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Equipping multijoint manipulators on a mobile robot is a typical redesign scheme to make the latter be able to actively influence
the surroundings and has been extensively used for many ground robots, underwater robots, and space robotic systems. However,
the rotor-flying robot (RFR) is difficult to be made such redesign. This is mainly because the motion of the manipulator will bring
heavy coupling between itself and the RFR system, which makes the system model highly complicated and the controller design
difficult.Thus, in this paper, the modeling, analysis, and control of the combined system, called rotor-flying multijoint manipulator
(RF-MJM), are conducted. Firstly, the detailed dynamics model is constructed and analyzed. Subsequently, a full-state feedback
linear quadratic regulator (LQR) controller is designed through obtaining linearized model near steady state. Finally, simulations
are conducted and the results are analyzed to show the basic control performance.

1. Introduction

Rotor-flying robot (RFR) has been researched for several
decades and achieved great development. To date, RFRs have
shown their priority inmany applications, such as search, res-
cue, and surveillance [1–6]. However, these applications are
often passive. That means the RFR system can’t manipulate
the interested objects by a direct physical interaction.

Most recently, this problem has attained more and more
attentions from many researches. For example, some
researchers suggest to equip a gripper on the RFR system
so that the RFR system can grasp as shown Figure 1 [7–9].
But it still has some disadvantages including that (1) the
manipulation can only be implemented through controlling
the attitude of the RFR system. However, the precise control
of the RFR system is difficult due to its complicated dynamics,
and the precise manipulation is impossible. (2) With this
structure, in order to manipulate an object, the RFR must
approach it. This, however, may both bring the so-called
ground effect and “blow” the object, which makes the precise
control much more difficult.

In this paper, a new system structure as shown in Figure 2
is proposed. The system is composed of an RFR system and

a multijoint manipulator and thus called rotor-flying mul-
tijoint manipulator (RF-MJM). Compared to the structure
in Figure 1, the multiple-joint manipulator can be used to
regulate position and attitude of the end-gripper. This is very
useful to compensate the control imprecision of the RFR
system and makes precise manipulation much easier.

However, it is obvious that the system shown in Figure 2
is very difficult to be controlled. This is mainly because the
RFR system itself is very sensitive to the external disturbance
(force/moment), especially for the time varying disturbance,
for example, from amovingmanipulator as the new proposed
RF-MJM system.Thus, it is very important and necessary for
us to study the detailed model that can describe the coupling
between the RFR and the manipulator. What is more, to
construct a full-state high fidelity dynamics model is also a
benefit for optimizing the design parameters, for example,
the mass, the joint number, and the configuration of the
manipulator, and testing the designed control algorithms.

Thus in this paper, the dynamics model of the RF-
MJM system is constructed and analyzed to show its basic
performance.Moreover, the linear LQR controller is designed
to test the basic closed loop performance of it. The main
contributions of this paper are as the following three aspects:
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(a) (b)

Figure 1: RFR system designed by Yale University (a) and DLR (b).

Figure 2: Sketch of the RF-MJM system.

(1) a detailed full-state high fidelity nonlinear dynamics
model of the RF-MJM system is constructed through using
Euler-Lagrangemethod; (2) the dynamics couplings between
the RFR and the manipulator are analyzed in detail, which
is good for the optimal design of the system configuration;
(3) LQR controller is designed based on the linearized system
model and simulations are conducted to show the basic
control performance of the new proposed system.

2. Dynamics Model of RF-MJM

The dynamics model of the RF-MJM is composed of three
parts as shown in Figure 3: the body dynamics model, the
mid-dynamics model, and the actuator model. The body
dynamics model describes the relation between the motion
state and the external force/torque exerting on the body
of the robot; the mid-dynamics model represents how the
force/torque is produced, that is, the aerodynamics of the
RFR, and the torque from the manipulator joint motor, while
the actuator model depicts the dynamical characteristic of
the actuator, for example, the motors of the manipulator and
the steering engine of the RFR. For the RF-MJM system,

Body dynamics model

Actuator model

Mid-dynamics model

Force/torque exerting 
on the robot

State of actuator

Motion state of 
robot

System output

System input

Figure 3: Model structure of the RF-MJM system.

the coupling between the RFR and the manipulator will
mainly influence the body dynamics model, which, then, will
be discussed in this paper.

ARF-MJM system is actually amultilink system shown as
in Figure 4,where the cube denotes theRFR and the ellipsoids
denote the link of themanipulator; Σ

0
, Σ
𝐼
, Σ
𝐸
, and Σ

𝑖
are RFR

body-fixed reference frame, earth-fixed inertial frame, end-
gripper frame, and the frame of the 𝑖th joint of manipulator;
𝐽
𝑖
(𝑖 = 1, 2, . . . , 𝑛) denote the joint of the manipulator; 𝑝

𝑖

denotes its position vector in the frame of Σ
𝐼
; 𝐶

0
and 𝐶

𝑖
are

the position vector of the center of mass (COM) of the link
RFR and the link 𝑖; 𝑑

0
and 𝑑

𝑖
are the position vectors of 𝐶

0

and 𝐶
𝑖
; 𝑎
𝑖
is the vector from 𝐽

𝑖
to 𝐶

𝑖
; 𝑏
0
is the vector from

COM of the RFR to the first joint; 𝑏
𝑖
is vector from 𝐶

𝑖
to 𝐽

𝑖+1
;

𝑛 is the number of the manipulator’s link.

2.1. Kinematics Model. In this paper, we suppose that both
the RFR system and the manipulator are rigid. Thus, the
following geometric relations are satisfied:

𝑑
𝑖
= 𝑑

0
+ 𝑏

0
+

𝑖−1

∑
𝑘=1

(𝑎
𝑘
+ 𝑏

𝑘
) + 𝑎

𝑖
. (1)

Differentiate it with respect to time and we have

V
𝑖
= ̇𝑑

𝑖
= V

0
+ 𝜔

0
× (𝑑

𝑖
− 𝑑

0
) +

𝑖

∑
𝑘=1

{
̇

𝑘
𝑘
× (𝑑
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𝑘
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} ,

(2)
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Figure 4: System structure of the RF-MJM system.

where V
0
and V

𝑖
are the linear velocity of the COM of the RFR

and the link 𝑖, respectively; 𝜔
0
is the angular velocity of the

RFR in the frame of Σ
𝐼
; 𝜃
𝑘
is the angular position vector of

the 𝑘th joint; 𝑘
𝑘
denotes the unit vector of the axis 𝑍

𝑖
of the

𝑖th joint frame; 𝑑
𝑖
, 𝑝

𝑘
represent the position vectors of the

COM of the link 𝑖 and the 𝑘th joint. The angular velocity of
the 𝑖th joint can be denoted as

𝜔
𝑖
= 𝜔

0
+

𝑖

∑
𝑘=1

𝑘
𝑘
̇𝜃
𝑘
. (3)

Combine (2) and (3), and the kinematic model of the RF-
MJM system is

[
V
𝑖

𝜔
𝑖

] = 𝐽
𝑏𝑖
[
V
0

𝜔
0

] + 𝐽
𝑚𝑖
Θ̇, (4)

where 𝐽
𝑏𝑖
is the Jacobian matrix of the RFR system and has

the following form:

𝐽
𝑏𝑖
= [

𝐸 −𝑑
0𝑖

0 𝐸
] + [

𝐽
𝑏V𝑖
𝐽
𝑏𝜔𝑖

] . (5)

In (5), 𝐸 is the unity matrix with proper dimension:

𝑑
0𝑖
= 𝑑

𝑖
− 𝑑

0
= [𝑑0𝑖,𝑥 𝑑

0𝑖,𝑦
𝑑
0𝑖,𝑧]

𝑇 (6)

and 𝑑
0𝑖
is the skew-symmetric matrix of the vector 𝑑

0𝑖
; that

is,

𝑑
0𝑖
= [

[

0 −𝑑
0𝑖,𝑧

𝑑
0𝑖,𝑦

𝑑
0𝑖,𝑧

0 −𝑑
0𝑖,𝑥

−𝑑
0𝑖,𝑦

𝑑
0𝑖,𝑥

0

]

]

. (7)

𝐽
𝑚𝑖
in (4) is the Jacobianmatrix of themanipulator system

defined as

𝐽
𝑚𝑖
= [

𝑘
1
× (𝑑

𝑖
− 𝑝

1
) ⋅ ⋅ ⋅ 𝑘

𝑖
× (𝑑

𝑖
− 𝑝

𝑖
)

𝑘
1

⋅ ⋅ ⋅ 𝑘
𝑖

] = [
𝐽
𝑚V𝑖
𝐽
𝑚𝜔𝑖

] . (8)

Also, we can transform the linear velocity of the RFR V
0

into the velocity in the RFR body frame; that is,

V
0
= [

[

𝑐𝜃𝑐𝜑 𝑠𝜙𝑠𝜃𝑐𝜑 − 𝑐𝜙𝑠𝜑 𝑐𝜙𝑠𝜃𝑐𝜑 + 𝑠𝜙𝑠𝜑

𝑐𝜃𝑠𝜑 𝑐𝜙𝑐𝜑 + 𝑠𝜃𝑠𝜙𝑠𝜑 𝑐𝜙𝑠𝜃𝑠𝜑 − 𝑠𝜙𝑐𝜑

−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

]

]

[

[

𝑢

V
𝑤

]

]

, (9)
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where 𝑐 and 𝑠 mean trigonometric function cos and sin,
respectively;Φ = [𝜙, 𝜃, 𝜓]𝑇 represents the attitude of theRFR;
[𝑢, V, 𝑤] is the linear velocity of the RFR in the RFR body fixed
reference frame.

Similarly, the relation between the angular velocity in the
frame of Σ

𝐼
and that in the body frame is as follows:

𝜔
0
=

[
[
[
[

[

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃

0 cos𝜙 − sin𝜙

0 sin𝜙 sec 𝜃 cos𝜙 sec 𝜃

]
]
]
]

]

[
[
[
[

[

𝑝

𝑞

𝑟

]
]
]
]

]

, (10)

where 𝑝, 𝑞, and 𝑟 are the components of the angular velocity
along the axes of the RFR body fixed reference frame.

2.2. Dynamics Model. In this section, the dynamics model of
the RF-MJM system will be deduced using Euler-Lagrange
method.

2.2.1. Kinetic Energy. Firstly, the kinetic energy of the system
can be denoted as

𝐸
𝑘
=
1

2

𝑛

∑
𝑖=1

(𝜔
𝑇

𝑖
𝐼
𝑖
𝜔
𝑖
+ 𝑚

𝑖
V𝑇
𝑖
V
𝑖
) , (11)

where𝑚
𝑖
and 𝐼

𝑖
are the mass and the inertia tensor of the 𝑖th

part[10].
Substitute (2) and (3) into (11), we have
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]
]
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]

[
[

[
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𝜔0

Θ̇

]
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1
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[
[

[
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]
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]

𝑇

𝐻
[
[

[
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]
]

]

,

(12)

where 𝐻 is called the inertia matrix of the RF-MJM system
with

𝐻
𝑚
=

𝑛

∑
𝑖=1

(𝐽
𝑇

𝑅𝑖
𝐼𝐽
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𝑖
𝐽
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𝐽
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)
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𝑖
𝐽
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)

𝐻
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𝑛

∑
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𝑖
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𝑖
𝑑
𝑇

0𝑖
𝑑
0𝑖
) + 𝐼

0

𝐻
𝜔𝜙
=

𝑛

∑
𝑖=1

(𝐼
𝑖
𝐽
𝑅𝑖
+ 𝑚

𝑖
𝑑
𝑇

0𝑖
𝐽
𝑇𝑖
)

𝐽
𝑅𝑖
= [𝑘1 𝑘2 ⋅ ⋅ ⋅ 𝑘𝑖 0 ⋅ ⋅ ⋅ 0]

𝐽
𝑇𝑖

= [𝑘1×(𝑑𝑖−𝑝1) 𝑘2× (𝑑𝑖−𝑝2) ⋅ ⋅ ⋅ 𝑘𝑖 × (𝑑𝑖− 𝑝𝑖) 0 ⋅ ⋅ ⋅ 0] ,

𝑑
𝑔
=
∑
𝑛

1=0
𝑚
𝑖
𝑑
𝑖

∑
𝑛

1=0
𝑚
𝑖

.

(13)

2.2.2. Potential Energy. In this part, the potential energy due
to the gravity will be deduced. Firstly, based on Figure 2, (1)
can be rewritten as

𝑑
𝑖
= 𝑑

0
+

𝑖

∑
𝑘=1

(
𝐼
𝐴
𝑘−1
𝐶
𝑘−1,𝑘

−
𝐼
𝐴
𝑘
𝐶
𝑘,𝑘
) , (14)

where 𝐼
𝐴
0
and 𝐼

𝐴
𝑘
denote the coordinate transformation

matrix from the frame Σ
0
and the frame Σ

𝑘
to the frame

Σ
𝐼
, respectively; 𝐶

𝑘,𝑘
is the position vector from joint 𝑖 to

the COM of the 𝑖th partdenoted in the 𝑖th joint coordinate
system.

With (14), the potential energy due to gravity of the RF-
MJM system can be easily obtained as follows:

𝐸
𝑝
= −

𝑛

∑
𝑖=0

𝑚
𝑖
𝐺
𝑇
𝑑
𝑖

=

𝑛

∑
𝑖=0

𝑚
𝑖
𝐺
𝑇
(𝑑

0
+

𝑖−1

∑
𝑘=1

(
𝐼
𝐴
𝑘−1
𝐶
𝑘−1,𝑘

−
𝐼
𝐴
𝑘−1
𝐶
𝑘,𝑘
)) ,

(15)

where

𝐺 = [

[

0

0

𝑔

]

]

(16)

and 𝑔 is the acceleration due to gravity.

2.2.3. Dynamics Model. The Euler-Lagrangian equation of
the RF-MJM system is

𝐿 = 𝐸
𝑘
− 𝐸

𝑝
. (17)

From (12), the kinetic energy can be rewritten as

𝐸
𝑘
=
1

2
[𝜛V𝑇

0
𝐸V
0
+ 𝜛𝜔

𝑇

0
𝑑
0𝑔
V
0
+ Θ̇

𝑇
𝐽
𝑇

𝑇𝜔
V
0

+ 𝜛V𝑇
0
𝑑
𝑇

0𝑔
𝜔
0
+ 𝜔

𝑇

0
𝐻
𝜔
𝜔
0
+ Θ̇

𝑇
𝐻
𝑇

𝜔𝜙
𝜔
0

+ V𝑇
0
𝐽
𝑇𝜔
Θ̇ + 𝜔

𝑇

0
𝐻
𝜔𝜙
Θ̇ + Θ̇

𝑇
𝐻
𝑚
Θ̇] .

(18)
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Thus we have

𝜕𝐸
𝑘

𝜕 ̇𝑞
=

[
[
[
[
[
[
[

[

𝜕𝐸
𝑘

𝜕V
0

𝜕𝐸
𝑘

𝜕𝜔
0

𝜕𝐸
𝑘

𝜕Θ̇

]
]
]
]
]
]
]

]

=
[
[
[

[

𝜛𝐸V
0
+ 𝜛𝑑𝑇

0𝑔
𝜔
0
+ 𝐽

𝑇𝜔
Θ̇

𝐻
𝜔
𝜔
0
+ 𝜛𝑑

0𝑔
V
0
+ 𝐻

𝜔𝜙
Θ̇

𝐻
𝑚
Θ̇ + 𝐻𝑇

𝜔𝜙
𝜔
0
+ 𝐽𝑇

𝑇𝜔
V
0

]
]
]

]

, (19)

𝑑

𝑑𝑡
(
𝜕𝐸
𝑘

𝜕 ̇𝑞
) =

[
[
[
[
[
[
[

[

𝑑

𝑑𝑡
(
𝜕𝐸
𝑘

𝜕V
0

)

𝑑

𝑑𝑡
(
𝜕𝐸
𝑘

𝜕𝜔
0

)

𝑑

𝑑𝑡
(
𝜕𝐸
𝑘

𝜕Θ̇
)

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝜛𝐸V̇
0
+ 𝜛

̇̃
𝑑
𝑇

0𝑔
𝜔
0
+ 𝜛𝑑𝑇

0𝑔
�̇�
0
+ 𝐽

𝑇𝜔
Θ̈ + ̇𝐽

𝑇𝜔
Θ̇

�̇�
𝜔
𝜔
0
+ 𝐻

𝜔
�̇�
0
+ 𝜛

̇̃
𝑑
0𝑔
V
0
+ 𝜛𝑑

0𝑔
V̇
0
+ �̇�

𝜔𝜙
Θ̇ + 𝐻

𝜔𝜙
Θ̈

�̇�
𝑚
Θ̇ + 𝐻

𝑚
Θ̈ + �̇�𝑇

𝜔𝜙
𝜔
0
+ 𝐻𝑇

𝜔𝜙
�̇�
0
+ ̇𝐽𝑇

𝑇𝜔
V
0
+ 𝐽𝑇

𝑇𝜔
V̇
0

]
]
]
]
]
]

]

, (20)

𝜕𝐸
𝑘

𝜕𝑞
=

[
[
[
[
[
[
[
[

[

𝜕𝐸
𝑎

𝜕𝑝
+
𝜕𝐸
𝑏

𝜕𝑝
+
𝜕𝐸
𝑐

𝜕𝑝

𝜕𝐸
𝑎

𝜕Φ
+
𝜕𝐸
𝑏

𝜕Φ
+
𝜕𝐸
𝑐

𝜕Φ

𝜕𝐸
𝑎

𝜕Θ
+
𝜕𝐸
𝑏

𝜕Θ
+
𝜕𝐸
𝑐

𝜕Θ

]
]
]
]
]
]
]
]

]

, (21)

where

𝑞 =

[
[
[
[

[

𝑋

Φ

Θ

]
]
]
]

]

, ̇𝑞 =

[
[
[
[

[

V
0

𝜔
0

Θ̇

]
]
]
]

]

(22)

are the position vector and the velocity vector of the RF-MJM
system, respectively;𝑋 is the position vector of the RFR; and

𝐸
𝑎
= 𝜛𝜔

𝑇

0
𝑑
0𝑔
V
0
; 𝐸

𝑏
=
1

2
𝜔
𝑇

0
𝐻
𝜔
𝜔
0
;

𝐸
𝑐
= (V𝑇

0
𝐽
𝑇𝜔
+ 𝜔

𝑇

0
𝐻
𝜔𝜙
+
1

2
Θ̇
𝑇
𝐻
𝑚
) Θ̇.

(23)

Similarly, with respect to the potential energy term, we
have

𝜕𝐸
𝑝

𝜕𝑋
=

𝑛

∑
𝑖=0

𝑚
𝑖

[
[
[
[
[
[
[
[
[

[

𝜕𝑔
𝑇𝑑
0

𝜕𝑥
0

𝜕𝑔𝑇𝑑
0

𝜕𝑦
0

𝜕𝑔
𝑇
𝑑
0

𝜕𝑧
0

]
]
]
]
]
]
]
]
]

]

, (24)

𝜕𝐸
𝑝

𝜕Θ
= −(

𝑛

∑
𝑖=0

𝑚
𝑖
𝜕𝑔
𝑇

× (𝑑
0
+

𝑖

∑
𝑗=1

(
𝐼
𝐴
𝑗−1
∗𝐶

𝑗−1,𝑗
−
𝐼
𝐴
𝑗
∗𝐶

𝑗,𝑗
)))

× (𝜕Θ)
−1
,

(25)

𝜕𝐸
𝑝

𝜕Φ

= −

[
[
[
[
[
[
[

[

𝜕𝐸
𝑝

𝜕𝜙
𝜕𝐸
𝑝

𝜕𝜃
𝜕𝐸
𝑝

𝜕𝜑

]
]
]
]
]
]
]

]

= −

[
[
[
[
[
[
[
[
[

[

−∑
𝑛

𝑖=1
𝑚
𝑖
𝜕𝑔𝑇∑

𝑖

𝑗=1
(
𝐼
𝐴
𝑗−1
∗𝐶

𝑗−1,𝑗
−
𝐼
𝐴
𝑗
∗𝐶

𝑗,𝑗
)

𝜕𝜙

−∑
𝑛

𝑖=1
𝑚
𝑖
𝜕𝑔𝑇∑

𝑖

𝑗=1
(
𝐼
𝐴
𝑗−1
∗𝐶

𝑗−1,𝑗
−
𝐼
𝐴
𝑗
∗𝐶

𝑗,𝑗
)

𝜕𝜃
−∑

𝑛

𝑖=1
𝑚
𝑖
𝜕𝑔𝑇∑

𝑖

𝑗=1
(
𝐼
𝐴
𝑗−1
∗𝐶

𝑗−1,𝑗
−
𝐼
𝐴
𝑗
∗𝐶

𝑗,𝑗
)

𝜕𝜑

]
]
]
]
]
]
]
]
]

]

.

(26)

Thus, the dynamics model of the RF-MJM system can be
obtained through the following Euler-Lagrange equation:

𝑑

𝑑𝑡

𝜕𝐸
𝑘

𝜕 ̇𝑞
−
𝜕𝐸
𝑘

𝜕𝑞
+
𝜕𝐸
𝑃

𝜕𝑞
= 𝜏. (27)

Substitute (20)–(21) and (24)–(26) into (27) and after
simplifying we can obtain the following dynamics model of
the RF-MJM system:

[
𝐻
𝑏
𝐻
𝑏𝑚

𝐻𝑇
𝑏𝑚

𝐻
𝑚

][
�̈�
𝑏

Θ̈
] + [

𝐶
𝑏

𝐶
𝑚

] + [
𝐺
𝑏

𝐺
𝑚

] = [
𝐹
𝑝

𝜏
𝑚

] , (28)

where

�̈�
𝑏
= [

V̇
0

�̇�
0

] . (29)
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𝐶
𝑏
and𝐶

𝑚
are theCoriolis and centrifugal force of the system;

𝐺
𝑏
and 𝐺

𝑚
are the force due to gravity;

𝐹
𝑝
= [

𝐹
𝐵

𝑀
𝐵

] ; 𝐹
𝐵
=
[
[

[

𝐹
𝑥

𝐹
𝑦

𝐹
𝑧

]
]

]

; 𝑀
𝐵
=
[
[

[

𝐿

𝑀

𝑁

]
]

]

(30)

are the force and moment produced by the RFR; the other
terms are defined as follows:

𝐻
𝑏
= [

𝐻
𝑏11

𝐻
𝑏12

𝐻
𝑏21

𝐻
𝑏22

]

𝐻
𝑏11
= 𝜛𝐸; 𝐻

𝑏12
= 𝜛𝑑

𝑇

𝑜𝑔
;

𝐻
𝑏21
= 𝜛𝑑

𝑜𝑔
; 𝐻

𝑏22
= 𝐻

𝜔

𝐻
𝑏𝑚
= [

𝐻
𝑏𝑚V

𝐻
𝑏𝑚𝜔

]

2×1

𝐻
𝑏𝑚V
= 𝐽

𝑇𝜔
; 𝐻

𝑏𝑚𝜔
= 𝐻

𝜔𝜙

𝐶
𝑏
= [

𝐶
𝑏V

𝐶
𝑏𝜔

]

𝐶
𝑏V = 𝜛

̇̃
𝑑
𝑇

0𝑔
𝜔
0
+ ̇𝐽

𝑇𝜔
Θ̇ − 𝜛𝜔

𝑇

0

𝜕𝑑
0𝑔

𝜕𝑋
V
0
− V𝑇

0

𝜕𝐽
𝑇𝜔

𝜕𝑋
Θ̇

− 𝜔
𝑇

0

𝜕𝐻
𝜔𝜙

𝜕𝑋
Θ̇ −

1

2
(𝜔

𝑇

0

𝜕𝐻
𝜔

𝜕𝑋
𝜔
0
+ Θ̇

𝑇 𝜕𝐻𝑚

𝜕𝑋
Θ̇)

𝐶
𝑏𝜔
= �̇�

𝜔
𝜔
0
+ 𝜛

̇̃
𝑑
0𝑔
V
0
+ �̇�

𝜔𝜙
Θ̇ − 𝜛𝜔

𝑇

0

𝜕𝑑
0𝑔

𝜕Φ
V
0
− V𝑇

0

𝜕𝐽
𝑇𝜔

𝜕Φ
Θ̇

− 𝜔
𝑇

0

𝜕𝐻
𝜔𝜙

𝜕Φ
Θ̇ −

1

2
(𝜔

𝑇

0

𝜕𝐻
𝜔

𝜕Φ
𝜔
0
+ Θ̇

𝑇 𝜕𝐻𝑚

𝜕Φ
Θ̇) .

𝐶
𝑚
=
1

2
̇𝐽
𝑇

𝑇𝜔
V
0
+
1

2
V𝑇
0
̇𝐽
𝑇𝜔
+
1

2
�̇�
𝑇

𝜔𝜙
𝜔
0
+
1

2
𝜔
𝑇

0
�̇�
𝜔𝜙
+ �̇�

𝑚
Θ̇.

(31)

2.2.4. Extended Dynamics Model. When the manipulator
contacts some external objects, the dynamics model (28)
becomes

[
𝐻
𝑏
𝐻
𝑏𝑚

𝐻𝑇
𝑏𝑚

𝐻
𝑚

][

[

�̈�
𝑏

Θ̈

]

]

+ [

[

𝐶
𝑏

𝐶
𝑚

]

]

+ [

[

𝐺
𝑏

𝐺
𝑏

]

]

= [

[

𝐹
𝑝

𝜏
𝑚

]

]

+ [

[

𝐽𝑇
𝑏

𝐽𝑇
𝑚

]

]

𝐹
𝑒
,

(32)

where 𝐹
𝑒
is the force and torque exerting on the end of the

manipulator; 𝐽
𝑏
and 𝐽

𝑚
are the Jacobian matrix defined as

𝐽
𝑏
= [

[

𝐸 −𝑝
0𝑖

0 𝐸

]

]

; 𝑝
0𝑖
= 𝑝

𝑖
− 𝑑

0
;

𝐽
𝑚
= [

𝑘
1
× (𝑝

𝑒
− 𝑝

1
) 𝑘

2
× (𝑝

𝑒
− 𝑝

2
) ⋅ ⋅ ⋅ 𝑘

𝑛
× (𝑝

𝑒
− 𝑝

𝑛
)

𝑘
1

𝑘
2

⋅ ⋅ ⋅ 𝑘
𝑛

] .

(33)

Furthermore, if we consider the aerodynamics of the RFR
system, the force and moment produced by the RFR 𝐹

𝑝
can

be denoted as the following mathematical equations [11]:

𝐹
𝑋
= −𝑇

𝑀
sin 𝑎

1𝑠
; 𝐹

𝑌
= 𝑇

𝑀
sin 𝑏

1𝑠
− 𝑇

𝑇
;

𝐹
𝑍
= −𝑇

𝑀
cos 𝑎

1𝑠
cos 𝑏

1𝑠
;

𝐿 = −(
𝜕𝐿
𝑀

𝜕𝑏
1𝑠

) 𝑏
1𝑠
− 𝑄

𝑀
sin 𝑎

1𝑠
;

𝑀 = (
𝜕𝑀

𝑀

𝜕𝑎
1𝑠

)𝑎
1𝑠
− 𝑄

𝑀
sin 𝑏

1𝑠
− 𝑄

𝑇
;

𝑁 = −𝑄
𝑀
cos 𝑎

1𝑠
cos 𝑏

1𝑠
,

(34)

where 𝑇
𝑀

and 𝑇
𝑇
are the forces derived from the main

rotor and tail rotor of the RFR, and 𝑎
1𝑠

and 𝑏
1𝑠

stand for
the longitudinal and lateral flapping angle of main rotor,
respectively; the forces 𝑇

𝑀
and 𝑇

𝑇
and the moments 𝑄

𝑀
and

𝑄
𝑇
can be calculated as [12, 13].
Up to now, we have constructed the nonlinear dynamics

model of the RF-MJM system.

3. Analysis of Dynamics
Model and Linearization

3.1. Analysis of the Dynamics Model. In order to understand
the coupling between the RFR and manipulator clearly, we
rewrite the system model (28) as follows:

[
𝐻
𝑏
(Φ,Θ) 𝐻

𝑏𝑚
(Φ,Θ)

𝐻𝑇
𝑏𝑚
(Φ,Θ) 𝐻

𝑚 (Φ,Θ)
][

�̈�
𝑏

Θ̈
] + [

[

𝐶
𝑏
(V
0
, 𝜔
0,
Θ,Φ, Φ̇)

𝐶
𝑚
(V
0
, 𝜔
0,
Θ,Φ, Φ̇)

]

]

+ [
𝐺
𝑏
(𝑋,Θ,Φ)

𝐺
𝑏
(Θ,Φ)

] = [
𝐹
𝑝

𝜏
𝑚

] .

(35)

From (35), it can be easily seen that the coupling between the
RFR and the manipulator appears in all the terms except for
the exerting force/moment. That means the RF-MJM system
model is more complicated than the RFR system model as
shown in [11]. These can be summarized as follows.

(1) Compared to the RFR model, there are some new
terms in the system (28), such as𝐶

𝑏V.These new terms
make the system model more complicated, and the
result is that some control algorithm that has been
shown to be fit for RFR system cannot be used directly
in the RF-MJM system. For example, in reference
[11], a RFR system is proved to be approximate
feedback linearizable. This, unfortunately, cannot be
implemented in the RF-MJM system.

(2) The system structure of the RF-MJM is of great
complication compared to the RFR system. This can
be easily seen through the preceding system equa-
tions. Again, the reason is because of the coupling
between the RFR and the manipulator. The higher
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complication results in heavier nonlinearity which
makes the controller design of the RF-MJM systemex-
traordinarily challenging.

3.2. Linearization and LQR Controller Design. In the above
section, we have obtained the detailed mathematical model
of the RF-MJM system, which can be easily computed and
simulated through using symbolic computation toolbox of
MATLAB. However, this kind of controller is difficult to be
used due to the high complexity and nonlinearities. Thus, in
this section, we will try to find the linearizedmodel of the RF-
MJM system and analyze the influence of the parameters on
the system parameters.

The linearization can be implemented through the follow-
ing steps: firstly, search the trim point of the RF-MJM system;
secondly, compute the derivatives of the system model with
respect to the state and input to obtain the system matrix of
the desired linear model. With the linearized model, some
linear controller design strategies, for example, the LQR
controller, can be used to stabilize the original nonlinear
system. In the following content of this section, taking
one-joint RF-MJM system as an example, the linearization
and the LQR control design will be conducted and system
performance will be analyzed.

A trim point, also known as an equilibrium point, of a
nonlinear system is a point in the state space of a dynamic
system, and at this point, the derivatives of the states with
respect to time are precisely zeros.

The state vector of the RF-MJM can be denoted as

[𝑥 𝑦 𝑧 𝜙 𝜃 𝜓 𝑢 V 𝑤 𝑝 𝑞 𝑟 Θ Θ̇] (36)

and the input vector is

[𝑎1𝑠 𝑏1𝑠 𝜃𝑀 𝜃
𝑇
𝜏
Θ] , (37)

where 𝑎
1𝑠
and 𝑏

1𝑠
are the cyclic pitch angle of the main rotor,

respectively; 𝜃
𝑀

and 𝜃
𝑇
are the collective pitch angle of the

main rotor and the tilt rotor, respectively.
Based on the definition of trim point, all the velocity state

should be set to zeros; that is,

𝑢 = V = 𝑤 = 𝑝 = 𝑞 = 𝑟 = Θ̇ = 0. (38)

Also, all the derivatives of the states with respect to time
should be zeros. Under condition (38), this is equivalent to

[
�̈�
𝑏

Θ̈
] = 𝐻

−1
([
𝐹
𝑝

𝜏
𝑚

] + [
𝐽𝑇
𝑏

𝐽𝑇
𝑚

]𝐹
𝑒
− [

𝐶
𝑏

𝐶
𝑚

] − [
𝐺
𝑏

𝐺
𝑏

]) = 0
7×1
.

(39)

The right-hand side of (31) is only related to 𝜙, 𝜃, 𝜓, Θ,
and input vector, so we have 9 free variables and 7 equalities.
Furthermore, if we define 𝜏

Θ
= 0 and𝜓 = 0, we will have only

7 free variables. Thus, the trim point can be obtained directly
by solving the nonlinear equalities (39), which can be easily
conducted using some searching function in MATLAB.

In order to evaluate the influence of the mass of the
manipulator on the whole system, we list out the trim point

Table 1: Parameters of RF-MJM system.

Parameter Describe Unit
𝑚
0
= 9.5 The mass of rotor-flying robot (RFR) kg

𝑚
1
= 2.5 The mass of manipulator kg

𝐼
0𝑥𝑥

= 0.1634 Moment of inertia of RFR kgm2

𝐼
0𝑦𝑦

= 0.5782 Moment of inertia of RFR kgm2

𝐼
0𝑧𝑧

= 0.6306 Moment of inertia of RFR kgm2

𝐼
1𝑥𝑥

= 0.1399 Moment of inertia of manipulator kgm2

𝐼
1𝑦𝑦

= 0.1399 Moment of inertia of manipulator kgm2

𝐼
1𝑧𝑧

= 0.00112 Moment of inertia of manipulator kgm2

𝑙
0
= 0.3 The length from the centroid of RFR m

𝑙
1
= 0.4 The length of half of the first link m

𝜙 = 0.0769 Roll angle rad
𝜃 = 0.0211 Pitch angle rad
𝜓 = any value Yaw angle rad
𝜃
1
= 0.0211 Joint movement angle rad

𝐹
0
= [0 0 0]

𝑇

External force N

𝑇
0
= [0 0 0]

𝑇

External torque Nm

of the linearization system with different manipulator masses
(the parameters of the system are listed out in Table 1, and the
trim point is in Table 2 in the next section).

The linearization system model is

Δ�̇� = 𝐴Δ𝑋 + 𝐵Δ𝑢, (40)

where
Δ𝑋 = 𝑋 − 𝑋trim

𝐴 =

[
[
[
[
[
[
[

[

0
3×3

𝐸
3
0
3×3

0
3×3

0
3×1

0
3×1

𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝐴
5

𝐴
6

0
3×3

0
3×3

0
3×3

𝐸 0
3×1

0
3×1

𝐴
7

𝐴
8

𝐴
9
𝐴
10

𝐴
11

𝐴
12

0
1×3

0
1×3

0
1×3

0
1×3

0 1

𝐴
13

𝐴
14

𝐴
15

𝐴
16

𝐴
17

𝐴
18

]
]
]
]
]
]
]

]

𝐵 = [0
5×3

𝐵𝑇
1
0
5×3

𝐵𝑇
2
0
5×1

𝐵𝑇
3
]
𝑇

.

(41)

Furthermore, in order to analyze the performance of
system (40), the eigenvalues of𝐴matrix are given in Figure 5.
From it, we can get the following results.

(1) Thewhole system is static-instable since it has positive
eigenvalues.

(2) With increase of the manipulator mass, the distribu-
tion of eigenvalues will be more diverging.

3.3. LQR Controller Design. Next, we will design the full
state-feedback linear quadratic regulation (LQR) controller
for the RFM system. In the state-feedback version of the
LQR problem [14], we assume that the whole state 𝑥 can be
measured and therefore it is available to control. Solution to
the optimal state-feedback LQR problem is to find 𝑢(𝑡) =
−𝐾𝑥(𝑡) that minimizes

𝐽LQR = ∫
∞

0

(𝑥
𝑇
𝑄𝑥 + 𝑢

𝑇
𝑅𝑢) 𝑑𝑡, (42)
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Figure 5: Eigenvalue distribution of 𝐴matrix with different manipulator masses.

Table 2: Trim points corresponding to different masses of manipulator.

Trim point 𝑚
1
= 2.5 kg 𝑚

1
= 2 kg 𝑚

1
= 1.5 kg 𝑚

1
= 1 kg 𝑚

1
= 0.5 kg

𝜙 0.0769 0.0732 0.0697 0.0662 0.0626
𝜃 0.0211 0.0204 0.0197 0.0190 0.0183
𝜃
1

0.0211 0.0205 0.0198 0.0191 0.0183
𝜃
𝑀

0.0436 0.0409 0.0381 0.0354 0.0326
𝜃
𝑇

−0.1282 −0.1245 −0.1207 −0.1169 −0.1130
𝑎
1𝑠

0.0211 0.0204 0.0197 0.0190 0.0183
𝑏
1𝑠

0.0195 0.0169 0.0145 0.0123 0.0103

where 𝐾 is given by 𝐾 = 𝑅−1𝐵𝑇𝑃 and 𝑃 is found by solving
some continuous time algebraic Riccati equations. So we can
easily get the eigenvalues of the open loop system and the
closed loop systemby thematrices𝐴 and𝐴−𝐵𝐾, respectively.

4. Simulations

In this section, simulations will be conducted using the
preceding nonlinear system model and the LQR controller.
In the simulation, the manipulator’s mass is 2.5 kg, and the
other parameters are given in Table 1.

And the trim point of the whole system is listed out in
Table 2.

With these parameters, the system matrices 𝐴 and 𝐵 are
as follows:

𝐴 =

[
[
[
[
[
[
[

[

0
3×3

𝐸 0
3×3

0
3×3

0
3×1

0
3×1

0
3×3

0
3×3

𝐴
3
0
3×3

𝐴
5
0
3×1

0
3×3

0
3×3

0
3×3

𝐸 0
3×1

0
3×1

0
3×3

0
3×3

𝐴
9
0
3×3

𝐴
11

0
3×1

0
1×3

0
1×3

0
1×3

0
1×3

0 1

0
1×3

0
1×3

𝐴
15

0
1×3

𝐴
17

0

]
]
]
]
]
]
]

]

𝐵 = [0
14×3

𝐵
𝑇

1
0
14×3

𝐵
𝑇

2
0
14×1

𝐵
𝑇

3
]
𝑇

,

(43)

where

𝐴
3
=
[
[

[

0.0015 9.7636 0.9945

−9.8000 −0.0005 0.2102

0.0001 0.0005 0.0014

]
]

]

;

𝐴
9
=
[
[

[

−0.0087 −0.0083 0.1834

−0.0130 0.0255 −0.8587

−0.2013 −0.2456 −0.0635

]
]

]

;

𝐴
5
=
[
[

[

3.5861

−0.0077

0.0310

]
]

]

; 𝐴
11
= [

[

−0.0547

−24.4857

−0.8988

]

]

;

𝐴
15
= [0.0110 −0.0924 2.6951] ;

𝐴
17
= 40.1487;

𝐵
𝑇

1
=

[
[
[
[
[

[

−0.5451 −7.9183 −147.7390

−1.2434 −9.3478 0.6158

−21.7522 0.4534 −0.2015

−0.5829 7.2377 −0.7650

0.2990 −0.0006 0.0009

]
]
]
]
]

]

;
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Figure 6: States and inputs profile under LQR controller (46).

𝐵
𝑇

2
=

[
[
[
[
[
[

[

16.7653 −2.5282 168.3611

−32.8659 14.0449 125.4196

20.9082 178.3726 4.0958

−121.2649 11.0285 −0.2925

0.0011 0.6932 −0.0534

]
]
]
]
]
]

]

;

𝐵
𝑇

3
= [−3.9371 −9.0113 −99.1817 −4.2009 3.4137] .

(44)

From these equations, it can be seen that the coupling
between the manipulator and RFR, denoted by 𝐴

5
, 𝐴

11
, 𝐴

15
,
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Figure 7: Continued.
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Figure 7: States response with disturbance (49) (blue and solid) and (50) (red and dashed)∗; the subscript -1 means that the results are with
the disturbance (49) and the subscript -2 means that the results are with the disturbance (50).

and 𝐴
17

is heavy. Using the following QR parameters in the
LQR controller,
𝑄 = diag (1, 1, 1, 1, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10) ;

𝑅 = diag (1000, 1000, 1000, 1000, 1000) ,
(45)

the LQR feedback control law is designed as
𝑢 = 𝐾Δ𝑥

𝐾 = [𝐾1 𝐾2 𝐾3 𝐾4 𝐾5] ,
(46)

where

𝐾
1
=

[
[
[
[
[
[
[

[

0.0097 −0.0037 −0.0226

0.0119 0.0058 0.0210

−0.0232 −0.0014 0.0013

−0.0018 0.0308 −0.0066

0.0149 −0.0006 −0.0008

]
]
]
]
]
]
]

]

𝐾
2
=

[
[
[
[
[
[
[

[

0.0200 −0.0071 −0.0291

0.0238 0.0116 0.0287

−0.0544 −0.0019 0.0031

−0.0042 0.0575 −0.0079

0.0308 −0.0013 −0.0016

]
]
]
]
]
]
]

]

𝐾
3
=

[
[
[
[
[
[
[

[

0.0502 0.1489 0.1317

−0.0816 0.1670 0.1279

0.0053 −0.4953 −0.3462

−0.3754 −0.0384 −0.0293

0.0104 0.2401 0.0991

]
]
]
]
]
]
]

]

𝐾
4
=

[
[
[
[
[
[
[

[

0.0169 0.0637 0.0751

−0.0226 0.0663 0.0827

−0.0015 −0.2717 −0.0288

−0.1208 −0.0214 −0.0058

0.0040 0.1085 0.0073

]
]
]
]
]
]
]

]

𝐾
5
=

[
[
[
[
[
[
[

[

0.6994 0.1310

0.5973 0.1125

−4.2835 −0.8102

−0.3735 −0.0691

1.1293 0.2157

]
]
]
]
]
]
]

]

.

(47)

With the controller (46), the system can be stabilized
with acceptable performance near the trim point, and the
simulation results with initial state (0.1, 0, −0.1, 0, 0, 0, 0.07,
0.04, 0, 0, 0, 0.03, 0) are shown in Figure 6.

From Figure 6, it can be seen that a linear LQR controller
can stabilize the whole system near the trim point. However,
the stabilizing region of LQR is very limited; we have tested
that only when the attitude of the whole system satisfies the
following conditions (all the initial velocities are set to zeros),
the LQR control is effective (46):

−0.1389 ≤ 𝜃 ≤ 0.3911

−0.6731 ≤ 𝜙 ≤ 0.5469

−0.0619 ≤ 𝜃
1
≤ 0.0611.

(48)

Now in the next simulation, two periodic sinusoidal
signals, as disturbances with different frequencies, are added
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Figure 8: Decoupling between RFR and manipulator.

to the input of themanipulator to test motion influence of the
manipulator on the whole system:

𝑑
1
= 0.01 sin (0.5𝜋𝑡) (49)

𝑑
2
= 0.01 sin (1.0𝜋𝑡) . (50)

The results are as in Figure 7.
Simultaneously, in order to test the coupling between

the RFR and the manipulator, the linear accelerations and
the angular accelerations of the new RF-MJM system are
compared to the helicopter system with the same parameters
as in Table 1; that is,

[

[

error 1
error 2
error 3

]

]

= [

[

𝑎RF−MJM,𝑥
𝑎RF−MJM,𝑦
𝑎RF−MJM,𝑧

]

]

− [

[

𝑎RFR,𝑥
𝑎RFR,𝑦
𝑎RFR,𝑧

]

]

;

[

[

error 4
error 5
error 6

]

]

= [

[

�̇�RF−MJM,𝑥
�̇�RF−MJM,𝑦
�̇�RF−MJM,𝑧

]

]

− [

[

�̇�RFR,𝑥
�̇�RFR,𝑦
�̇�RFR,𝑧

]

]

.

(51)

The results are given in Figure 8, which presents the extra
force andmoment exerted on the RFR due to themanipulator
and its motion.

5. Conclusions

In this paper, the detailed nonlinear dynamics model of
a rotor-flying multijoint (RF-MJM) system is constructed
through using Euler-Lagrange method. Compared to the
rotor-flying vehicle system, the model nonlinearities and

complexity of the new RF-MJM are analyzed in detail. More-
over, linear analysis is conducted with respect to the con-
structed nonlinear model near its trim point, and the influ-
ence of the manipulator mass on the system’s local per-
formance is researched. Furthermore, LQR controller is
designed based on the linearized system model. Finally,
simulation results show that (1) a linear LQR controller is
able to stabilize the system near steady state and presents
acceptable performance; however, (2) the stabilization region
of LQR controller is very limited, and the performance of
LQR controller is sensitive to the external disturbance. Thus,
in the future work, nonlinear and robust control scheme will
be researched to overcome the disadvantages of the linear
controller.
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