
𝑇R−1(z − �̂�) for (20) or

− log |R| − 𝑁 log((z − �̂�)
𝑇R−1(z − �̂�)/𝑁) for (24).

Similar to Procedure 1, it is not necessary to store any
matrix and execute matrix multiplication in a series of
computation except for vector storing and multiplication.
Without considering the efficient computation of x𝑇R−1x,
users first implement the Levinson algorithm to obtain a

𝑖

and 𝑃
𝑖
, 𝑖 = 0, 1, . . . , 𝑁 − 1 and then store L and D, obtain

R−1 by using L𝑇DL, and finally take matrix computation
for x𝑇R−1x. The traditional procedure only saves the time
of inverting matrix by using the Levinson algorithm but
overlooks the potential efficacy of the predictor coefficients
and prediction error powers iteratively generated. With this
stable and efficient implementation, the practicability of the
MLE will be greatly enhanced.

5. Results and Discussion

In order to analyze four possible cases and compare their
efficiency, the generating algorithm proposed by Lundahl et

al. [29] was used to generate DFGN because the realizations
produced by this algorithm possess fine correlation structure
and long-term dependency.

For more convincing facts, a wider range of Hurst
exponents and data sizes were considered, including 𝐻 =

0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and
0.99 (totally, 13 Hurst exponents), as well as 𝑁 = 128, 256,
512, 1024, 2048, and 4096 (totally, 6 types of data sizes).
For each data size, 100 realizations of white Gaussian noise
were generated by a Gaussian random generator to form 100
realizations of DFGN for each Hurst exponent.

All estimations were performedwith the same computing
specifications: (1) hardware: a computer of Intel Core i7-
2600 processor up to 3.40GHz and a RAM of 8.00GB
(7.89GB available); (2) operating system: Windows 7 Profes-
sional Service Pack 1; (3) programming software: MATLAB
R2011b 64-bit (win64); (4) optimization algorithm: golden
section searchwith threshold 0.0001, which takes 21 iterations
and totally 22 function evaluations [42]. Table 1 shows the
experimental results, each value representing the mean of
mean-squared errors (MSEs) of 100 realizations over 13 Hurst
exponents, simply denoted as mean mean-squared errors
(MMSEs).

On the other hand, the function evaluation time is
recorded and is used to compare with the implementation
time of the traditional MLE for efficiency analysis. Table 2
lists the average time (in seconds) of 13 Hurst exponents
spent by each approach in two executing procedures, with
and without considering the computational efficiency, as well
as their corresponding time ratio.

Thebest results are almost acquired amongCase 1, and the
second best results are among Case 3, and the worst results
are among Case 4 from Table 1. This is reasonable because
both mean and variance are known for Case 1, but both mean
and variance are unknown for Case 4. It is worth noting that
the accuracy of Case 3 is better than Case 2. This indicates
that accuracy is more related to known variance than known
mean. Generally speaking, amost practical situation is Case 4
with both unknownmean and variance; the situation of Case
1 is less likely practical. Table 1 suggests that using the sample
mean instead of the mean estimated by MLE is also a reliable
approach.

It is easy to see that the computational cost of the tra-
ditional MLE for the Hurst exponent needs 𝑂(𝑁

3
), whereas

twonewly proposed procedures only need𝑂(𝑁
2
). In addition

to lower computational complexity, storing data by vector
instead of matrix also help raise the computational efficacy.
Table 2 suggests that without matrix calculation, time saving
is obvious, especially when the data size grows larger. For
example, with the data size of 4096, the ratio of each proposed
efficient procedure to the traditional one reaches up to 80
times. The ratio will be more tremendous especially for
computers of limited resources. These results will contribute
to the position of the MLE for estimating Hurst exponent.

6. Conclusions

In parameter estimation, both accuracy and efficiency are
generally difficult to coexist. Accordingly, how to weigh
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Table 1: Accuracy comparison for four cases covering six approaches, each value representing the mean of mean-squared errors (MSEs) of
100 realizations over 13 Hurst exponents, simply denoted as mean mean-squared errors (MMSEs).

Cases 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024 𝑁 = 2048 𝑁 = 4096

C1 1.18E − 03 5.52E − 04 2.90E − 04 1.51E − 04 7.11E − 05 3.73𝐸 − 05

C2 1.72𝐸 − 03 8.50𝐸 − 04 4.65𝐸 − 04 2.59𝐸 − 04 1.19𝐸 − 04 6.57𝐸 − 05

C3-A1a 1.36𝐸 − 03 5.99𝐸 − 04 2.94𝐸 − 04 1.55𝐸 − 04 7.44𝐸 − 05 3.71E − 05
C3-A2a 1.35𝐸 − 03 6.04𝐸 − 04 2.94𝐸 − 04 1.57𝐸 − 04 7.45𝐸 − 05 3.74𝐸 − 05

C4-A1a 2.51𝐸 − 03 1.15𝐸 − 03 5.18𝐸 − 04 2.97𝐸 − 04 1.38𝐸 − 04 6.76𝐸 − 05

C4-A2a 2.49𝐸 − 03 1.15𝐸 − 03 5.19𝐸 − 04 2.98𝐸 − 04 1.38𝐸 − 04 6.81𝐸 − 05

aA1 denotes Approach 1 and A2 denotes Approach 2.

Table 2: Efficiency comparison for four cases covering six approaches, each value representing either the average time (in seconds) of 13
Hurst exponents spent by each approach in two executing procedures (with and without considering the computational efficiency) or their
corresponding time ratio.

Cases 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024 𝑁 = 2048 𝑁 = 4096

C1 1.27𝐸 − 01 3.98𝐸 − 01 1.64𝐸 + 00 1.06𝐸 + 01 1.11𝐸 + 02 8.78𝐸 + 02

C1b 1.02𝐸 − 01 2.03𝐸 − 01 4.40𝐸 − 01 1.05𝐸 + 00 2.88𝐸 + 00 1.04𝐸 + 01

Ratio 1.25𝐸 + 00 1.97𝐸 + 00 3.73𝐸 + 00 1.01𝐸 + 01 3.86𝐸 + 01 8.46𝐸 + 01

C2 1.19𝐸 − 01 3.63𝐸 − 01 1.61𝐸 + 00 1.03𝐸 + 01 1.11𝐸 + 02 8.70𝐸 + 02

C2b 9.83𝐸 − 02 2.02𝐸 − 01 4.37𝐸 − 01 1.16𝐸 + 00 2.88𝐸 + 00 1.03𝐸 + 01

Ratio 1.21𝐸 + 00 1.80𝐸 + 00 3.68𝐸 + 00 8.94𝐸 + 00 3.85𝐸 + 01 8.47𝐸 + 01

C3-A1a 1.29𝐸 − 01 3.62𝐸 − 01 1.65𝐸 + 00 1.05𝐸 + 01 1.09𝐸 + 02 8.80𝐸 + 02

C3-A1a,b 1.09𝐸 − 01 2.14𝐸 − 01 4.57𝐸 − 01 1.09𝐸 + 00 2.93𝐸 + 00 1.09𝐸 + 01

Ratio 1.18𝐸 + 00 1.69𝐸 + 00 3.60𝐸 + 00 9.71𝐸 + 00 3.73𝐸 + 01 8.08𝐸 + 01

C3-A2a 1.27𝐸 − 01 3.50𝐸 − 01 1.59𝐸 + 00 1.06𝐸 + 01 1.10𝐸 + 02 8.70𝐸 + 02

C3-A2a,b 1.00𝐸 − 01 2.05𝐸 − 01 4.36𝐸 − 01 1.05𝐸 + 00 2.88𝐸 + 00 1.03𝐸 + 01

Ratio 1.27𝐸 + 00 1.71𝐸 + 00 3.64𝐸 + 00 1.01𝐸 + 01 3.82𝐸 + 01 8.42𝐸 + 01

C4-A1a 1.16𝐸 − 01 3.74𝐸 − 01 1.68𝐸 + 00 1.06𝐸 + 01 1.10𝐸 + 02 8.71𝐸 + 02

C4-A1a,b 1.01𝐸 − 01 2.14𝐸 − 01 4.52𝐸 − 01 1.08𝐸 + 00 2.93𝐸 + 00 1.06𝐸 + 01

Ratio 1.15𝐸 + 00 1.74𝐸 + 00 3.71𝐸 + 00 9.78𝐸 + 00 3.76𝐸 + 01 8.18𝐸 + 01

C4-A2a 1.17𝐸 − 01 3.53𝐸 − 01 1.65𝐸 + 00 1.03𝐸 + 01 1.10𝐸 + 02 8.78𝐸 + 02

C4-A2a,b 9.44𝐸 − 02 2.02𝐸 − 01 4.42𝐸 − 01 1.04𝐸 + 00 2.88𝐸 + 00 1.07𝐸 + 01

Ratio 1.24𝐸 + 00 1.75𝐸 + 00 3.75𝐸 + 00 9.88𝐸 + 00 3.83𝐸 + 01 8.21𝐸 + 01

aA1 denotes Approach 1 and A2 denotes Approach 2
bEstimation implemented by the two newly proposed procedures.

the accuracy and efficiency before estimating parameters is
usually a matter of a dilemma. The MLE for Hurst exponent
is considered optimal in accuracy, whereas the computa-
tional cost of the MLE was once considered as tremendous,
which hinders the MLE from being recommended to quick
response systems. Fortunately, the Levinson algorithm and
Cholesky decomposition can be combined to improve the
computational efficiency, and further overcome the dilemma.
On the other hand, a potential modeling problem of physical
signals is also considered. The first proposed MLE for Hurst
exponent only considered one case with given mean as zero,
which is only suitable for signals of DFBM. However, many
physical signals are like the model of DFGN, with nonzero
means.Therefore, users must take the samplemean out of the
original signal before using theMLE, or a direct computation
will easily lead to a severely wrong result, further providing
a wrong signal explanation. In order to extend the MLE for
Hurst exponent to signals of DFGN, four possible cases are
considered: known mean, unknown mean, known variance,

and unknown variance. The experimental results show that
the computational cost is largely reduced by a combina-
tion of Levinson algorithm and Cholesky decomposition.
Moreover, numerical stability is also provided to help users
avoid numerical mistakes due to negligence. After balancing
inherent accuracy with boosted efficiency, the MLE might
be the preferred option for estimating Hurst exponent in
the near future. More importantly, this idea for efficiently
implementing the MLE can be extended to other variants of
the MLE for other fields, making real-time computation with
best accuracy more possible.

Appendix

Proof of Case 3. In this appendix, maximizing (z − 𝜇)
𝑇A

(z − 𝜇) with respect to 𝜇 is proved to be 𝜇 = (1/‖A‖
𝑠
)

∑
𝑁−1

𝑘=0
‖a
𝑘
‖
𝑠
𝑧
𝑘
, where A = R−1, a

𝑘
= [𝑎0𝑘 𝑎

1𝑘
⋅ ⋅ ⋅ 𝑎
(𝑁−1)𝑘]

𝑇,
‖a
𝑘
‖
𝑠

= ∑
𝑁−1

𝑖=0
𝑎
𝑖𝑘
, and ‖A‖

𝑠
= ∑

𝑁−1

𝑘=0
‖a
𝑘
‖
𝑠
by using
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mathematical induction. Obviously, ‖A‖
𝑠
denotes the sum

of all elements of matrix A. For clarity, the subscript 𝑁

is used to emphasize the dependence on the data size
during the procedure of proof. Under this situation, 𝜇 =

(1/‖A
𝑁
‖
𝑠
) ∑
𝑁−1

𝑘=0
‖a
𝑘,𝑁

‖
𝑠
𝑧
𝑘
, where A

𝑁
= R−1

𝑁
, a
𝑘,𝑁

=

[𝑎0𝑘 𝑎
1𝑘

⋅ ⋅ ⋅ 𝑎
(𝑁−1)𝑘]

𝑇

, ‖a
𝑘,𝑁

‖
𝑠

= ∑
𝑁−1

𝑖=0
𝑎
𝑖𝑘

and ‖A
𝑁
‖
𝑠

=

∑
𝑁−1

𝑘=0
‖a
𝑘,𝑁

‖
𝑠
.

For 𝑁 = 1, the trivial case, it follows that

(z − 𝜇)
𝑇

1
A
1
(z − 𝜇)

1
= (𝑧
0
− 𝜇) 𝑎

00
(𝑧
0
− 𝜇)

= 𝑎
00

(𝑧
2

0
− 2𝑧
0
𝜇 + 𝜇
2
) .

(A.1)

By maximizing the above quantity, it follows that

𝜕

𝜕𝜇
(z − 𝜇)

𝑇A
1
(z − 𝜇) = 𝑎

00
(−2𝑧
0
+ 2𝜇) = 0. (A.2)

Therefore, it follows that 𝜇 = (1/𝑎
00
)𝑎
00
𝑧
0

= 𝑧
0
, which is

consistent with the equality 𝜇 = (1/‖A
𝑁
‖
𝑠
) ∑
𝑁−1

𝑘=0
‖a
𝑘,𝑁

‖
𝑠
𝑧
𝑘
,

for 𝑁 = 1, as desired. So, the proposition is true for 𝑁 = 1.
Next, assume that 𝜇 = (1/‖A

𝑀
‖
𝑠
) ∑
𝑀−1

𝑘=0
‖a
𝑘,𝑀

‖
𝑠
𝑧
𝑘
, for some

integers 𝑀 > 1; that is,

𝜕

𝜕𝜇
(z − 𝜇)

𝑇

𝑀
A
𝑀
(z − 𝜇)

𝑀
= 2𝜇

𝑀−1

∑

𝑘=0

a𝑘,𝑀
𝑠

− 2

𝑀−1

∑

𝑘=0

a𝑘,𝑀
𝑠
𝑧
𝑘

= 2𝜇
A𝑀

𝑠
− 2

𝑀−1

∑

𝑘=0

a𝑘,𝑀
𝑠
𝑧
𝑘
= 0.

(A.3)

Finally, let 𝑁 = 𝑀 + 1; then it follows that

(z − 𝜇)
𝑇

𝑀+1
A
𝑀+1

(z − 𝜇)
𝑀+1

= [(z − 𝜇)
𝑇

𝑀
𝑧
𝑀

− 𝜇] [
A
𝑀

a
𝑀,𝑀+1

a𝑇
𝑀,𝑀+1

𝑎
𝑀𝑀

] [
(z − 𝜇)

𝑀

𝑧
𝑀

− 𝜇
] ,

= [(z − 𝜇)
𝑇

𝑀
𝑧
𝑀

− 𝜇]

× [
A
𝑀
(z − 𝜇)

𝑀
+ a
𝑀,𝑀+1

(𝑧
𝑀

− 𝜇)

a𝑇
𝑀,𝑀+1

(z − 𝜇)
𝑀

+ 𝑎
𝑀𝑀

(𝑧
𝑀

− 𝜇)
]

= (z − 𝜇)
𝑇

𝑀
A
𝑀
(z − 𝜇)

𝑀
+ (z − 𝜇)

𝑇

𝑀
a
𝑀,𝑀+1

(𝑧
𝑀

− 𝜇)

+ a𝑇
𝑀,𝑀+1

(z − 𝜇)
𝑀

(𝑧
𝑀

− 𝜇) + 𝑎
𝑀𝑀

(𝑧
𝑀

− 𝜇)
2

= (z − 𝜇)
𝑇

𝑀
A
𝑀
(z − 𝜇)

𝑀

+ 2a𝑇
𝑀,𝑀+1

(z − 𝜇)
𝑀

(𝑧
𝑀

− 𝜇) + 𝑎
𝑀𝑀

(𝑧
𝑀

− 𝜇)
2

= (z − 𝜇)
𝑇

𝑀
A
𝑀
(z − 𝜇)

𝑀

+ 2𝑎
0𝑀

(𝑧
0
− 𝜇) (𝑧

𝑀
− 𝜇) + 2𝑎

1𝑀
(𝑧
1
− 𝜇) (𝑧

𝑀
− 𝜇)

+ ⋅ ⋅ ⋅ + 2𝑎
(𝑀−1)𝑀

(𝑧
𝑀−1

− 𝜇) (𝑧
𝑀

− 𝜇) + 𝑎
𝑀𝑀

(𝑧
𝑀

− 𝜇)
2

a
𝑀,𝑀+1

≡ [𝑎0𝑀 𝑎
1𝑀

⋅ ⋅ ⋅ 𝑎
(𝑀−1)𝑀]

𝑇

.

(A.4)

By maximizing the quantity with respect to 𝜇, it follows that

𝜕

𝜕𝜇
(z − 𝜇)

𝑇

𝑀+1
A
𝑀+1

(z − 𝜇)
𝑀+1

=
𝜕

𝜕𝜇
(z − 𝜇)

𝑇

𝑀
A
𝑀
(z − 𝜇)

𝑀

+ 2𝑎
0𝑀

(𝑧
𝑀

− 𝜇) (−1) + 2𝑎
0𝑀

(𝑧
0
− 𝜇) (−1)

+ 2𝑎
1𝑀

(𝑧
𝑀

− 𝜇) (−1) + 2𝑎
1𝑀

(𝑧
1
− 𝜇) (−1)

+ ⋅ ⋅ ⋅ + 2𝑎
(𝑀−1)𝑀

(𝑧
𝑀

− 𝜇) (−1)

+ 2𝑎
(𝑀−1)𝑀

(𝑧
𝑀−1

− 𝜇) (−1) + 2𝑎
𝑀𝑀

(𝑧
𝑀

− 𝜇) (−1)

= 2𝜇
A𝑀

𝑠
− 2

𝑀−1

∑

𝑘=0

a𝑘,𝑀
𝑠
𝑧
𝑘

+ 2𝜇 (2𝑎
0𝑀

+ 2𝑎
1𝑀

+ ⋅ ⋅ ⋅ + 2𝑎
(𝑀−1)𝑀

+ 𝑎
𝑀𝑀

) − 2𝑎
0𝑀

𝑧
0

− 2𝑎
1𝑀

𝑧
1
− ⋅ ⋅ ⋅ − 2𝑎

(𝑀−1)𝑀
𝑧
𝑀−1

− 2 (𝑎
0𝑀

+ 𝑎
1𝑀

+ ⋅ ⋅ ⋅ + 𝑎
𝑀𝑀

) 𝑧
𝑀

= 2𝜇 (
A𝑀

𝑠
+ 2𝑎
0𝑀

+ 2𝑎
1𝑀

+ ⋅ ⋅ ⋅ + 2𝑎
(𝑀−1)𝑀

+ 𝑎
𝑀𝑀

)

− 2

𝑀−1

∑

𝑘=0

(
a𝑘,𝑀

𝑠
+ 𝑎
𝑘𝑀

) 𝑧
𝑘

− 2 (𝑎
0𝑀

+ 𝑎
1𝑀

+ ⋅ ⋅ ⋅ + 𝑎
𝑀𝑀

) 𝑧
𝑀
,

= 2𝜇
A𝑀+1

𝑠
− 2

𝑀−1

∑

𝑘=0

a𝑘,𝑀+1
𝑠
𝑧
𝑘
− 2

a𝑀,𝑀+1
𝑠
𝑧
𝑀

= 2𝜇
A𝑀+1

𝑠
− 2

𝑀

∑

𝑘=0

a𝑘,𝑀+1
𝑠
𝑧
𝑘
= 0, 𝑎

𝑖𝑗
= 𝑎
𝑗𝑖
.

(A.5)

Therefore, it follows that

𝜇 =
1

A𝑀+1
𝑠

𝑀

∑

𝑘=0

a𝑘,𝑀+1
𝑠
𝑧
𝑘
, (A.6)

as desired. Kay [43] also provides another derivation from a
more general form of a linear model without considering the
Hurst exponent 𝐻.
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