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An integrated route assessment approach based on cloud model is proposed in this paper, where various sources of uncertainties
are well kept and modeled by cloud theory. Firstly, a systemic criteria framework incorporating models for scoring subcriteria
is developed. Then, the cloud model is introduced to represent linguistic variables, and survivability probability histogram of
each route is converted into normal clouds by cloud transformation, enabling both randomness and fuzziness in the assessment
environment to be managed simultaneously. Finally, a new way to measure the similarity between two normal clouds satisfying
reflexivity, symmetry, transitivity, and overlapping is proposed. Experimental results demonstrate that the proposed route
assessment approach outperforms fuzzy logic based assessment approach with regard to feasibility, reliability, and consistency with

human thinking.

1. Introduction

Unmanned aerial vehicles (UAVs) are aircrafts without
onboard pilots that can be remotely controlled or can fly
autonomously based on preplanned flight routes, increasingly
being used in real-world applications [1]. Such a preplanned
flight route is usually automatically provided by a route
planner based on a cost function [2]. However, in some
cases, the predetermined cost function cannot account for
all potential external conditions and, therefore, the optimal
or near-optimal route provided by the route planner may not
represent a desirable solution for many mission scenarios and
could result in erroneous decision support [3]. An effective
way to handle these issues is multiroute planning, where
several candidate routes are preplanned, and in real applica-
tions, a suitable route is chosen from these alternative routes
based on mission characteristics [4, 5]. Therefore, decision
making among alternative routes for UAVs is required in real
applications.

Overall performance of a route usually consists of two
parts: route length and route risk. However, a flight route is
complex and is characterized by various features: distance
traveled, fuel consumption, radar exposure, smoothness,

and so forth. Therefore, there are multiple research studies
incorporating other assessment criteria such as smoothness
and average altitude into their definitions of route perfor-
mance [6, 7]. However, owing to the complexity of the
UAV route assessment problem, some of the criteria consid-
ered may not be sufficient enough to explain the complex
interactions among various factors affecting overall route
performance. As such, a systematic and transparent assess-
ment framework is required to guide assessment process,
which should contain features describing multiple conflicting
criteria as well as representing dynamics and uncertainties in
decision environment.

Trade-offs among route assessment criteria are charac-
terized by weight parameters assigned by human experts.
Actually, in complex situations, experiences and preferences
of humans are represented by linguistic and vague patterns.
One way to capture the meanings of linguistic variables is
to use the fuzzy logic approach to associate each linguistic
term with a possibility distribution [8]. In previous research
concerning route assessment, weights of criteria are usually
deterministic representations [2-7], which typically do not
contain descriptions of various sources of uncertainties.
Several studies tried to account for linguistic uncertainty



and ambiguity elements in route assessment decisions based
on type-1 fuzzy sets (T1 FSs) [9, 10]. However, type-1 fuzzy
set theory only considers fuzziness of membership grade
and does not take randomness into consideration. Therefore,
some new theoretical methods are required for dealing
with both fuzziness and randomness existing in human
knowledge.

Cloud model [11] proposed by Li et al. is based on fuzzy
theory and probability statistics, which integrates fuzziness
and randomness to constitute the mapping between quali-
tative knowledge description and quantitative value expres-
sion. Therefore, it overcomes the subjective randomness
in fuzzy membership grade when being determined. Since
its introduction, cloud theory is well developed and many
techniques based on the cloud model are proposed, such
as normal cloud generator, normal cloud transformation,
cloud operation, and uncertainty reasoning [12]. Owing
to the complexity of the route assessment problem and
human cognition incompleteness, there are a large number
of uncertainties such as fuzziness and randomness in human
knowledge and perceptions. Cloud model, as a model of the
uncertainty transformation between quantitative knowledge
representation and qualitative concept, can reflect the uncer-
tainties of things in the universe and the concepts in human
knowledge due to its good mathematical properties. To model
and deal with various kinds of uncertainties in the decision
environment, an integrated route assessment approach based
on cloud model is proposed in this study. Recently, cloud
model has been successfully applied to various domains, such
as intelligent algorithm improvement [13, 14], risk assessment
[15], and image processing [16].

In this paper, factors that have significant effects on
route assessment operations were identified and a hierar-
chical criteria framework was built. A comprehensive route
assessment approach based on cloud model was proposed to
cope with various sources and kinds of uncertainties existing
in the assessment environment, where words were modeled
by normal clouds and each estimated survivability proba-
bility histogram provided by Monte Carlo simulations was
converted into normal clouds. Cloud arithmetic operations
were performed to obtain overall scores of candidate routes,
enabling different kinds of uncertainties existing in the data to
be effectively preserved and propagated into the final results.

An outline of the rest of this paper is as follows. Section 2
provides brief descriptions of the proposed route assessment
method, the battlefield environment modeling, and the pro-
posed hierarchical criteria framework. Details of assessment
criteria’s calculation models are presented in Section 3. The
proposed route assessment method based on cloud model
is described in detail in Section 4 and experimental results
are given in Section 5. Finally, the paper is concluded in
Section 6.

2. Route Assessment Problem Modeling

2.1. General Assessment Framework. Route assessment and
selection problems confronted by decision-makers require
aggregation of preferences over multiple assessment criteria.
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FIGURE 1: Establishment process for the proposed UAV route
assessment approach based on cloud model.

Assessment must not focus only on the UAV’s mission
performance, but also on its ability to survive a wide variety
of threats and situations at an affordable fuel cost and safety
level. Therefore, route assessment can be addressed in the
multi-criteria decision making (MCDM) framework, where
several criteria like length, mission performance, smooth-
ness, and risk need to be weighed against each other. Criteria
scores are computed based on their mathematical models,
and trades-offs among criteria are determined by weight
factors supplied by military experts.

As mentioned previously, various kinds and sources of
uncertainties such as randomness and fuzziness exist in
the assessment environment [17]. Random parameters like
pop-up threats and actions of the enemy make survivability
of a route uncertain. To deal with these random factors
and embed them in the final decision, survivability of a
route is represented by survivability probability histogram.
Preferences and judgments of military experts are linguistic
and fuzzy in nature, which are handled via cloud model.
To take these different kinds of uncertainties into account
within the same assessment framework, each survivability
probability histogram is converted into membership clouds
by cloud transformation [18]. The assessment procedure of
this study (see Figure 1) is as follows and the following parts
provide detailed descriptions of each step.

Step 1. Model battlefield environment, including terrain, no-
fly zones, and threats.

Step 2. Select criterions for UAV route assessment and
establish the hierarchical criteria framework.

Step 3. Compute the numerical score of each individual
subcriterion. Particularly, use Monte Carlo simulations and
Markov chain to estimate survivability probability density
function.

Step 4. Model linguistic terms using normal clouds and
specify the fuzzy weights of each individual criterion and
subcriterion using linguistic terms (encoder).
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FIGURE 2: Typical UAV battlefield model.

Step 5. Map score of each subcriterion into a specific normal
cloud and compute the total value of each individual route by
using the fuzzy weights and criterion rating matrix.

Step 6. Score and rank alternative routes’ overall performance
(decoder).

2.2. Battlefield Environment Modeling. Here, we consider
combat situations between the UAV and its opponent forces.
The battlefield is a geographical area and the airspace above it.
On the terrain map, there are certain no-fly zones represented
by polygon regions that the UAV must not enter. Particularly,
in a typical battlefield environment, several opponent sensor
platforms are deployed. This study focuses on integrated air
defense system consisting of Air Defense Units (ADUs) that
are groups of radars and surface-to-air missile (SAM) sites,
whose proposes are to detect, track, and, if necessary, destroy
the UAV. In Figure 2, circles placed on the map in various
positions are four ADUs. The inner circles represent the
boundaries of relative risk ranges of the SAMs, while the
radii of the outer circles represent the maximum detection
distances of the radars. Before candidate routes are evaluated
and ranked, threats information is collected, including loca-
tions, radar detection ranges, radar model coefficients, and
SAM effective ranges. These perceived threats located on the
ground or sea are categorized as deterministic.

The flyable vehicle routes are Dubins curves in this study.
As depicted in Figure 2, the two curves between the start
and destination positions are candidate routes to be ranked.
In this research, the mission that the UAV is performing
is defined as “air-to-ground attacking mission” (strike). The
sortie mission starts with takeoff from the start position,
during the mission, UAV follows a preplanned route, passing
through air defense network and preserving its survival
before a follow-on ground attack of high value targets. When
the UAV reaches its self-control terminal point which is a
predefined waypoint near the target, the self-guidance phase
begins, and the sensor fixed on the UAV starts searching
potential targets in a predefined area, as the searching mission
is performed, the UAV executes its prearranged attacking
mission.

Note that, in performing a real mission, it is hard to
know all information of the combat environment in advance.
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FIGURE 3: The hierarchical structure of route assessment criteria.

In many cases, maybe threats occur randomly in the bat-
tlefield. In previous studies, it is often assumed that pop-up
threats appear with predetermined probabilities during the
flight [4, 19]. However, such probabilities may be of limited
representations of battlefield scenarios. In many scenarios,
the appearance probability of one pop-up threat at a location
might depend on the appearances of other pop-up threats at
various previous locations. To model battlefield realistically,
the randomness of other pop-up threat appearance is quanti-
fied via a Markov model [20] in this study.

2.3. Select Criteria for Decision Making. Based on schulte’s
goal model [21] that a pilot has when selecting a route,
specifically, we determine the critical factors that affect route
performance and develop a systemic and hierarchical criteria
framework, constructed in terms of three main aspects
(see Figure 3): flight safety, combat survival, and mission
accomplishment. Flight safety includes objectives concerning
safe flying of the UAV and, therefore, needs to consider factors
such as terrain, fuel level, and no-fly zones in the battlefield.
Combat survival is defined as the capability of the UAV to
avoid and/or withstand the hostile forces when flying along
the route. Mission accomplishment describes performance of
the mission.

Kinds of factors affect flight safety and they are decom-
posed into specific items: fuel cost and environment adapt-
ability. Two primary factors affect fuel consumption of a
route: route length and route smoothness. Generally, the
longer the route, the more fuel a UAV needs. At the same
time, in view of the physical limitation and the fuel limit
of the UAV, it usually does not wish to turn or climb/dive
frequently. When route performance in terms of environment
adaptability is evaluated, compromises must be made: the
higher the UAV flies above the ground, the lower probability
of colliding with the terrain or obstacle it has; however, it
may pose itself to a greater chance of getting detected by
enemy forces. To take into account all these route features
influenced by battlefield environment, route environment
adaptability composes of three subcriterions: the abilities of
terrain following, terrain/obstacle collision avoidance, and
terrain masking. The following section describes mathemati-
cal models of these criterions and subcriterions.



3. Models for Scoring Criteria and Subcriteria

3.1. Flight Safety. As mentioned previously, each UAV route
Z is a Dubins route in this research, described as a sequence
of nodes in the three-dimensional (3-D) space:

Z=(C,Cypr..,Crp)>» o

where C, and C,; are the start node and the destination

node, respectively, and M is the number of route nodes. Each

path node C; is specified by the 3D coordinates (x;, ¥;, z;)
—_—

of the intersection point between line segments C,_,C; and

=

= =
C,C,,,. Each pair of adjacent line segments C;_,C; and C,C;,,

is connected by a circular arc satisfying UAV dynamics
constraints.

Route length J;;,(Z) represents the total length of all
line segments and turning circular arcs. Let L; and [; denote
lengths of the ith line segment and turning arc, respectively.
J111(2) is expressed as

M-1

Jin (2) = Z (L +1;). )
i=1
—_— _—
Take two adjacent line segments C;_,C; and C;C,,;, for
example; assume that C,_,, C!, and C;, , are the corresponding
projections of route nodes C;_,, C;, and C,,, in the xoy plane,

respectively. The turn angle at node C; is defined as the angle

!

difference between two adjacent edges C; ,C; and C;C, .
e

Similarly, the climb/dive angle of route segment C;C;,, is
defined as the angle between route segment C;C;,; and its
projection in the horizontal plane.

Let (x;, ¥;, z;) and (X4, ;41> Z;41) denote the 3D coordi-
nates of nodes C; and C;, ,, respectively. Route smoothness
concerns the turn rate F; and climb/dive rate S; at each node
C;, as the following expressions.

(1) The turn rate F, at node C; is expressed as

arecos (Gl -cic )/ jenci] Jercia) ))
Ff = >
(xmax
(3)
where «,,, is the maximum turn angle.

(2) When the UAV is climbing/diving along route seg-
!

!
ment C;C;,,,

the climb/dive rate S; at node C; is defined as

arctan <|Zi+1 - Zil /\/(xiﬂ - xi)z + (Vi1 — }’i)2>

i >
ﬂmax

where .. is the maximum climb/dive angle. Smoothness
J112(2) is defined as the sum of route nodes’ turn rate and
climb/dive rate:

(4)

M-1

w2 (2) = Z (F; +8;). (5)

i=1
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Route performance regarding environment adaptability is
determined by specific battlefield scenarios, such as terrain
and no-fly zones. It is difficult to analytically estimate their
impacts on route performance. To facilitate computations, a
route is discretized into N sample points with equal length
step AR. Assume that the UAV flies at a constant speed.
Environment adaptability of a route is evaluated based on
these discretized sections.

(1) Terrain Following. Terrain following flight requires the
UAVs to maintain a minimum preselected clearance above
a given terrain to minimize the probability of being detected
or tracked. Kinds of measures of terrain following ability of a
route have been discussed [22, 23]. In this research, the terrain
following ability is defined as

1S,
Ji21 (2) = Nzei > (6)
i=1

where e; represents the closeness of the altitude of ith sample
point to the underlying terrain, defined as: e; = z; = T; — Ci1,»
where z; is the altitude of ith sample point, T; is the terrain
elevation at point (x;,y;), and C,;, is minimum ground
clearance. A smaller J,, (Z) means a better terrain following
path.

(2) Terrain/Obstacle Collision Avoidance. UAV's flying at low
altitude will have the risk of collision with terrain or obstacles.
In addition, the UAV is not allowed to enter any no-fly zones.
Several terrain/obstacle collision avoidance measures have
been discussed [24-27]. However, these measures were under
some assumptions and focused only on selected factors,
which were often reductionist in nature. In this study, the
capacity of the UAV to avoid terrain/obstacle collision is con-
sidered as a stochastic model based on stochastic processes,
and a terrain/obstacle collision avoidance measure J,,,(Z) is
proposed. This measure takes the uncertainty regarding the
actual flight route the UAV travels into account, which can
be used to estimate the probability that the UAV collides with
terrain/obstacle along the route. J;,,(Z) is formulated as

N
J125 (Z) = exp <—Athi>
i=1

7)

T; h-z)
Where f; = \/21_7_[0 J_ exp(—%)dh,

where At is the UAV flying time from point i to i + 1. T}
is the height of terrain at point i. h representing the vehicle
real flying altitude at point i follows a normal distribution
N(z;,0,h) in height direction, where z; is the expectation
altitude at point i, and o is the stand deviation. As Figure 4
illustrates, f; states the instantaneous probability of collision
with the terrain at point i. A larger J;,,(Z) implies that the
UAV crosses fewer obstacles.

(3) Terrain Masking. UAVs flying at low altitude can benefit
from the terrain-masking effect that will help them to avoid
radar detection, especially unknown radars [2]. The following
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FIGURE 4: Vehicle flying height distribution at the ith point of the
route. f; is equal to the area of the shaded region in the figure,

representing the instantaneous probability that the UAV collides
with terrain or obstacle at point i.

expression J,;(Z) calculates this value of object, which is the
average altitude of the N discrete points. A smaller J,,;(Z)
indicates a higher terrain masking path:

1 N
Ji23 (Z) = NZzi. (8)
i=1

3.2. Modeling the Survivability of a Route. Same as that in
[28], survivability of a UAV flying along a preplanned route
is considered as a stochastic model based on stochastic
processes. In this model, the survival function is described

by
R(t) = P (T > t) = exp (— Lt A () du) , 9)

where A (u) is defined as the intensity or hit rate. Under
the assumptions that hit rates were functions of the distance
from the UAV to threat center, three models of hit rate were
suggested in [28] and analytical expressions were provided.
Without loss of generality, we adopt the constant threat model
in this study; that is, A (1) = A,

Let t - denote the time required to fly the entire route, let
M denote the number of ADUs, let v denote the speed of the
UAV, and let d; denote length of the route segment that is
in the effective range of the ith SAM. According to formula
(9), assessment of combat survival is equal to survivability
of the UAV at time instance t f (i.e., survivability of a route),
expressed as

Ao o
Jo(Z) = P(Tyy > t;) = exp —7Zdi . (10)

i=1

Note that survivability model requires information about
threats that are located on or near the route. However,
as mentioned previously, threats could appear randomly
during the flight. Therefore, survivability of a route is also
a random variable, and analytical estimates for survivability
distribution function are difficult to obtain. In view of this
problem, Monte Carlo simulations are applied to estimate
survivability probability density function and investigate how
random uncertainty affects survivability in this study.
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FIGURE 5: Target area at the terminal search time. The region inside
the ellipse represents the potential target area, and the sector is the
FOV of the sensor equipped on the UAV.

Each Monte Carlo simulation consists of a flight of the
UAV from the start position following the mission route,
during which several pop-up threats appear randomly via
Markov chain. At the end of each simulation, survivability for
that simulation is stored, and all simulations are summarized
into a histogram that can be further used to estimate the
probability density function of survivability.

3.3. Mission Accomplishment. The exact position of the target
to be attacked maybe unknown previously, and we know
its priori probability density function h(x, y). When the
UAV reaches its auto control terminal point, the sensor
equipped on the UAV is activated and scans the potential
target area to find the hostile target. In this research, mission
accomplishment is measured by search probability, meaning
the probability that the target can be found when sensor is
activated.

The instantaneous sensing region of the sensor on the
ground, known as the field of view (FOV) specified by the
distance and the deviation angle, is modeled as a sector (see
Figure 5) in this research. The azimuth search range and
distance search range of the FOV are ta and [R;,, Ryaxls
respectively. Let B denote the set of all points in the potential
target area that the seeker can scan and assume that as
long as the search region covers the target, the sensor can
detect the target and the probability that detects a target
that lies outside of the sensor’s FOV is zero. Therefore, the
general detection function J;(Z) describing the assessment
of mission accomplishment is estimated as follows:

5 (Z) = ”Bh (x, y)dxdy. (11)

Once the score of each subcriterion is calculated, the
following step is selecting a set of suitable weight coeflicients.
To effectively represent linguistic terms of military experts,
we introduce to adopt cloud model to handle various uncer-
tainties. Details of cloud model and its applications in the
UAV route assessment are discussed below.
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4. Ranking Routes Using Cloud Model

4.1. Cloud Model. Cloud is a model to address the rela-
tionship between randomness and fuzziness for qualitative
concepts and quantitative values, defined as follows.

Suppose that T is a language value of domain U, and
mapping Cr(x) : U — [0,1],Vx € U, x — Cyp(x). Then,
the distribution of C1(x) in U is called the membership cloud
of T, or cloud in short, and each projection is called a cloud
drop in the distribution. If distribution of C(x) is normal, it
is named normal cloud.

Normal cloud model employs expectation E,, entropy E,,,
and super entropy H, to represent qualitative concept. As
Figure 6 depicts, E, determines the center of the cloud. E,
is the uncertainty measurement of the qualitative concept,
decided by the randomness and the fuzziness of the concept.
H, is the uncertainty measurement of the entropy, reflecting
cloud drops’ dispersive degree. For example, a normal cloud
(0,1/3,0.03) representing a linguistic term “about zero” is
shown in Figure 6.

From the view of fuzzy set theory, normal cloud is
similar to Gaussian interval type-2 fuzzy set (IT2 FS) with
uncertainty standard variance o [18]. According to the “3E,,
principle;” 99.7% of cloud drops are bounded by the upper
cloud curve y,. and the lower cloud curve y,.. y,. and y,. are
similar to the upper and lower membership functions of the
IT2 FSs, respectively, described by

< - (x - Ex)2 )
uc = €X VN B
4 P\ (E, +3H,)’

M q@(—(x;&)z)_
‘ Z(En_?’He)z

4.2. Words Modeling and Cloud Transformation. Linguistic
weights of human experts are distinguished by five scales,
which are “Very Unimportant” (VU), “Medium Unimpor-
tant” (MU), “Important” (I), “Medium Important” (MI), and
“Very Important” (VI). As shown in Table 1, these linguistic
variables are mapped into their corresponding normal clouds
(see Figure 7), represented by conversion scales 1,3, 5,7, and
9, respectively.
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TaBLE 1: Linguistic terms for representing the importance of
criterions and subcriterions and their corresponding normal clouds.

Linguistic term Fuzzy number Normal cloud

Very Unimportant (VU) 1 (1, 0.5, 0.05)
Medium Unimportant (MU) 3 (3, 0.5, 0.05)
Important (I) 5 (5, 0.5, 0.05)
Medium Important (MI) 7 (7, 0.5, 0.05)
Very Important (VI) 9 (9, 0.5, 0.05)
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FIGURE 7: Membership clouds of the linguistic terms.

Several methods exist for mapping words into normal
clouds [29-32], and each method has advantages and limita-
tions. Similar to that in [29, 30], parameters of normal clouds
corresponding to the linguistic scale value are established
based on experiences of experts in this study. We assume
that the efficient domain is U = [0,10]. A subject was
asked to provide the endpoints of an interval [a;, ;] for a
word on the prescribed scale [0, 10], and this is done for a
group of subjects. The minimum of the left endpoints and
the maximum of the right endpoints are calculated; that is,
Chin = min{a;} and C,,, = max{b}. To the linguistic words
with bilateral constraint [C;, C,.<], we can compute the
cloud parameter by the formula as follows:

C 4
Ex — ( max + Cmm))
2
Crax = Coni 13
En — ( max mm), ( )
6
H, =k

where k is a constant and can be adjusted according to the
fuzziness of the linguistic word. For the linguistic words
“Very Unimportant” and “Very Important,” their expected
values reach the left boundary and the right boundary of the
domain, respectively, and their corresponding clouds become
half-bell clouds (shown as Figure 7).

Also, linguistic terms “Poor;” “Marginal,” “Adequate,”
“Good,” and “Excellent” are used as the assessment levels
to describe the performance of each route. These linguistic
words are mapped into their corresponding synonyms as
listed in Table 1.

Note that survivability of a route is uncertain and its
probability histogram can be calculated from Monte Carlo
simulations. Assessment of combat survival can be repre-
sented by expected value of survivability probability density
function; however, it might not be appropriate to use such
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a single value to represent how safe a route is, since it cannot
represent random uncertainty existing in the battlefield and
information contained in histograms is lost. To aggregate
different kinds of data and keep the information contained
in the histograms, it is desirable to describe score of combat
survival by normal clouds. With this purpose, we convert
each survivability histogram into an integration of normal
clouds by cloud transformation [18]; that is,

N
hist (J, (2)) — Y@ xC; (Ey B, H,),  (14)
i=1

where C,(E, ,E,,H,) (i = 1,2,...,N) are normal clouds
representing discrete quality concepts. g; (i = 1,2,...,N)
are parameters denoting the distribution frequency of normal
clouds and ZN a; = 1. N is the number of normal clouds.

i=1""

The proposed method of survivability modeling and
uncertainty representation can be extended to score other
criterions. For example, in real scenarios, there can be
uncertainty regarding the actual flight route the UAV travels.
Therefore, the location of the auto control terminal point is
also random in nature, making search effectiveness of the
route uncertain. With such an approach, we can estimate
probability density function of route’s search effectiveness and
then transform the estimated probability density function
into discrete concepts for further analysis.

4.3. Rank of Cloud Models. In cloud theory, arithmetic oper-
ation [33] is an operator operating on clouds; that is, given
two normal clouds C,(E, ,E,,H, ) and C,(E, ,E, ,H, ),
the arithmetic operation result is also a normal cloud
C(E,,E,, H,). Note that crisp numbers are considered as
specific kind of clouds and all the data in the assessment
framework can be mapped into normal clouds. In this
research, the arithmetic operation rule is used to aggregate
the criterions and subcriterions and, hence, to obtain the
overall score of each route alternative.

The final score of each route is a normal cloud
A(E,,E,,H,). The determination of the entire perfor-
mance ratings of alternative routes can be based on com-
paring the multiple collaboration clouds with the standard
assessment clouds base. Therefore, a similarity or distance
measure should be used to describe the similarity between
two different clouds. Several methods exist for the simi-
larity measure between two normal clouds, and they can
be classified into the following categories: (1) computer
simulation methods [15, 34], which consider both fuzziness
and randomness in the data but has the following difficulties:
(a) they may change from experiment to experiment and
require large amounts of calculations. (b) They do not satisfy
reflexivity; that is, J(C,,C,) # 1, when C; = C, because
the randomly generated cloud drops from C; and C, cannot
always be the same. (c) They do not satisfy symmetry because
of the random numbers. (2) Numerical characteristics based
methods [35-37], which calculate the similarity between
two normal clouds based on their differences in numerical
characteristics, E,, E,, and H,. These methods are easy to
compute but do not consider influences of cloud drops’
properties on the similarity, and the similarity between two

normal clouds depends on user defined parameters. (3)
Expectation curve based methods; for example, a similarity
measure based on the expectation curve of two normal clouds
is proposed in [38]. A problem with this approach is that it
does not satisty reflexivity; that is, when J(C;, C,) = 1, it does
not necessarily imply that C; = C,, because influence of H,
is not considered in this measure.

As shown in Figure 8, let ¥,(x) (y,(x)) and y,(x) (y,(x))
denote the upper (lower) cloud curve of normal clouds C,
and C,, respectively, let S (S) represent the overlapping area
of y;(x) (&(x)) and y,(x) (&(x)), and let §; = \/EE,,1

and S, = \/ﬂEn2 denote the area of the two normal clouds,
respectively. A new similarity measure, which is based on the
Jaccard similarity measure for IT2 FSs [39], is proposed in this
research, calculated as

S+S

J(C,C)) = ———=
(€nGy) 28, +25,-S-S

(15)

This similarity measure satisfies reflexivity, symmetry,
transitivity, and overlapping, and it utilizes both shape and
thickness information of cloud drops simultaneously.

Alternative routes are ranked by comparing the numer-
ical characteristics of their corresponding representative
normal clouds [33]: the larger the value of E, , the higher
performance route A; has; that is, if E, > Ex;, E, < E,,
and H, < H,, then A; absolutely dominates A ;; otherwise, if
E, <E,, andE, < E, orH, <H,,A; averagely dominates
A,

1

5. Experimental Results

Our route assessment model is used in a complex route
assessment system. Experiments are conducted using real
terrain data with resolution 90 m x 90 m per pixel, overlaying
threat zone and synthetic no-fly zone data. Alternative routes
are obtained from route planner in different environments.
In the following pictures, flag and triangle represent start
position and destination position. In all experiments, route
sample step set as AR = 420m, and UAV flying speed is
260 m/s.

5.1. Route’s Survivability. As Figure 9(a) shows, threat A
represents the perceived ADU. The curve between the start
position and the destination position is a preplanned route
that the UAV will fly. Monte Carlo simulations are carried
out to get the survival probability when UAV traveling this
route. The appearance of the first pop-up threat is generated
according to the initiation function. The second and third
pop-up threat is generated based on the update function of
Markov model.

Figure 9(a) presents the survivability for every 42 Km
along a route in one of the simulations. As can be observed,
the UAV has not passed through any threat before the first
discrete point, and the survivability of UAV is 100%, as the
UAV near the second discrete point, it enters the affective
range of the first pop-up ADU and its survivability is reduced
to 82%. As the UAV flying, the second pop-up threat and
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FIGURE 8: Similarity between two normal clouds based on the interaction area, upper and lower cloud curves: (a) there is one intersection
point located in [E, — 3E,, E, + 3E,]; (b) there are two intersection points located in [E, - 3E,, E, + 3E,].

0.1+t 4
Z 0.08 1
o
L
=]
=3
2
—
0.06 1
0.04 1 1
0.5 0.6 0.7 0.8
Survivability
(a) (b)

FIGURE 9: Survivability analysis of the route: (a) survivability of the discrete points on the route; (b) survivability histogram at the destination

position of the route illustrated in Figure 9(a).

the third pop-up threat reduce the survivability from 74% to
71% then to 68%. When the UAV is near the destination, its
survivability is reduced to 68%.

Results from Monte Carlo simulations are summarized
into a histogram that can be further used to estimate UAV’s
survivability probability density function (see Figure 9(b)). It
should be noted that shapes of the histograms are different
with different numbers of pop-up threats and different threat
capacities.

5.2. Route Assessment Using Normal Clouds. To illustrate our
proposed approach, a typical example is selected. As shown
in Figure 10, there are four no-fly zones and six perceived
ADUgs in the battlefield. Assume that there are three pop-up
ADUgs during each flight. Three preplanned UAV routes A,
A,, and A, will be evaluated and ranked, each with different
characteristics. For example, route A, is the shortest of the
three but is in an area populated by high-lethality threat
zones. Route A, is in a less hazardous threat environment
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F1GURE 10: The battlefield environment and three candidate routes
A, Ay and A,
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FIGURE 11: Survivability histograms of routes A, A,, and A, at the
destination position and their corresponding representative clouds
transformed from histograms.

TABLE 2: Performance data of three alternate routes.

Items J;;, (Km) iy, (rad) Jyy (m?) Jiza Jips (m) 5

A, 684.17 7.57 120078 0.95 796 0.87
A, 747.39 15.35 86219 0.90 920 0.90
A, 807.72 18.90 137641 1.00 602 0.84

and is longer than route A, whereas route A; is in a safest
environment at the expense of longest length. Therefore,
selection of the optimal route should be based on mission
requirements for real applications.

Performance data of these three routes is recorded in
Table 2, and survivability histograms of these routes from
Monte Carlo simulations are shown in Figure 11.

Figure 11 also shows the results of cloud transformation.
Survivability histograms of the three routes are converted into
0.5028,,(0.301,0.032,0.004) + 0.4985,,(0.160,0.035,0.003),
0.5615,,(0.641,0.042,0.004) + 0.4398,,(0.520,0.033,0.003),
and 5;(0.940, 0.033, 0.004), respectively.

Figure 11 reveals that skeletons of cloud drops fit with
the histograms well, preserving the information contained in
the histograms effectively. Data uncertainty associated with
survivability is looked as integration of several normal clouds,
which does not require membership functions and is simple
to describe.

TaBLE 3: Numerical characteristics and ratings of the normal clouds
shown in Figures 12(a) and 12(b).

Items A, A, A,
Cloud 2 (3.63,0.43,0.05) (7.25,0.70,0.07) (5.43, 0.57, 0.06)
b (3.67,0.41,0.04) (7.25,0.67,0.07) (5.42,0.54, 0.06)
Rating a Marginal Good Adequate
b Marginal Good Adequate

Weights of criterions and subcriterions are supplied by
expert’s opinion, which are linguistic terms extracted from
the weight sets, represented by a fuzzy weight vector:

W,

LoD Js Tu T Jin e T Jiae Jias | (16)
1753 7 3 9 1 9 3|

Based on Table 2 and the collective weight vector, W,
the aggregated normal cloud of each route is calculated.
As Figure 12(a) shows, overall scores of the three routes
are represented by normal clouds A(3.63,0.431,0.054),
A,(7.25,0.701,0.065), and A,(5.43,0.571,0.061), respec-
tively.

According to the proposed similarity measure (formula
(15)), the similar values between the resultant assessment
clouds and the standard assessment clouds labeled in Table 1
are calculated. Selecting the most similar one among all
results, the overall scores are mapped into normal clouds 3,
7,and 5, respectively, and, therefore, overall performances of
the three routes A, A,, A; can be linguistically described
as “Marginal,” “Excellent,” and “Good,” respectively. Ranking
order of the three routesis A, > A, > A.

To investigate the effects of random uncertainty in sur-
vivability on the on the overall performances, we represent
assessments of combat survival by expected values of surviv-
ability probability histograms in this experiment. With the
same weight vector W, the overall aggregated results are
obtained, depicted in Figure 12(b). The ranking order is also
A, > A, > A|. Comparing Figures 12(a) and 12(b), it can be
observed that the cloud drops spread out over a larger range
of values generally.

Table 3 summarizes the aggregated results in Figures
12(a) and 12(b). As can be observed, the expectation of each
normal cloud shown in Figure 12(a) is almost the same as its
counterpart shown in Figure 12(b). However, entropy E,, and
super entropy H, increase, reflecting the additional random
uncertainty regarding the dynamic battlefield environment.

Table 4 records the similarities among A,, A,, and A,
depicted in Figures 12(a) and 12(b). Observe that the similar-
ity between A, and A, shown in Figure 12(a) is 0.113, and,
therefore, the confidence level in selecting A, as the best
one is 88.7%, whereas the similarity between A, and A,
shown in Figure 12(b) is 0.098. Consequently, one may be less
certain about choosing route A, as the winner when there
is uncertainty regarding the dynamic battlefield environment
than when there is no random uncertainty in the battlefield.
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FIGURE 12: Comparison of the overall clouds with different descriptions of scores on combat survival: (a) overall clouds when scores on
combat survival are represented by clouds generated from histograms; (b) overall clouds when scores on combat survival are represented by

the expected values.

TABLE 4: Similarities among the normal clouds shown in Figures
12(a) and 12(b).

Items 4 A Ay

a b a b a b
Kl 1.00 1.00 0.00 0.00 0.066 0.059
Zz 0.00 0.00 1.00 1.00 0.113 0.098
Av3 0.066 0.059 0.113 0.098 1.00 1.00

5.3. Comparisons with Other Approaches. As previously men-
tioned, in the area of route assessment, most of the studies
employed weighted average (WA) method to aggregate scores
of criteria, where all weights and scores of criteria are
fixed numbers [2-7]. Several studies employed T1 FSs to
represent the linguistic variables and vague patterns in the
route assessment problems. In this section, the proposed
method is compared with the weighted average method and
the assessment method using T1 FSs [9, 10]. As mentioned
before, selection of the optimal route should be based on
expert preferences and mission conditions. The overall results
and ranking order can be dependent on the weight vector. To
demonstrate characteristics of route assessment problem and
the feasibility of the proposed method, in this experiment,
experts’ preferences over multiple assessment criteria are
represented by weight vector W,, expressed by

W,

Jo o s Ja Je T Tz T hae s | (17)
9517 1 3 9 1 9 3|
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FIGURE 13: Linguistic variables and their corresponding T1 FSs.

In the weighted average method, all weights and scores
of assessment criteria are real numbers, and score on combat
survival is represented by the expected value of survivability
probability histogram. The calculated ranking order is A, >
A, > A, and route A, is the best one. The weighted average
algorithm, probably the most widely used form of aggregation
in MCDM problems, is easy to compute and understand.
However, uncertainties are not addressed and incorporated
in the overall assessment results.

In the T1 FSs based assessment method, all words
concerning weights of assessment criteria are modeled by
T1 FSs. Figure 13 shows the linguistic terms (VU, MU, I,
MI, VI) for representing importance of criterions and their
corresponding T1 FSs. It can be noticed that randomness
of membership degree is not managed. As Figure 14(a)
demonstrates, the aggregated overall results are also T1 FSs
by using the computing with words (CWW) engine [39], and
the ranking orderis A, > A, > A;.

With such a route assessment method based on cloud
model, fuzziness and randomness of linguistic variables are
integrated to model expert knowledge, and assessments of
combat survival are expressed by normal clouds. Therefore,
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FIGURE 14: Comparisons of overall results provided by T1 FSs based assessment method and the proposed method: (a) aggregated total results
provided by T1 ESs based assessment method; (b) aggregated total results provided by the proposed method.

TABLE 5: Aggregated results provided by the three methods.

Method A, A, A,

WA 6.73 5.14 3.65

T1 FSs 6.78 4.95 3.64

CM (6.64,0.94,0.10)  (5.13,0.62,0.07)  (3.71,0.50, 0.06)

both fuzziness and randomness are managed and embodied
in the final results. As Figure 14(b) reveals, the final results
are cloud graphs that are more intuitive, effective, and
understandable than T1 FSs. The final ranking order is A, >
A, > A, consistent with the results provided by the above
two methods. Table 5 shows the aggregated results of the
weighted average method, centroids of the aggregated results
produced by the T1 FSs based assessment method, and the
normal clouds obtained from the proposed method.
From Table5, it can be observed that there are few
differences among the resultant ranks provided by the three
assessment methods. Compared with traditional methods of
route assessment, the proposed method can manage various
kinds and sources of uncertainties, including randomness,
fuzziness, and their interrelationship, and produce good
results that can provide the decision makers useful and
informative decision references. Comparing Figures 12(a)
and 14(b), we can observe that the final rankings are different
with different weight vectors: in Figure 12(a), route A, ranks
highest, whereas in Figure 14(b), route A, ranks highest. This
is because the final results depend on the assessment results
of the route in a series of subcriterions and the weight vector.
For example, route A is the shortest and smoothest of all and
the criterion considered is mainly flight safety in Figure 14(b),
and therefore, A, ranks highest in Figure 14(b). Therefore,

we can conclude that the final solutions provided by the
proposed method are in accordance with mission scenarios
and human preferences. The proposed method can provide
a framework to assist decision makers in evaluating route
alternatives and making an objective route selection.

6. Conclusion

A route assessment method based on cloud model that
enables experts to assess different candidate routes and
find an optimal one is proposed in this paper. A system-
atic assessment framework that incorporates computational
models for quantifying and propagating route criterions is
established. The systems-based multilevel architecture of the
assessment framework is extremely flexible and would easily
allow users to replace or add specific modules with updated
ones that reflect needed levels of analysis sophistication. Ran-
dom uncertainty associated with pop-up threats is modeled
by Markov chain and estimate of survivability probability
density function is obtained from Monte Carlo simulations.
Therefore, random uncertainty in the battlefield is effectively
represented.

Because route assessment is not an exact process and has
fuzziness in its body, here, the usage of cloud model to deal
with linguistic uncertainty makes the application realistic
and reliable. Cloud transformation is introduced to convert
each individual survivability histogram into normal clouds,
effectively keeping the information in the survivability his-
togram. With the arithmetic operation, different kinds of
uncertainties existing in the data are effectively preserved
and propagated into the final assessment. As the results
demonstrate in the application examples, it is found that the
proposed similarity measure taking account both shape and
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thickness information of cloud drops is practical for ranking
route alternatives in terms of their overall performances.

The proposed route assessment approach provides a
general guideline for assessment problems where different
kinds of uncertainties such as randomness and fuzziness
exist. Meanwhile, we believe that there is room for future
enhancements and validations of the approach presented. For
example, how to extend the current approach to deal with the
inherent uncertainty and imprecision of the human decision
making process should be examined. This may be improved
in future developments.
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