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We study a matrix factorization problem, that is, to find two factor matrices 𝑈 and 𝑉 such that 𝑅 ≈ 𝑈
𝑇
× 𝑉, where 𝑅 is a matrix

composed of the values of the objects𝑂
1
, 𝑂
2
, . . . , 𝑂

𝑛
at consecutive time points𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑡
.We first presentMAFED, a constrained

optimization model for this problem, which straightforwardly performs factorization on 𝑅. Then based on the interplay of the data
in𝑈,𝑉, and𝑅, a probabilistic graphicalmodel using the same optimization objects is constructed, in which structural dependencies
of the data in these matrices are revealed. Finally, we present a fitting algorithm to solve the proposed MAFED model, which
produces the desired factorization. Empirical studies on real-world datasets demonstrate that our approach outperforms the state-
of-the-art comparison algorithms.

1. Introduction

The essence of the matrix factorization (MF) problem is to
find two factor matrices 𝑈 and 𝑉, such that their product
can approximate a given matrix 𝑅; that is, 𝑅 ≈ 𝑈

𝑇
𝑉. As a

fundamental model in machine learning and data mining,
MF methods have been widely used in various applications,
such as collaborative filtering [1, 2], social network analysis
[3], text analysis [4], image analysis [5, 6], and biology
analysis [7].

In this work, we study a special variety of theMFproblem.
Let the matrix 𝑅 ∈ R𝑛×𝑡 consist of the values of the objects
𝑂
1
, 𝑂
2
, . . . , 𝑂

𝑛
at a serial of time points 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑡
, where

the entry 𝑅
𝑖,𝑗

is the value of 𝑂
𝑖
at 𝑇
𝑗
. Our goal is to find

the suitable factor matrices 𝑈 and 𝑉, which can not only
approximate 𝑅, but also depict the evolution of the objects
over time.

A typical application of this work is to estimate the
missing historical traffic speed data, which is necessary for
many transportation information systems [8–10]. Given an
urban road network with 𝑛 roads 𝐿

1
, 𝐿
2
, . . . , 𝐿

𝑛
, we let

𝑂
𝑖
(1 ≤ 𝑖 ≤ 𝑛) correspond to the traffic speed of 𝐿

𝑖
and let

entry𝑅
𝑖,𝑗
be the speed of 𝐿

𝑖
at𝑇
𝑗
; then𝑅 is composed of speed

values of the roads 𝐿
1
∼ 𝐿
𝑛
at the time 𝑇

1
∼ 𝑇
𝑡
. Especially,

if the value of 𝑅
𝑖,𝑗
was not collected, we say it is missing and

denote as 𝑅
𝑖,𝑗

= “⊥”. With this representation, to estimate the
missing values, we can first fit 𝑈 and 𝑉 with the nonmissing
entries of 𝑅, and then for each 𝑅

𝑖,𝑗
= “⊥”, take its estimation

as �̂�
𝑖,𝑗

= 𝑈
𝑇

𝑖
𝑉
𝑗
, where 𝑈

𝑖
/𝑉
𝑗
is the 𝑖th/𝑗th column of 𝑈/𝑉.

A main difference between this work and the other
existing MF models is that we take the time evolution effects
into account. Well-studied MF models, such as nonnegative
matrix factorization [5], max margin matrix factorization
[11, 12], and probabilistic matrix factorization [13], are based
on the i.i.d assumption, which implicates that the behavior
of the objects evolved with time is ignored and treated
as being independent of time, and thus their abilities on
describing time-varying data are poor. To tackle this issue,
the factors that affect the evolution of the objects are explicitly
modeled in our contribution, and that enables our model to
interplaywith the time dependent information. Furthermore,
our empirical studies confirm that the proposed model can
scale well with size of the data.
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The remainder of this paper is organized as follows.
Section 2 briefly summarizes the notations used in the paper.
Section 3 reviews theworks onmatrix factorization. Section 4
presents our matrix factorization model as well as the sta-
tistical mechanism of the model. The proposed algorithm is
introduced in Section 5. Section 6 is devoted to the analysis
of the experiments. Our conclusions and future works are
presented in Section 7.

2. Notations

For a vector 𝑉 = [V
1
, V
2
, . . . , V

𝑛
]

∈ R𝑛, we denote its 2-Norm

as ‖𝑉‖
2
, where

‖𝑉‖2 = √

𝑛

∑

𝑖=1

V2
𝑖
. (1)

For a matrix𝑋 ∈ R𝑛×𝑚, we let𝑋
𝑘
be the 𝑘th column of𝑋 and

denote its Frobenius norm as

‖𝑋‖𝐹 = √

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑋
2

𝑖,𝑗
. (2)

3. Matrix Factorization

The essence of matrix factorization is to find the suitable
factor matrices𝑈 and 𝑉, such that their product can approx-
imate a given matrix 𝑅. In principle, the MF problem can be
formulated as the optimization model below:

{𝑈
∗
, 𝑉
∗
} = min
𝑈,𝑉

Loss (𝑈𝑇𝑉, 𝑅) , (M1)

where the function Loss is used to measure the closeness
of the approximation 𝑈

𝑇
𝑉 to the target 𝑅. In general,

Loss(𝑈𝑇𝑉, 𝑅) can be decomposed into the sumof the pairwise
loss between the entries of𝑈𝑇𝑉 and𝑅; that is, Loss(𝑈𝑇𝑉, 𝑅) =

∑
𝑛

𝑖=1
∑
𝑚

𝑗=1
Loss((𝑈𝑇𝑉)

𝑖,𝑗
, 𝑅
𝑖,𝑗
). Most common used forms of

the Loss function include the square loss (Loss(𝑥, 𝑦) = (𝑥 −

𝑦)
2) [1, 13, 14], the 0-1 Loss (Loss(𝑥, 𝑦) = I(𝑥 = 𝑦)) [11], and

the divergence loss (Loss(𝑥, 𝑦) = 𝑥 log(𝑥/𝑦) − 𝑥 + 𝑦) [6].
Notably, if {𝑈

∗
, 𝑉
∗
} is a solution of (M1), then for any

scalar 𝜁 > 0, {𝜁𝑈∗, (1/𝜁)𝑉∗} is another solution, and hence
the problem (M1) is ill posed. To overcome this obstacle,
various constraints on 𝑈 and 𝑉 are introduced, such as
constraints on the entries [5], constraints on the sparseness
[15, 16], constraints on the norms [13, 17], and constraints on
the ranks [18, 19]. All these constraints, from the perspective
of the statistical learning theory, can be regarded as the
length of the model to be fitted. According to the minimum
description length principle [20, 21], smaller length means
bettermodel, and thusmost of them can be incorporated into
(M1) as additional regularized terms; that is,

{𝑈
∗
, 𝑉
∗
} = min
𝑈,𝑉

Loss (𝑈𝑇𝑉, 𝑅) + 𝑃 (𝑈,𝑉) , (M2)

where the regularization factor 𝑃(𝑈,𝑉) corresponds to the
constraints on 𝑈 and 𝑉.

As a transductive model, (M2) has many appealing
mathematical properties, such as the generalization error
bound [22] and the exactness [14, 23]. However, as well
known, when compared with the generative model, a main
weakness of the transductive model is that it can hardly be
used to describe the relation in the data. In particular, for our
studied problem, even though themodel (M2)mayworkwell,
it is difficult to express the interplay between the model and
the evolutions of the objects.

4. The Proposed Model

In this section the proposed model for matrix factorization
for evolution data (MAFED) is presented. We first formalize
MAFED as a constraint optimizationmodel and then present
a probabilistic graphical model, the solution of which is
equivalent to the MAFED model. Finally we attain the
generative interpretation ofMAFED,withwhichwe elaborate
the ability of MAFED to describe the data relation. The last
subsection is devoted to the solution algorithm for MAFED.

4.1. The Model. Let 𝑅 ∈ R𝑛×𝑡 be the matrix generated
by 𝑛 independent objects 𝑂

1
, 𝑂
2
, 𝑂
3
, . . . , 𝑂

𝑛
at 𝑡 consecutive

time points 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑡
; then our MAFED model can be

formulated as follows:

{𝑈
∗
, 𝑉
∗
} = arg
𝑈,𝑉

min
𝑛

∑

𝑖=1

𝑡

∑

𝑗=1

(𝑅
𝑖,𝑗

− 𝑈
𝑇

𝑖
𝑉
𝑗
)
2

(3a)

s.t. 𝑈𝑖
2

⩽ 𝐴, 𝑖 = 1, 2, . . . , 𝑛 (3b)
𝑉1

2
⩽ 𝐵 (3c)


𝑉
𝑗+1

− 𝑉
𝑗

2
⩽ 𝐶
𝑗
, 𝑗 = 1, 2, . . . , 𝑡 − 1. (3d)

Here𝑈
𝑖
and𝑉

𝑗
correspond to the 𝑖th column of𝑈 and the 𝑗th

column of 𝑉, respectively.
From constraints (3b)–(3d), we can see that the roles of

𝑈 and 𝑉 in (3a) are asymptotic. We call 𝑈 the object matrix,
of which the 𝑖th column (𝑈

𝑖
) is the invariant feature vector

of 𝑂
𝑖
. Similarly, we call 𝑉 the environment matrix, of which

the 𝑗th column (𝑉
𝑗
) is the time varying environment feature

vector at 𝑇
𝑗
. Note that for each 𝑉

𝑗
, the range it takes effects

in is global; that is, for each time point 𝑇
𝑗
, all the objects

𝑂
1
,𝑂
2
,. . .,𝑂
𝑛
share the same environment feature vector 𝑉

𝑗
.

As a result, every entry𝑅
𝑖,𝑗

(1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑡) is composed
by the object’s intrinsic feature vector𝑈

𝑖
and the environment

feature vector 𝑉
𝑗
, and hence for each object 𝑂

𝑖
, its evolutions

over the time 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑡
are controlled by 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑡
. To

be more illustrative, let us consider such an example. Let 𝑅
be the speed matrix of the roads 𝐿

1
, 𝐿
2
, . . . , 𝐿

𝑛
at the time

points 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑡
, let 𝑈 be the feature matrix of the roads,

and let 𝑉 be the feature matrix of the environment; then 𝑈
𝑖

corresponds to the feature description of 𝐿
𝑖
and the entries

of 𝑈
𝑖
may consist of the intrinsic features of the road, such

as the surface rough, the number of lanes, and the role in the
traffic network; similarly, for 𝑉, every 𝑉

𝑗
corresponds to the

description of the environment at𝑇
𝑗
, and the entries of𝑉

𝑗
can

be the time, the weather, the visibility, and so on. Therefore,
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for the product 𝑅
𝑖,𝑗

= 𝑈
𝑇

𝑖
𝑉
𝑗
, it can be interpreted as the

speed of 𝐿
𝑖
at 𝑇
𝑗
is composed by the road feature 𝑈

𝑖
and the

environment feature 𝑉
𝑗
.

The ability of MAFED to describe the time evolution
effect lies in the constraint (3d). As well known, a fundamen-
tal characteristic of the evolution is for the all objects; when
the interval between two adjacent time points, for example,
𝑇
𝑗
and 𝑇

𝑗+1
, is small enough, the corresponding values of the

objects, that is, 𝑅
𝑗
and 𝑅

𝑗+1
, should tend to remain the same.

To satisfy this constraint, in (3d) we introduce the tunable
values𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑡−1
. When |𝑡

𝑗
−𝑡
𝑗+1

| → 0, we let𝐶
𝑗
→ 0.

Now since

𝑅
𝑗
− 𝑅
𝑗+1

2
=


𝑈
𝑇
𝑉
𝑗
− 𝑈
𝑇
𝑉
𝑗+1

2

≤ ‖𝑈‖2


𝑉
𝑗
− 𝑉
𝑗+1

2
,

‖𝑈‖2 ≤ ‖𝑈‖𝐹 ≤

𝑛

∑

𝑖=1

𝑈𝑖
2

≤ 𝑛 × 𝐴,

(4)

we have

𝑅
𝑗
− 𝑅
𝑗+1

2
≤ 𝑛 × 𝐴 ×


𝑉
𝑗
− 𝑉
𝑗+1

2
≤ 𝑛 × 𝐴 × 𝐶

𝑗
. (5)

When 𝑛 and 𝐴 are fixed, 𝐶
𝑗

→ 0 leads to 𝑛 × 𝐴 × 𝐶
𝑗

→ 0,
and so via (3d) it is guaranteed that |𝑡

𝑗
− 𝑡
𝑗+1

| → 0 ⇒ ||𝑅
𝑗
−

𝑅
𝑗+1

||
2

→ 0.
On the other hand, when the time interval |𝑡

𝑗
− t
𝑗+1

| →

+∞, the values that 𝑅
𝑗
and 𝑅

𝑗+1
take will tend to be

independently. For this case, we let 𝐶
𝑗

→ +∞, indicating
that 𝑅

𝑗+1
can take its value regardless of 𝑅

𝑗
.

With the constraints (3c) and (3d), we can control the
value of ‖𝑉

𝑗
‖
2
(𝑗 = 2, . . . , 𝑡) via


𝑉
𝑗



2

2
=


𝑉
1
+ 𝑉
2
− 𝑉
1
+ ⋅ ⋅ ⋅ + 𝑉

𝑗
− 𝑉
𝑗−1



2

2

≤
𝑉1



2

2
+
𝑉2 − 𝑉

1



2

2
+ ⋅ ⋅ ⋅ +


𝑉
𝑗
− 𝑉
𝑗−1



2

2

≤ 𝐵
2
+

𝑗−1

∑

𝑘=1

𝐶
2

𝑘
.

(6)

The result above shows that we can bound the sum
∑
𝑡

𝑗=1
‖𝑉
𝑗
‖
2

2
by selecting appropriate parameters 𝐵 and 𝐶.

Besides, from the constraint (3b), the sum ∑
𝑛

𝑖=1
‖𝑈
𝑖
‖
2

2
is

bounded by 𝑛𝐴
2. According to [12, 24], under some suitable

situations, the sum 1/2(∑
𝑡

𝑗=1
‖𝑉
𝑗
‖
2

2
+∑
𝑛

𝑖=1
‖𝑈
𝑖
‖
2

2
) is the convex

envelop of rank (𝑈𝑇𝑉), and hence MAFED accommodates
the ability to control the rank of themodel. On the other side,
as shown by Candès and Recht [14] and Candès and Tao [23],
when the target matrix is low rank, it is possible to exactly
recover it from only a few of its observations.This declaration
shows thatMAFED is possible to achieve high accuracy in the
applications of missing imputations.

4.2. The Generative Interpretation. In this section, to investi-
gate how MAFED interplays with the evolution of the data
from the view of generative modeling, we first present a

𝜎U

𝜎R

Ui

Ri,1 Ri,2 Ri,3 Ri,t

𝜎P V1 V2 V3 Vt

𝜎Q1
𝜎Q2

𝜎Q𝑡−1

Figure 1: The generative model for MAFED.

probabilistic graphical model (PGM [25]) and then show that
the maximum likelihood solution to the proposed PGM is
exactly the same as the solution of (3a).

First of all, the Lagrange dual of (3a) is

{𝑈
∗
, 𝑉
∗
} = arg
𝑈,𝑉

min
𝑛

∑

𝑖=1

𝑡

∑

𝑗=1

(𝑅
𝑖,𝑗

− 𝑈
𝑇

𝑖
𝑉
𝑗
)
2

+ 𝛼

𝑛

∑

𝑖=1

𝑈𝑖


2

2
+ 𝛽

𝑉1


2

2
+

𝑡−1

∑

𝑗=1

𝜆
𝑗


𝑉
𝑗+1

− 𝑉
𝑗



2

2

s.t. 𝛼, 𝛽, 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑡−1
≥ 0.

(7)

Here 𝛼, 𝛽, and 𝜆
𝑖
(𝑖 = 1, 2, . . . , 𝑡 − 1) are tunable

parameters, corresponding to the upper bounds 𝐴, 𝐵, and
𝐶
𝑖
(𝑖 = 1, 2, . . . , 𝑡 − 1) of constraints (3b)–(3d), respectively,

where greater bounds correspond to smaller parameters, and
vise versa.

Considering the PGM presented in Figure 1, we have the
following assumptions for 𝑈, 𝑉, and 𝑅.

(1) The columns of 𝑈 are from the same Gaussian
distribution with mean 0 and covariance matrix 𝜎

2

𝑈
𝐼;

that is, for 1 ≤ 𝑖 ≤ 𝑛, we have (here we use 𝑑 to denote
the dimension of 𝑈

𝑖
)

Pr (𝑈
𝑖
| 𝜎
𝑈
) = (2𝜋𝜎

2

𝑈
)
−𝑑/2

exp{−

𝑈𝑖


2

2

2𝜎
2

𝑈

} . (8)

(2) The columns of 𝑉 are linearly dependent in the order
of their subscripts with respect to prespecified priors
𝜎
𝑃
and 𝜎

𝑄
1

, 𝜎
𝑄
2

, . . . , 𝜎
𝑄
𝑇−1

; that is,

Pr (𝑉 | 𝜎
𝑃
, 𝜎
Λ
) = Pr (𝑉

1
| 𝜎
𝑃
, 𝜎
Λ
)

×

𝑇

∏

𝑗=2

Pr (𝑉
𝑗
| 𝑉
𝑗−1

, 𝜎
𝑃
, 𝜎
Λ
) .

(9)

Here for clarity, we let Λ = {𝑄
1
, 𝑄
2
, . . . ,

𝑄
𝑡−1

} and 𝜎
Λ

= {𝜎
𝑄
1

, 𝜎
𝑄
2

, . . . , 𝜎
𝑄
𝑇−1

}.
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We also assume 𝑉
1
is a Gaussian random vector

with mean 0 and covariance 𝜎
2

𝑃
𝐼 and 𝑉

𝑗
(𝑗 > 1)

is a Gaussian random vector with mean 𝑉
𝑗−1

and
covariance 𝜎

2

𝑄
𝑗−1

𝐼; that is,

Pr (𝑉
1
| 𝜎
𝑃
, 𝜎
Λ
) = (2𝜋𝜎

2

𝑃
)
−𝑑/2

exp{−

𝑉1


2

2

2𝜎
2

𝑃

} ,

Pr (𝑉
𝑗
| 𝑉
𝑗−1

, 𝜎
𝑃
, 𝜎
Λ
)

= (2𝜋𝜎
𝑄
𝑗−1

)

−𝑑/2

exp
{

{

{

−


𝑉
𝑗
− 𝑉
𝑗−1



2

2

2𝜎
2

𝑄
𝑗−1

}

}

}

.

(10)

(3) The (𝑖, 𝑗)th entry of 𝑅 (1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑇)
is a Gaussian random variable with mean 𝑈

𝑇

𝑖
𝑉
𝑗
and

variance 𝜎
2

𝑅
; that is,

Pr (𝑅
𝑖,𝑗

| 𝑈
𝑇

𝑖
𝑉
𝑗
, 𝜎
2

𝑅
) = (2𝜋𝜎

2

𝑅
)
−1/2

exp
{

{

{

−

(𝑅
𝑖,𝑗

− 𝑈
𝑇

𝑖
𝑉
𝑗
)
2

2𝜎
2

𝑅

}

}

}

.

(11)

With these assumptions, we in the following part of this
section show that, for a given matrix 𝑅 and priors 𝜎

𝑈
, 𝜎
𝑃
,

𝜎
Λ
, 𝜎
𝑅
, model (7) is equivalent to the following maximum

likelihood fitting problem:

{𝑈
∗
, 𝑉
∗
} = arg
𝑈,𝑉

max Pr (𝑈, 𝑉 | 𝑅, 𝜎
𝑈
, 𝜎
𝑃
, 𝜎
Λ
, 𝜎
𝑅
) . (12)

In fact, according to the Bayesian theorem, we have

Pr (𝑈, 𝑉 | 𝑅, 𝜎
𝑈
, 𝜎
𝑃
, 𝜎
Λ
, 𝜎
𝑅
) =

Pr (𝑈, 𝑉, 𝑅 | 𝜎
𝑈
, 𝜎
𝑃
, 𝜎
Λ
, 𝜎
𝑅
)

Pr (𝑅 | 𝜎
𝑈
, 𝜎
𝑃
, 𝜎
Λ
, 𝜎
𝑅
)

.

(13)

Since 𝑅 is observed and 𝜎
𝑈
, 𝜎
𝑃
, 𝜎
Λ
, and 𝜎

𝑅
are prespecified,

the denominator Pr (𝑅|𝜎
𝑈
, 𝜎
𝑃
, 𝜎
Λ
, 𝜎
𝑅
) can be treated as a

constant. Therefore, we get

(12) ⇐⇒ {𝑈
∗
, 𝑉
∗
} = arg
𝑈,𝑉

max Pr (𝑈, 𝑉, 𝑅 | 𝜎
𝑈
, 𝜎
𝑃
, 𝜎
Λ
, 𝜎
𝑅
) .

(14)

Combining Figure 1 and the assumptions (1) ∼ (3), we have

Pr (𝑅, 𝑈, 𝑉 | 𝜎
𝑈
, 𝜎
𝑃
, 𝜎
Λ
, 𝜎
𝑅
)

= Pr (𝑅 | 𝑈, 𝑉, 𝜎
𝑈
, 𝜎
𝑃
, 𝜎
Λ
, 𝜎
𝑅
)

× Pr (𝑈, 𝑉 | 𝜎
𝑈
, 𝜎
𝑃
, 𝜎
Λ
, 𝜎
𝑅
)

= Pr (𝑅 | 𝑈, 𝑉, 𝜎
𝑅
) × Pr (𝑈 | 𝜎

𝑈
) × Pr (𝑉 | 𝜎

𝑃
, 𝜎
Λ
)

=

𝑛

∏

𝑖=1

𝑡

∏

𝑗=1

Pr (𝑅
𝑖,𝑗

| 𝑈
𝑖
, 𝑉
𝑗
, 𝜎
𝑅
)

×

𝑛

∏

𝑖=1

Pr (𝑈
𝑖
| 𝜎
𝑈
) × Pr (𝑉

1
| 𝜎
𝑃
)

×

𝑡

∏

𝑗=2

Pr (𝑉
𝑗
| 𝑉
𝑗−1

, 𝜎
Λ
)

∝ exp(−
1

2𝜎
2

𝑅

𝑛

∑

𝑖=1

𝑡

∑

𝑗=1

(𝑈
𝑇

𝑖
𝑉
𝑗
− 𝑅
𝑖,𝑗
)
2

)

× exp(−
1

2𝜎
2

𝑈

𝑡

∑

𝑖=1

𝑈𝑖


2

2
)

× exp(−
1

2𝜎
2

𝑃

𝑉1


2

2
)

× exp(−

𝑡−1

∑

𝑗=1

1

2𝜎
2

𝑄
𝑗


𝑉
𝑗+1

− 𝑉
𝑗



2

2
) . (15)

Taking the logarithm on the two sides of the equation, we get

(14) ⇐⇒ {𝑈
∗
, 𝑉
∗
} = arg
𝑈,𝑉

min 1

𝜎
2

𝑅

×

𝑛

∑

𝑖=1

𝑡

∑

𝑗=1

(𝑅
𝑖,𝑗

− 𝑈
𝑇

𝑖
𝑉
𝑗
)
2

+
1

𝜎
2

𝑈

𝑁

∑

𝑖=1

𝑈𝑖


2

2

+
1

𝜎
2

𝑃

𝑉1


2

2
+

𝑡−1

∑

𝑗=1

1

𝜎
2

𝑄
𝑗


𝑉
𝑗+1

− 𝑉
𝑗



2

2
.

(16)

Comparing (7) and (16), the PGMmodel is equivalent to the
optimization model (3a) if we let 𝛼 = 𝜎

2

𝑅
/𝜎
2

𝑈
, 𝛽 = 𝜎

2

𝑅
/𝜎
2

𝑃
, and

𝜆
𝑗
= 𝜎
2

𝑅
/𝜎
2

𝑄
𝑗

(𝑗 = 1, 2, . . . , 𝑡 − 1).

5. The Algorithm

We in this section present a fitting algorithm to solve (7). For
clarity, we only discuss the case that all the time intervals are
of equal length; that is, 𝑇

2
− 𝑇
1
= 𝑇
3
− 𝑇
2
= ⋅ ⋅ ⋅ = 𝑇

𝑡
− 𝑇
𝑡−1

.
Under this hypothesis, we take 𝜆

1
= 𝜆
2
= ⋅ ⋅ ⋅ = 𝜆

𝑡−1
in model

(7). Cases with unequal length time intervals can be handled
by removing the constraint 𝜆

𝑖
= 𝜆
𝑗
if 𝑇
𝑖+1

− 𝑇
𝑖
= 𝑇
𝑗+1

− 𝑇
𝑗
.

Let

𝑆 = arg
𝑈,𝑉

min
𝑛

∑

𝑖=1

𝑡

∑

𝑗=1

(𝑅
𝑖,𝑗

− 𝑈
𝑇

𝑖
𝑉
𝑗
)
2

+ 𝛼

𝑛

∑

𝑖=1

𝑈𝑖


2

2
+ 𝛽

𝑉1


2

2
+ 𝜆

𝑡−1

∑

𝑗=1


𝑉
𝑗+1

− 𝑉
𝑗



2

2
.

(17)

It is straightforward to verify that 𝑆 is convex with respect to
𝑈
𝑖
(1 ≤ 𝑖 ≤ 𝑛) and 𝑉

𝑗
(1 ≤ 𝑗 ≤ 𝑡), respectively. Therefore we
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can achieve the local minimum solution of 𝑆 via coordinate
descent [26]. We first calculate the partial derivative with
respect to𝑈

1
, 𝑈
2
, . . . , 𝑈

𝑛
and𝑉

1
, 𝑉
2
, . . . , 𝑉

𝑡
, respectively.Then

we have the following.
For 𝑖 = 1, 2, . . . , 𝑛,

𝜕𝑆

𝜕𝑈
𝑖

= 2𝛼𝑈
𝑖
− 2

𝑡

∑

𝑗=1

(𝑅
𝑖𝑗
− 𝑈
𝑇

𝑖
𝑉
𝑗
)𝑉
𝑗 (18)

and for 𝑗 = 2, 3, . . . , 𝑡 − 1,

𝜕𝑆

𝜕𝑉
𝑗

=2𝜆 (2𝑉
𝑗
− 𝑉
𝑗−1

− 𝑉
𝑗+1

)−2

𝑛

∑

𝑖=1

(𝑅
𝑖,𝑗

− 𝑈
𝑇

𝑖
𝑉
𝑗
)𝑈
𝑖
. (19)

Similarly,

𝜕𝑆

𝜕𝑉
1

= 2𝛽𝑉
1
− 2

𝑛

∑

𝑖=1

(𝑅
𝑖,1

− 𝑈
𝑇

𝑖
𝑉
1
)𝑈
𝑖
− 2𝜆 (𝑉

2
− 𝑉
1
) ,

𝜕𝑆

𝜕𝑉
𝑡

= 2𝜆 (𝑉
𝑡
− 𝑉
𝑡−1

) − 2

𝑛

∑

𝑖=1

(𝑅
𝑖,𝑡

− 𝑈
𝑇

𝑖
𝑉
𝑡
)𝑈
𝑖
.

(20)

With the equations above, Algorithm 1 is presented.

6. Experiments

In this section, experimental evaluations against a finance
dataset and a traffic speed dataset are presented.Theproposed
MAFED algorithm is compared with the other two state-of-
the-art approaches.

6.1. Evaluation Methodology. To evaluate the algorithms, we
perform missing imputation on an incomplete matrix 𝑅.
Similar to many other matrix competition problems, the
testing protocol adopted is the Given X (0 < 𝑋 < 1) protocol
[27]; that is, for 𝑅, we only show 𝑋 of its observed entries to
the users, while holding the remaining (1 − 𝑋) observations
to evaluate the trained model. For example, when 𝑋 = 10%,
Given X means that the algorithm is trained with 10% of the
nonmissing entries and the rest of 90% nonmissing ones are
held and to be recovered.

With the Given X setting, (16) can be rewritten as

{𝑈
∗
, 𝑉
∗
} = arg
𝑈,𝑉

min
𝑁

∑

𝑖=1

𝑇

∑

𝑗=1

(𝑅
𝑖,𝑗

− 𝑈
𝑇

𝑖
𝑉
𝑗
)
2

I (𝑅
𝑖,𝑗

̸= “⊥”)

+ 𝛼

𝑁

∑

𝑖=1

𝑈𝑖


2

2
+ 𝛽

𝑉1


2

2
+ 𝜆

𝑇

∑

𝑗=2


𝑉
𝑗
− 𝑉
𝑗−1



2

2
.

(21)

The first selected comparison algorithm is the probabilistic
principle component analysis model (PPCA [28]), which
achieves the state-of-the-art performance in the missing
traffic flow data imputation problem [29]. The second is
the probabilistic matrix factorization model (PMF), which
is one of the most popular algorithms in the Netflix matrix
completion problem [13].

The evaluation criterion employed is the root mean
square error (RMSE).More formally, for a test dataset 𝑆 = {𝑠

1
,

𝑠
2
, . . . , 𝑠

𝑛
} and the estimated set 𝑆 = {𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
} (𝑠
𝑖
is the

estimation of 𝑠
𝑖
), the RMSE of the estimation is given by

√(1/𝑛)∑
𝑛

𝑘=1
(𝑠
𝑘
− 𝑠
𝑘
)
2.

In all our experiments, for every 𝐺𝑖V𝑒𝑛 𝑋, the data
partition is repeated for 5 times, and the average results as
well as standard deviations are recorded.

6.2. Experiments on the Finance Dataset. The finance dataset
is a 524-𝑏𝑦-245matrix𝑅, which consists of the opening prices
of 524 leading U.S. companies in 245 consecutive trading
days from August 21, 2009 to August 20, 2010. Each row in
𝑅 corresponds to a company and each column corresponds
to a day.

To characterize the evolution of the opening prices, we
introduce the term incremental rate; for the 𝑖th company, the
incremental rate of its opening price in the 𝑗th day is given by

Inc
𝑖,𝑗

=

𝑅
𝑖,𝑗

− 𝑅
𝑖,𝑗−1

𝑅
𝑖,𝑗−1

. (22)

Intuitively, the incremental rate quantifies how strong the
evolution is. A smaller |Inc

𝑖,𝑗
| implies a closer connection

between 𝑅
𝑖,𝑗−1

and 𝑅
𝑖,𝑗
, and hence we say the evolution from

𝑅
𝑖,𝑗−1

to 𝑅
𝑖,𝑗
is gradual; while a larger |Inc

𝑖,𝑗
| indicates a looser

relation between 𝑅
𝑖,𝑗

and 𝑅
𝑖,𝑗−1

, and thus the evolution is
considered to be saltatory.

We calculate the incremental rates for all companies in the
days 2 ∼ 245. Figure 2 illustrates the cumulative probability
distribution of these rates. We can observe that almost all the
incremental rates locate in a very sharp interval (−10%, 10%).
This implies that the changes of the opening prices are very
slight. In other words, the evolutions of the opening prices are
gradualism.

We evaluate the parametric sensitivity of the algorithm
by tuning the parameters 𝛼 and 𝜆. In our experiments, we
first fix 𝛼 = 0.01 and vary 𝜆 via an assignment expression
𝜆 = 0.01 × 2

𝑛, where 𝑛 = 0, 1, . . . , 9. Then we do the reverse
by fixing 𝜆 = 0.01 and changing 𝛼 via 𝛼 = 0.01 × 2

𝑛. For the
Given X protocol setting, we take𝑋 = 50%; that is, 50% of the
data in 𝑅 is randomly selected as training data, with which
the algorithm is trained and recovers the remaining 50% as
test data. The average RMSEs of the experiments are shown
in Figure 3.

As shown in Figure 3, the RMSE values remain stable
even when 𝜆 is expanded by more than 200 times (28 =

256). Similar result also appears in the experiments on the
parameter 𝛼. We can observe that significant changes of the
RMSE value only occur in cases where 𝑛 > 7 (i.e., 𝛼 is
expanded by more than 128 times).

To study the prediction ability of the proposed algorithm,
we increase the 𝑋 value in the Given X protocol from 10%
to 50%. Then for each 𝑋 setting, missing imputations are
performed using MAFED with 𝛼 = 𝛽 = 𝜆 = 0.5 and
the comparison algorithms with the latent feature number
𝑑 = 10 and 𝑑 = 30, respectively. As illustrated in Table 1,
MAFED outperforms PPCA significantly in all settings. For
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Input: matrix 𝑅; number of the latent features 𝑑; learning rates 𝜂
1
, 𝜂
2
and 𝜂

3
;

regularization parameters 𝛼, 𝛽 and 𝜆; threshold 𝜖

Output: the estimated matrix 𝑈
𝑇
𝑉.

// Initialize 𝑈 and 𝑉.

(1) Generate random vectors 𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑛
, 𝑉
1
∼ N(0, 𝐼);

(2) for 𝑗 = 2; 𝑗 ≤ 𝑡; 𝑗 + + do
(3) Generate 𝑍 with N(0, 𝐼)
(4) Let 𝑉

𝑗
= 𝑉
𝑗−1

+ 𝑍

(5) end
// Coordinate descent.

(6) 𝑆
1
=

𝑖=𝑛,𝑗=𝑡

∑

𝑖=1,𝑗=1

(𝑅
𝑖,𝑗

− 𝑈
𝑡

𝑖
𝑉
𝑗
)
2

+ 𝛼

𝑛

∑

𝑖=1

𝑈𝑖


2

2
+ 𝛽

𝑉1


2

2
+ 𝜆

𝑡−1

∑

𝑗=1


𝑉
𝑗+1

− 𝑉
𝑗



2

2
;

(7) 𝑆
2
= inf ;

(8) while 𝑆2 − 𝑆
1

 > 𝜖 do
(9) 𝑆

2
= 𝑆
1
;

(10) for 𝑖 = 1, 2, . . . , 𝑛 do
(11) Let 𝑈new

𝑖
= 𝑈
𝑖
− 𝜂
1
(𝜕𝑆/𝜕𝑈

𝑖
);

(12) end
(13) 𝑉

new
1

= 𝑉
1
− 𝜂
2

𝜕𝑆

𝜕𝑉
1

;

(14) for 𝑗 = 2, . . . , 𝑡 do
(15) Let 𝑉new

𝑗
= 𝑉
𝑗
− 𝜂
3
(𝜕𝑆/𝜕𝑉

𝑗
);

(16) end
(17) Replace the all 𝑈

𝑖
𝑠 with 𝑈

new
𝑖

𝑠, and 𝑉
𝑗
𝑠 with 𝑉

new
𝑗

𝑠, recompute 𝑆
1
;

(18) end
(19) return 𝑈

𝑇
𝑉;

Algorithm 1: MAFED(𝑅, 𝑑, 𝜂
1
, 𝜂
2
, 𝜂
3
, 𝛼, 𝛽, 𝜆, 𝜖).
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Figure 2: The cumulative probability distribution curve of the
incremental rates of the finance dataset.

any 𝑋 value, the RMSE of MAFED is at most 20% of
that of PPCA. Specifically, for 𝑋 ∈ {30%, 40%, 50%}, the
RMSE of MAFED is even only 10% of PPCA. More notably,
the value 𝑑 has strikingly different impacts on MAFED
and PPCA. When 𝑑 changes from 10 to 30, almost all the
RMSEs of PPCA dramatically increase, while for MAFED,
RMSEs are decreased by nearly 5% except for the case with
𝑋 = 10%. This observation suggests that, with carefully
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Figure 3: Empirical results on parameter sensitivity.

setting of the parameter 𝑑, it is possible to improve the
predicting accuracy of MAFED. We can also observe that,
compared with PMF,MAFED achieves smaller RMSEs in the
all settings. Especially, when𝑋 ∈ {30%, 40%, 50%}, the RMSE
of MAFED is only half of that of PMF. Another interesting
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Figure 4: Empirical results on the algorithm convergence.

finding is that, for PMF, the value of 𝑑 has little impact on
predictions..

The convergence rate of MAFED is also explored in this
work. We record the RMSEs of data recovered by MAFED
every 10 iterations and plot them on Figure 4, where the 𝑥-
axis is the number of iterations and 𝑦-axis represents the
RMSEs. We can observe that, for all𝑋 values, corresponding
curves drop dramatically in the first 20 iterations and remain
stable afterwards. From the result presented in Figure 3 and
Table 1, we can conclude that, in our experiments, MAFED
converges to the local optimization solutions within 100

iterations.

6.3. Experiments on the Traffic Speed Dataset. To reconfirm
the recovery performance of MAFED, we in this section con-
duct another evaluation on a traffic speed dataset collected
in the urban road network of Zhuhai City [30], China, from
April 1, 2011 to April 30, 2011. Again we adopt a matrix 𝑅 to
represent the data, where 𝑅 consists of 1853 rows and 8729

columns. Each row corresponds to a road and each column
corresponds to a 5-minute-length time interval. All columns
are arranged in ascending order of time. The entry 𝑅

𝑖,𝑗
(1 ≤

𝑖 ≤ 1853, 1 ≤ 𝑗 ≤ 8729) in 𝑅 is the aggregate mean traffic
speed of the 𝑖th road in the 𝑗th interval. As the data in 𝑅

are collected by probing vehicles, the value of 𝑅
𝑖,𝑗

might be
missing if there is no probing vehicle on the 𝑖th road during
the 𝑗th time interval. In the data set, nearly half of the data,
that is, 8million entries in 𝑅, are such missing values.

We calculate the incremental rates of the nonmissing data
in 𝑅 and present the cumulative density distribution for the
incremental rates in Figure 5. The evolution of the traffic
speeds differs from that of the stock opening prices remark-
ably. As aforementioned, the incremental rates of the finance
data set mainly concentrate on the sharp interval [−10%,
10%]. While for the traffic speed data, as demonstrated in
Figure 5, the range of the incremental rates spreads from −1

to 10.This indicates that there are plenty of sudden changes of
the road speeds occuring in adjacent time intervals. In other
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Figure 5: The cumulative probability distribution curve of the
incremental rates of the traffic speed dataset.

words, many of the speed evolutions are saltation. A possible
cause of this observation could be the effects of the traffic
lights in the urban road network. When the traffic light of a
road turns from green to yellow (and then red), traffic speed
on the road immediately reduces to 0. On the other side,
when the light turns from red to green, vehicles are restarted
instantly, resulting in a significant acceleration of the speed
on the road.

This experiment is conducted with settings 𝑑 = 10, 𝛼 =

0.5, and 𝜆 = 10. Table 2 shows that in the all 𝑋 settings,
MAFED also outperforms PPCA and PMF. In particular,
when there are few observations (e.g., 𝑋 = 10% and 𝑋 =

20%), RMSEs of MAFED are 33% lower than those of PPCA
and 10% lower than those of PMF. When 𝑋 > 20%, the
RMSE differences between PPCA and MAFED tend to be
slight. Despite that, the overall errors of PPCA are roughly
3% ∼ 5% higher than those of MAFED, and for PMF, the
RMSEs remain roughly 10% higher than those of MAFED.

7. Conclusion and Future Works

Matrix factorization models are fundamental in machine
learning and data mining. In this paper, we present MAFED,
a matrix factorization model for evolution data. In MAFED,
the two factor matrices are treated as composed of intrinsic
features of the objects and time-varying features of the envi-
ronment, respectively. Hence, their product accommodates
the ability to describe the evolution of the objects over
time. Besides, we construct a probabilistic graphical model,
with which the statistical natural of MAFED is elaborated.
We also present a fitting algorithm to find the solution of
MAFED. Finally, we evaluate MAFED through missing data
imputation on two real-world datasets. Experimental results
indicate that the proposed model outperforms the compari-
son algorithms in both gradualism cases and saltation cases.

According to the generative interpretation of MAFED,
its success mainly attributes to the introduction of the linear
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Table 1: Imputation results on the finance dataset.

10% 20% 30% 40% 50%

𝐷 = 10

PPCA 18.52 ± 0.73 20.84 ± 0.81 24.18 ± 0.65 22.82 ± 0.59 19.57 ± 0.33

PMF 3.33 ± 0.03 3.29 ± 0.03 3.30 ± 0.02 3.30 ± 0.00 3.28 ± 0.02

MAFED 3.14 ± 0.01 2.92 ± 0.01 2.84 ± 0.02 2.32 ± 0.01 2.05 ± 0.02

𝐷 = 30

PPCA 24.22 ± 0.61 21.84 ± 0.93 24.51 ± 0.51 23.22 ± 0.37 22.61 ± 0.35

PMF 3.33 ± 0.03 3.29 ± 0.02 3.30 ± 0.01 3.30 ± 0.02 3.29 ± 0.02

MAFED 3.11 ± 0.03 2.87 ± 0.02 2.70 ± 0.00 2.21 ± 0.01 2.09 ± 0.00

Table 2: Imputation results on the traffic dataset.

10% 20% 30% 40% 50%
PPCA 17.88 ± 0.33 17.36 ± 0.35 12.00 ± 0.26 12.26 ± 0.12 11.47 ± 0.06

PMF 14.44 ± 0.10 12.75 ± 0.11 12.49 ± 0.07 12.39 ± 0.06 12.36 ± 0.05

MAFED 13.30 ± 0.09 12.17 ± 0.10 11.92 ± 0.07 11.84 ± 0.06 11.04 ± 0.08

chain structural prior; as a result, a natural extension of the
present work is to deal with the factorizations on matrices
with more complex structural priors. In particular, as have
been shown in the empirical studies section, many of the
pieces of data in real-world scenarios are highly incomplete,
so it is important and interesting to study the factorization
on the incomplete matrix with no prespecified structural
information.

Conflict of Interests

The authors declare that there is no conflict of interests
regerding the publication of this paper.

Authors’ Contribution

Huang and Xiang contributed equally and Huang corre-
sponds to this paper.

Acknowledgments

This work is supported in part by National High-Tech
R&D Program (863 Program) of China under Grant no.
2012AA12A203.

References

[1] Y. Koren, “Factorization meets the neighborhood: a multi-
faceted collaborative filtering model,” in Proceedings of the
14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’08), pp. 426–434, August
2008.

[2] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization tech-
niques for recommender systems,” Computer, vol. 42, no. 8, pp.
30–37, 2009.

[3] A. Krohn-Grimberghe, L. Drumond, C. Freudenthaler, and L.
Schmidt-Thieme, “Multi-relational matrix factorization using
Bayesian personalized ranking for social network data,” in
Proceedings of the 5th ACM International Conference on Web
Search and Data Mining (WSDM ’12), pp. 173–182, February
2012.

[4] W. Xu, X. Liu, and Y. Gong, “Document clustering based
on non-negative matrix factorization,” Proceedings of the 26th
Annual International ACM SIGIR Conference on Research and
Development in Informaion Retrieval, pp. 267–273, 2003.

[5] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol. 401, no. 6755,
pp. 788–791, 1999.

[6] D. Seung and L. Lee, “Algorithms for non-negative matrix fac-
torization,” Advances in Neural Information Processing Systems,
vol. 13, pp. 556–562, 2001.

[7] J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov, “Meta-
genes and molecular pattern discovery using matrix factoriza-
tion,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 101, no. 12, pp. 4164–4169, 2004.

[8] S. Turner, L. Albert, B. Gajewski, and W. Eisele, “Archived
intelligent transportation systemdata quality: preliminary anal-
yses of San Antonio Transguide data,” Transportation Research
Record, no. 1719, pp. 77–84, 2000.

[9] B. L. Smith,W.T. Scherer, and J.H. Conklin, “Exploring imputa-
tion techniques for missing data in transportationmanagement
systems,” Transportation Research Record, no. 1836, pp. 132–142,
2003.

[10] D.Ni, J. D. Leonard, A. Guin, andC. Feng, “Multiple imputation
scheme for overcoming themissing values and variability issues
in ITS data,” Journal of Transportation Engineering, vol. 131, no.
12, pp. 931–938, 2005.

[11] N. Srebro, J. D. Rennie, and T. Jaakkola, “Maximum-margin
matrix factorization,”Advances inNeural Information Processing
Systems, vol. 17, no. 5, pp. 1329–1336, 2005.

[12] J. D. M. Rennie and N. Srebro, “Fast maximum margin matrix
factorization for collaborative prediction,” in Proceedings of the
22nd International Conference onMachine Learning (ICML ’05),
pp. 713–720, August 2005.

[13] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factoriza-
tion,” Advances in Neural Information Processing Systems, vol.
20, pp. 1257–1264, 2008.

[14] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational Mathematics, vol.
9, no. 6, pp. 717–772, 2009.

[15] P. O. Hoyer, “Non-negativematrix factorization with sparseness
constraints,” The Journal of Machine Learning Research, vol. 5,
pp. 1457–1469, 2004.



Mathematical Problems in Engineering 9

[16] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning
for matrix factorization and sparse coding,” Journal of Machine
Learning Research, vol. 11, pp. 19–60, 2010.

[17] Q. Ke and T. Kanade, “Robust L1 norm factorization in the
presence of outliers and missing data by alternative convex
programming,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR
’05), pp. 739–746, June 2005.

[18] N. Srebro and T. Jaakkola, “Weighted low-rank approxima-
tions,” in Proceedings of the 20th International Conference on
Machine Learning, vol. 20, p. 720.

[19] J. Abernethy, F. Bach, T. Evgeniou, and J. P. Vert, “Low-
rank matrix factorization with attributes,” http://arxiv.org/abs/
cs/0611124.

[20] V. Vapnik, Statistical Learning Theory, John Wiley & Sons, New
York, NY, USA, 1998.

[21] J. Rissanen, Minimum Description Length Principle, Springer,
New York, NY, USA, 2010.

[22] N. Srebro, Learning with matrix factorizations [Ph.D. thesis],
Citeseer, 2004.

[23] E. J. Candès and T. Tao, “The power of convex relaxation: near-
optimal matrix completion,” IEEE Transactions on Information
Theory, vol. 56, no. 5, pp. 2053–2080, 2010.

[24] M. Fazel, H.Hindi, and S. P. Boyd, “A rankminimization heuris-
tic with application to minimum order system approximation,”
in Proceedings of the American Control Conference, pp. 4734–
4739, June 2001.

[25] D. Koller and N. Friedman, Probabilistic Graphical Models:
Principles and Techniques, MIT Press, Cambridge, Mass, USA,
2009.

[26] D. P. Bertsekas, Nonlinear Programming, Athena Scientific,
Nashua, NH, USA, 1999.

[27] B. Marlin, Collaborative filtering: a machine learning perspective
[Ph.D. thesis], University of Toronto, 2004.

[28] M. E. Tipping and C. M. Bishop, “Probabilistic principal
component analysis,” Journal of the Royal Statistical Society B:
Statistical Methodology, vol. 61, no. 3, pp. 611–622, 1999.

[29] L. Qu, L. Li, Y. Zhang, and J. Hu, “PPCA-based missing data
imputation for traffic flow volume: a systematical approach,”
IEEE Transactions on Intelligent Transportation Systems, vol. 10,
no. 3, pp. 512–522, 2009.

[30] Zhuhai City, China, http://en.wikipedia.org/wiki/Zhuhai .



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


