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Spacemissions to visit the natural satellite of Jupiter, Europa, constitute an important topic in space activities today, becausemissions
to this moon are under study now. Several considerations have to be made for these missions. The present paper searches for less
perturbed circular orbits around Europa. This search is made based on the total effects of the perturbing forces over the time,
evaluated by the integral of those forces over the time.This value depends on the dynamicalmodel and on the orbit of the spacecraft.
The perturbing forces considered are the third-body perturbation that comes from Jupiter and the 𝐽

2
, 𝐽
3
, and 𝐶

22
terms of the

gravitational potential of Europa. Several numerical studies are performed and the results show the locations of the less perturbed
orbits. Using those results, it is possible to find near-circular frozen orbits with smaller amplitudes of variations of the orbital
elements.

1. Introduction

The importance of making a good choice for the orbit of a
spacecraft that will make a mission around Europa can be
explained in several aspects. First, this choice will impact on
the scientific results that can be obtained from the observa-
tion points that the chosen orbit allows. Second, it is necessary
to consider the orbital maneuvers involved in placing and
keeping the spacecraft on that orbit. This problem impacts
on the costs and duration of the mission, so it is an aspect
that has to be considered during the orbit selection process.
Some researches on this topic are described below.

Reference [1] studied the stability of orbits around a plan-
etary satellite using analytical and numerical techniques with
applications in Europa. The solution includes the effects of
the planet gravity and the planetary satellite oblateness, with
the assumption that the eccentricity of the nominal orbit is
small. After that [2] studied the secularmotion of a spacecraft
around Europa that is in a synchronous orbit. Lara and San-
Juan [3] investigated the stability of the motion in the three-
dimensional space for the Jupiter-Europa system. Lara and

Russell [4] considered the dynamics of a satellite around
Europa taking into account the model of Hill and the Europa
gravity field (𝐽

2
and 𝐽

3
) on the synchronous moon theory.

Paskowitz and Scheeres [5] analyzed the dynamics of an orbit
around Europa taking into account a model that includes the
tidal force of Jupiter and 𝐽

2
, 𝐶
22
, and 𝐽

3
gravity coefficients

of Europa. Average techniques are applied twice to reduce
the original 3-degree-of-freedom system to an integrable 1-
degree-of-freedom system. After that [6, 7] obtained orbits
for a scientific mission in Europa, while [8] studied how to
control this type of orbits. Russell and Brinckerhoff [9] stud-
ied eccentric orbits around several moons of the solar system.
Lara [10] reviewed the long-term dynamics of an orbiter
around a planetary moon. Application to the Jupiter-Europa
system illustrates the full procedure. More recently, in Car-
valho et al. [11], the dynamics of orbits around planetary satel-
lites, taking into account the gravitational attraction of a third
body and the nonuniform distribution of mass of the plan-
etary satellite, is studied. The authors show that the single-
averaged model is more realistic, since it does not eliminate
the term due to the equatorial ellipticity of the planetary
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satellite as done by the double-averaged problem. Just after
that, Carvalho et al. [12] analyzed the problem of considering
that an artificial satellite is orbiting Europa and that this
spacecraft is perturbed by the nonuniform distribution of
mass of the planetary satellite (𝐽

2
, 𝐽
3
, and 𝐶

22
) and by the

gravitational attraction of the third body. In this paper, the
authors present an analytical theory using the averagedmodel
and numerical simulations are performed using the software
Mercury ([13]), to compare the results obtained using the
analytical theory. In the following year, Carvalho et al.
[14] search for orbits around Europa with longer lifetimes.
The dynamical model considers the effects caused by the
nonsphericity (𝐽

2
, 𝐽
3
) of the central body (Europa) and

the perturbations caused by a third body in the motion of
an artificial satellite around Europa. The orbit of Jupiter is
assumed to be circular and fixed in the space; therefore, the
mean anomaly of Jupiter has not been eliminated.

The goal of the present paper is to map orbits around
Europa by performing the integral over the time of the most
important perturbations, in order to evaluate the total effects
of those forces involved in the dynamics. This search for
orbits that are less perturbed is based on the fact that it is
expected that less perturbed orbits suffer smaller deviations
from the nominal orbits and therefore demand less station-
keepingmaneuvers.This idea is first used andmore explained
in Prado [15], who studied spacecraft orbits around the Earth
perturbed by the moon and the sun using this technique. To
make a first study for orbits around Europa using this con-
cept, only circular orbits are considered, but the semimajor
axis and the inclinations are free to assume any desired value.
In this way, the results will allow mission designers to choose
the best orbits that are suitable for their missions with respect
to this aspect.This criterion formapping the orbits has several
advantages. Some of them are as follows.

(1) The orbits are assumed to be always keplerian, due to
the fact that the integration is performed for only one
period of the spacecraft that is a short time. In this
way, this index can be evaluated for each perturbation
force independent from the others. So, it is possible to
make a comparison of those values to choose which
forces are important and need to be considered in the
dynamical model, depending on the accuracy desired
by the mission.

(2) This index depends on the force model used and the
orbit of the spacecraft. It does not depend on the
propulsion system and control techniques used for
the station keeping.

(3) It measures the total amount of variation of the
velocity that comes from the perturbation forces con-
sidered in the dynamical model; therefore, it indicates
which orbits are good candidates to require less fuel
consumption for the station-keeping maneuvers.

After mapping orbits with respect to the perturbations,
the results are used to find the values for the semimajor axis
that generate less perturbed frozen orbits. A frozen orbit is
a specific orbit where the perturbations are minimized by
making a good choice of the orbital parameters of that orbit.

Table 1: Numerical values for 𝐽
2
, 𝐽
3
, and 𝐶

22
.

Harmonic coefficients of Europa (Lara and Russell [4])
𝐽
2
= 4.35 × 10

−4

𝐽
3
= 1.378 × 10

−4

𝐶
22

= 1.307 × 10
−4

Therefore, the use of values for the semimajor axis based on
this study can lead to the discovery of frozen orbits with
smaller variations of the orbital parameters that can be used
in several missions.

2. Mathematical Models

The mathematical model used here for the perturbations is
now explained in some detail. The problem deals with a
system of nonlinear differential equations, and we are using
an extension of the theory proposed by Prado [15] to map
a class of particular solutions. It is assumed that there is
a spacecraft in a circular orbit around Europa. The forces
acting in this spacecraft are the gravitational field of Europa,
considering the terms 𝐽

2
, 𝐽
3
, and 𝐶

22
, and the third-body

perturbation due to Jupiter.Those terms were chosen because
they are the most important ones in the gravitational poten-
tial of Europa. Table 1 shows the numerical values of those
constants. Note that the values are of the same order of
magnitude; therefore, it is necessary to take all of them into
account in the dynamical model. Other perturbations, like
the gravitational field of the other moons of Jupiter, are
relevant only for very specific orbits, near the orbits of one of
thosemoons, so they are not included in the present research.
The equations that describe the force field are also shown
in Table 1.

2.1. Force Function due to the Disturbing Body. For the model
considered in the present paper, it is necessary to calculate the
term 𝑅

2
of the disturbing function due to the perturbation

caused by a third body (Jupiter) in circular orbits around
Europa. This disturbing potential 𝑅

2
can be written in the

form ([11, 12, 16])

𝑅
2
=

1

2
𝑁
2
𝑟
2
(3cos2𝑆 − 1) , (1)

where 𝑟 is the radius vector of the artificial satellite, 𝑁 is the
mean motion of Jupiter, and 𝑆 is the angle between the line
that connects the massive central body and the perturbed
body (the artificial satellite) and the line that connects the
massive central body and the perturbing body (Jupiter, the
third body). The artificial satellite is considered to be a point
of mass in a circular orbit with osculating orbital elements
given by 𝑎 = (semimajor axis), 𝑖 (inclination), 𝑔 (argument of
the periapsis), and ℎ (longitude of the ascending node). Using
the relation between the angle 𝑆 and the true anomaly (𝑓) of
the satellite, it is possible to find [17]

cos (𝑆) = 𝛼 cos (𝑓) + 𝛽 sin (𝑓) . (2)
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For the case of circular orbits, the values of 𝛼 and 𝛽 can
be written in the form [17, 18]

𝛼 = cos (𝑔) cos (ℎ −𝑀) − cos (𝑖) sin (𝑔) sin (ℎ −𝑀) ,

𝛽 = − sin (𝑔) cos (ℎ −𝑀) − cos (𝑖) cos (𝑔) sin (ℎ −𝑀) ,

(3)

where 𝑀 is the true anomaly of Jupiter. For the case of
elliptical orbits, 𝛼 and 𝛽 are presented in [19], where it
is considered that the satellite is in the same plane of the
disturbing body. However, when the inclination of the orbit
of the disturbing body (in an elliptical orbit) is taken into
account, 𝛼 and 𝛽 are given in [20]. Then, (2) and (3) are used
in (1) and the disturbing potential can be written as

𝑅
2
= −

3

8
𝑟
2
𝑁
2

× (−
1

2
(𝑐 − 1)

2 cos (2𝑔 − 2ℎ + 2𝑀 + 2𝑓)

−
1

2
(𝑐 + 1)

2 cos (2𝑔 + 2ℎ − 2𝑀 + 2𝑓)

− cos (2ℎ − 2𝑀) − cos (2𝑔 + 2𝑓)

+
1

3
+ 𝑐
2 cos (2𝑔 + 2𝑓) − 𝑐

2
+ 𝑐
2 cos (2ℎ − 2𝑀)) .

(4)

We use the shortcuts 𝑠 = sin(𝑖) and 𝑐 = cos(𝑖).
The potential of a massive body at a distance 𝑟 and the

force per unit of mass are related by (McCuskey) [21]

𝐹 = −
𝜕𝑈

𝜕𝑟
, (5)

where 𝑈 is the potential to be considered.
Replacing (4) in (5) and using 𝑟 = 𝑎,𝑓 = 𝑛𝑡, and𝑀 = 𝑁𝑡,

where 𝑛 is the mean motion of the satellite, 𝑁 is the mean
motion of Jupiter, and 𝑡 is the time, it is obtained that

𝐹𝑅
2
=

3

4
𝑎𝑁
2

× (−
1

2
(𝑐 + 1)

2 cos (2𝑔 + 2ℎ − 2𝑁𝑡 + 2𝑛𝑡)

−
1

2
(𝑐 − 1)

2 cos (2𝑔 − 2ℎ + 2𝑁𝑡 + 2𝑛𝑡)

+
1

3
− cos (2𝑁𝑡 − 2ℎ) − 𝑐

2
+ 𝑐
2 cos (2𝑁𝑡 − 2ℎ)

− cos (2𝑛𝑡 + 2𝑔) + 𝑐
2 cos (2𝑛𝑡 + 2𝑔)) .

(6)

2.2. Force Function due to the Nonspherical Shape of Europa.
To analyze the motion of a spacecraft around the planetary
satellite, it is necessary to take into account the nonsphericity
of Europa. As mentioned above, the harmonic coefficients 𝐽

2
,

𝐽
3
, and 𝐶

22
are only considered, as usual in the literature.

Then, considering the case of circular orbits, the following
equations are available.

(a) The zonal perturbation due to the oblateness (𝐽
2
) is

given by [22]

𝐹𝐽
2
= −

𝜀𝜇
𝐸
(3𝑠
2sin2 (𝑓 + 𝑔) − 1)

2𝑟3
, (7)

where 𝜀 = 𝐽
2
𝑅
2

𝐸
, 𝑅
𝐸
is the equatorial radius of Europa

(𝑅
𝐸
= 1560.8 km), and𝜇

𝐸
is the gravitational constant

of Europa. Replacing (7) in (5) and performing some
algebraicmanipulations, it is possible to find the result

𝐹𝐽
2

= −
3𝜀𝑛
2
(1 − 3𝑐

2
− 3 cos (2𝑛𝑡 + 2𝑔) + 3𝑐

2 cos (2𝑛𝑡 + 2𝑔))

2𝑎
.

(8)

(b) The zonal perturbation due to the pear-shaped (𝐽
3
) is

defined by [21]

𝐹𝐽
3
= −

𝜀
1
𝜇
𝐸
(5𝑠
3sin3 (𝑓 + 𝑔) − 3𝑠 sin (𝑓 + 𝑔))

2𝑟4
, (9)

where 𝜀
1

= 𝐽
3
𝑅
3

𝐸
. Replacing (9) in (5), after some

algebraic manipulations, the result is

𝐹𝐽
3
= − (𝜀

1
𝑛
2
𝑠 (15𝑠

2 sin (𝑛𝑡 + 𝑔)

− 5𝑠
2 sin (3𝑛𝑡 + 3𝑔) − 12 sin (𝑛𝑡 + 𝑔)))

× (2𝑎
2
)
−1

.

(10)

(c) For the sectorial perturbation (𝐽
22
), the resultant

equation is [22]

𝐹𝐶
22

= (𝛿𝜇
𝐸
(6𝜉
2cos2 (𝑓) + 6𝜒

2sin2 (𝑓) + 6𝜉𝜒 sin (2𝑓)

− 3 + 3𝑠
2sin2 (𝑓 + 𝑔)))

× (𝑟
3
)
−1

,

(11)

where 𝛿 = 𝐶
22
𝑅
2

𝐸
and

𝜉 = cos (𝑔) cos (ℎ) − 𝑐sen (𝑔) sen (ℎ) ,

𝜒 = −sen (𝑔) cos (ℎ) − 𝑐 cos (𝑔) sen (ℎ) .

(12)

Replacing (11) in (5) and making some algebraic
manipulations,

𝐹𝐶
22

= (9𝑛
2
𝛿 ((𝑐 − 1)

2 cos (2𝑛𝑡 + 2𝑔 − 2ℎ)

+ (𝑐 + 1)
2 cos (2𝑛𝑡 + 2𝑔 + 2ℎ)

+ 2 cos (2ℎ) − 2𝑐
2 cos (2ℎ)))

× (4𝑎)
−1
.

(13)



4 Mathematical Problems in Engineering

2.3. Effects of the Forces Involved in the Dynamics. The main
effect of the forces involved in the dynamics during one
period of the spacecraft given by (6), (8), (10), and (13) is
to change the velocity (𝑉) of the satellite according to the
physical law:

∫

𝑇

0

𝐹𝑑𝑡 = Δ𝑉, (14)

where 𝐹 is the force per unit of mass, 𝑇 is the period of the
orbit of the spacecraft, and 𝐹 = 𝐹𝑅

2
+ 𝐹𝐽
2
+ 𝐹𝐽
3
+ 𝐹𝐶
22
. The

integral given in (14) will be called PI (perturbation integral)
due to its physical meaning and it will be measured in km/s.
Therefore, according to Prado [15],

∫

𝑇

0

𝐹𝑑𝑡 = PI. (15)

Equation (15) is numerically integrated to analyze the
influence of each perturbation force in the orbit of an artificial
satellite around Europa.

3. Results

Themain goal of the present paper is to map orbits based on
the evolution of the integral of the perturbing forces over the
time for a spacecraft around Europa, as explained before.

3.1. Studying the Effects of the Number of Revolutions. The
first step is to make a preliminary study to know how this
parameter changes with the number of revolutions. This step
is necessary in order to define the number of periods that
gives a good view of the system, in terms of average. To
accomplish this task, a circular orbit with semimajor axis of
1670 km and inclination of 90 degrees is used. The detailed
results are not presented here, but they show that there is a
repetition of values of the perturbation integral after 20 rev-
olutions; therefore, this number is assumed to represent very
well the averaged system. Different values for the semimajor
axis and inclination confirmed that the number of 20 revolu-
tions is appropriated. So, from now on, all the values plotted
for the perturbation integral will be obtained by integrating
the perturbing forces for 20 revolutions of the spacecraft and
then dividing it by 20, to get an average value for each orbit.
The numerical values for the physical parameters of Jupiter
and Europa used in the present paper are 𝑁 = 2.0477 ×

10
−5 rad/s and 𝜇

𝐸
= 3202.7 km3/s2.

3.2. Mapping Orbits around Europa. After making this deci-
sion, Figure 1 is constructed considering the value for the
perturbation integral as the average over 20 revolutions. It
shows the value of the integral in the vertical axis (in km/s)
and the inclination of the orbits (in degrees) in the horizontal
axis. It is also important to take into account that since the
integrals are taken over 20 revolutions of the spacecraft, the
result is proportional to the period of the orbits. To be able
to make comparisons among orbits that have different semi-
major axes (therefore different periods, based on Kepler’s
Laws), it is necessary to choose one orbit to be the reference.
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Figure 1: Perturbation integral (PI-km/s) as a function of the
inclination of the orbits for different values of the semimajor axis.

Then, for all the other orbits, the integration made over one
revolution is normalized by dividing its value by the period
of the orbit and multiplying the result by the period of the
reference orbit. In this way, the effect of increasing the period
is removed from the results and comparisons can be made
between orbits with different periods. In the calculations
made in the present paper, the orbit with semimajor axis of
1670 km is chosen to be the reference orbit. Lines with differ-
ent colors are used to show the results for several values of the
semimajor axis of the orbit, thus permitting the presentation
of a more general study where inclination and semimajor
axis can be varied.

Figure 1 shows some details of the orbits. First of all, it is
clear that they are symmetric with respect to the inclination
of 90 degrees.This fact indicates that prograde and retrograde
orbits have the same perturbation effects.This conclusion can
be explained by physical considerations, because the forces
used in the dynamical model (potential of Europa and third-
body perturbation of Jupiter) do not depend on the sense
of the orbits. It is also noted that when considering equa-
torial orbits, the perturbation integral first decreases with
the semimajor axis (when it goes from 1670 km to 1716 km)
and then it increases with this parameter (after 1716 km).
This is due to the fact that when near Europa, the terms due
to the gravity field of this moon are larger, when compared
to the third-body perturbation, and those effects are more
important when near the body; on the opposite side, when
going far from the body, the third body dominates the
perturbation and those effects increase when the distance
from Europa increases. It means that Figure 1 shows not only
the best value for the semimajor axis but also the cost of using
different values, allowingmission designers to choose the best
orbit for their mission. This point will be discussed in more
detail later, when each component of the force is analyzed.
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Figure 2: Perturbation integral (PI-km/s) as a function of the
inclination of the orbits in the range 50–70 degrees.

Figure 2 shows the region of minimum perturbation
in detail, by plotting the value of the perturbing integral
for inclinations between 50 and 70 degrees in steps of 1
degree. For the orbit with semimajor axis of 1670 km, the
minimum is located at the inclination of 57 degrees. This
minimum has the value of PI = 0.08461 km/s. This value can
be determinedwithmore accuracy by reducing the increment
of the inclination, if desired. For orbits with semimajor axis
of 1716 km, the minimum occurs at the inclination of 60
degrees and the corresponding value is PI = 0.08209 km/s.
Orbits with semimajor axis of 2341 km have minimum on the
inclination of 72 degrees, with a corresponding value of PI =
0.09779 km/s.This value is a little bit out of the plot shown in
Figure 2. Considering orbits with semimajor axis of 3121 km,
the minimum occurs at the inclination of 57 degrees and its
value is PI = 0.13720 km/s. Finally, orbits with semimajor axis
of 4682 km haveminimumnear the inclination of 57 degrees,
showing a value of PI = 0.20601 km/s. Those minima repre-
sent orbits with more compensation of effects between the
terms that come from the gravity field of Europa and the
third-body perturbation from Jupiter.They represent the best
values for the inclination, for each value of the semimajor
axis, to place a satellite from the point of view of receiving less
total perturbation. It is expected that those orbits will deviate
less from a keplerian orbit in a given time and therefore
require less fuel for station-keeping maneuvers.

To better understand the facts observed, it is useful to
take a look in more detail at the integrals. Figures 3, 4, and 5
show the evolution of the magnitude of the integral for all the
forces considered in the dynamical model, individually, as a
function of the time for orbits with inclinations 0, 50∘, and
90∘. The vertical axis shows the PI (km/s) and the horizontal
axis shows the time (sec) for an orbit with semimajor axis of
1670 km, 𝑔 = 270

∘, ℎ = 90
∘. A similar study was made for

the values of semimajor axis of 1716 km, 2341 km, 3121 km,
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Figure 3: Perturbation integral (PI) with the magnitude of each
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and 4682 km, always considering inclinations of 0 (equatorial
orbits), 50∘ (near-critical inclination orbits), and 90∘ (polar
orbits), and the results are very similar; therefore, they are not
shown here. After that, Figure 6 is presented to condensate all
the results obtained. It shows the PI in the vertical axis and
the semimajor axis in the horizontal axis. This more detailed
study can explain some of the characteristics observed in the
previous figures.

The first fact that can be explained is the variation of
the perturbing integral with respect to the semimajor axis.
It was noticed that its value decreases from the orbit with
semimajor axis of 1670 km to the orbit with semimajor
axis of 1716 km, but it is visible that there are two regions
(around40–50 degrees and 130–140 degrees)where the values
are very near each other. Then the orbit with semimajor
axis of 2341 km follows, which alternates higher and lower
values of the PI with respect to the previous two orbits,
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Figure 6: Perturbing integral (PI-km/s) as a function of the
semimajor axis for orbits with inclinations of 0, 50, and 90 degrees.

depending on the inclination of the orbit. After that, the
values are always increasing (Figure 1). Figures 3 to 5 explain
this phenomenon. For values of semimajor axis closer to
Europa, the perturbations due to the potential of Europa
(𝐽
2
, 𝐽
3
, and 𝐶

22
) are, in general, more important than the

third-body perturbation of Jupiter, due to the high level
of compensations among the different terms of the gravity
potential. The exceptions occur for near-critical inclinations,
where the total effects of the potential of Europa are smaller
than the third-body perturbation due to Jupiter. Therefore,
by increasing the distance of the orbit from Europa, the
perturbations due to the 𝐽

2
+ 𝐽
3
+ 𝐶
22
terms have their effect

decreased, thus reducing the total perturbation forces acting
on the spacecraft. The increase of the less important (at this

distance) third-body perturbation of Jupiter is not enough
to compensate the decrease due to the potential of Europa.
Therefore, the net result is a decrease in the value of the
perturbation integral. But when this distance is getting
greater, the opposite effect is noticed. The perturbations due
to the potential of Europa become less important and the
third-body perturbation of Jupiter dominates the motion of
the spacecraft. After this point, the values of the PI will always
increase, since the spacecraft is going closer to Jupiter and
far from Europa.Therefore, the existence of a semimajor axis
that represents a minimum value for the perturbing integral
is expected that would be the ideal semimajor axis to place
the spacecraft, with respect to this criterion. Figure 6 shows
the results of the PI as a function of the semimajor axis. It
is observed that the value of the semimajor axis that gives
the minimum value is near 1900 km for the equatorial orbits,
1700 km for near-critical orbits, and 2050 km for polar orbits.
Thisminimum is about 30% smaller than themaximumvalue
for the polar case, 20% for the near-critical situation, and
17% for the equatorial orbits; therefore, an orbit substantially
less perturbed can be obtained by choosing the best altitude,
if no other constraint of the mission imposes something
different. It means that there is a good potential of finding
orbits that requires less station-keeping maneuvers for this
semimajor axis. Detailed calculations omitted here show that,
after a certain value of the semimajor axis, the third-body
perturbation of Jupiter dominates somuch the dynamics such
that the potential of Europa can be neglected.

Studying the results in more detail, it is visible that the
sum of the contributions of each individual effect is different
from the total effect, as shown by Figures 3 to 5. This is
explained by the fact that the perturbations have positive and
negative signs with respect to each other. Therefore, there
are compensations which mean that, for a given position of
the spacecraft, some perturbing forces are trying to make
the orbit deviate from Keplerian, while some other forces are
working in the opposite direction, thus helping the control
system to maintain the orbit keplerian and then reducing the
values of the integral and the fuel consumption. A clear indi-
cation of this fact is shown in Figure 5, where the perturbing
integral related to the total forces is smaller than the perturb-
ing integral of the effects of the terms only due to the potential
of Europa. It clearly means that the third-body perturbation
of Jupiter is helping to control the system and reducing the
magnitude of the perturbing forces. This is an interesting
characteristic of the approach used here to evaluate the effects
of the perturbing forces and emphasize the importance of
finding the most important perturbations involved in the
dynamics.

The next interesting fact that can be explained is the
variation of the perturbing integral with respect to the
inclination of the orbit of the spacecraft. Figures 3 to 5 show
a comparison between the polar, near-critical (50 degrees
of inclination), and equatorial orbits with semimajor axis of
1670 km. Looking at the individual effect of each perturba-
tion, some information can be obtained. The contribution
of 𝐽
3
goes from near zero in the equatorial orbits to around

0.02 km/s for the near-critical orbits and then close to
0.38 km/s in the polar case. Regarding 𝐽

2
, its contribution
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goes from near 0.1 km/s in the equatorial orbits to around
0.058 km/s for the near-critical orbits and then close to
0.1 km/s again for the polar orbits. For the 𝐶

22
, its contri-

bution goes from near 0.115 km/s in the equatorial orbits to
around 0.085 km/s for the near-critical orbits and then close
to 0.09 km/s for the polar orbits. As a result of those effects,
the total contribution of the potential of Europa goes from
near 0.13 km/s in the equatorial orbits to around 0.04 km/s
for the near-critical orbits and then close to 0.14 km/s for the
polar orbits. Those numbers show clearly that the potential
plays an important role in the existence of the minimum
with respect to the inclination. It is interesting to note that
the contribution of the 𝐶

22
term dominates the scene for the

equatorial and near-critical orbits and gets a close second
place to the 𝐽

2
effects for polar orbits. It is also necessary

to take into account the compensations by having different
pointing in the direction of the forces. Equatorial and polar
orbits have more aligned effects of the individual terms of the
potential of Europa, while near-critical orbits havemore com-
pensations, therefore reducing the total contribution of the
terms that comes from Europa.This is the main reason of the
existence of theminimumvalues for the perturbation integral
near the critical inclinations. It is also clear that, for equatorial
and polar orbits, the effects of the total potential are larger
than all the individual elements, while, for the near-critical
orbits, the total effects of the potential are smaller than the
effects of 𝐽

2
and 𝐶

22
individually. The net result is that the

total contribution from the potential of Europa is about three
times larger for equatorial and polar orbits, when compared
to the near-critical orbits. Using the same comparison, the
effect of the third-body perturbation from Jupiter decreases
from the equatorial orbits, where it is near 0.11, to the near-
critical orbits, where it is near 0.075. Then, it increases by a
small amount when going to polar orbits, reaching a value
near 0.08. In terms of total value, there is an increase of
about 30% for the perturbation effects of polar orbits when
compared to the near-critical orbits. It should also be noted
that, for the polar orbits, the value of the integral for the
total perturbations is smaller than the value obtained when
considering only the potential of Europa, so the potential of
Europa is responsible for the minimum. Regarding a com-
parison between equatorial and polar orbits, the results show
that the main reason for the higher costs for the equatorial
orbits lies in the alignment of the third-body and the potential
perturbations. For the equatorial and near-critical orbits, the
value for the integral of the total perturbations is larger than
the value for the potential, while, for the polar orbits, this
total value is smaller than the value due to the potential alone,
meaning that there are compensations among the terms. In
other words, the third-body perturbation helps to control the
system for polar orbits, and this fact makes the costs smaller
than the equivalent ones for equatorial orbits.

A similar study for orbits with semimajor axis equal to
1716 km shows similar results. The main difference is that
the magnitude of all effects due to the potential of Europa
decreases, while the effects of the third-body perturbation
of Jupiter are increased, as a result of the longer distance
from Jupiter. When considering orbits with semimajor axis
of 2341 km, the results show that the third-body perturbation

of Jupiter starts to be the main force in the dynamics of the
spacecraft. The potential of Europa plays the role of working
against the third-body perturbation, therefore reducing the
value of the integral. But these compensating effects are
not the same for all the orbits studied. It is almost zero
for equatorial orbits, small for near-critical orbits, and large
for polar orbits. This fact generates an interesting result.
The larger effects in the polar orbits make the value of the
perturbing integral decrease and the minimum of the graph
is no longer sharp. Figure 1 shows that there is a sharp local
maximum at the polar orbits. Therefore, this is one more
fact to be considered when choosing an orbit for a spacecraft
around Europa. For orbits with semimajor axis of 3121 km,
the simulations show that all the elements of the potential
of Europa increase its participation in polar orbits. The gap
between the effects of the third-body perturbation from
Jupiter and the total effects increases, but the net result is an
increase in the total value. From this point, in terms of the
semimajor axis of the orbits, the effects of the potential of
Europa are negligible and the problem becomes a pure third-
body perturbation. Simulations for orbits with semimajor
axis of 4682 km confirm this result.

3.3. Studying Frozen Orbits. An important application of the
present research is in the search for frozen orbits, which are
orbits where the natural variations of the orbital elements
are minimized by a proper choice of the initial values of the
orbital parameters. Those orbits are more stable and they
require less fuel consumption for station-keepingmaneuvers,
therefore extending the lifetime of the mission. The results
shown in the present paper give a number (the PI) that can
represent the total effects that the perturbing forces make
in a spacecraft for a specific orbit, so it is possible to find
which are the values for the semimajor axis that receives fewer
perturbations compared to the others. Therefore, it is a good
idea to search for frozen orbits in which semimajor axes are
near the ones where the perturbations are minimized. Based
on that analysis, it is expected that the best value for the
semimajor axis of the frozen orbit is 2341 km, since we are
using an inclination of 90 degrees for all the frozen orbits
and this is the value of semimajor axis that generates the
less perturbed orbit, as seen in Figure 1. Using the same
arguments, it is expected that the second best value for the
semimajor axis is 1716 km, followed by 1670 km, 3121 km, and
finally 4682 km. Figures 7 to 11 were obtained by using (5),
(10), and (11), which are presented by Carvalho et al. [14].
They take into account the gravitational attraction of a third
body and the nonuniform distribution of the mass of Europa
(𝐽
2
and 𝐽
3
).These equationswere plugged in Lagrange’s plane-

tary equations and numerically integrated using the software
Maple. Figures 7 to 11 show the frozen orbits. The integration
time of all the orbits is 500 days. It is clear that the results are
well inside the expected ones from the analysis of integrals of
the forces. Figure 7 shows the orbits with the semimajor axis
of 2341 km, for eccentricities of 0.001, 0.002, 0.003, 0.004, and
0.005.Themaximum amplitudes of variations are around 110
degrees in the argument of periapsis and 0.01 in eccentricity,
in the worst case, but a situation with almost constant values
exists, for eccentricities of 0.005. Figure 8 shows similar
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Figure 7: Orbits with semimajor axis of 2341 km and eccentricities
of 0.001, 0.002, 0.003, 0.004, and 0.005.

orbits but now with the semimajor axis of 1716 km, for the
same eccentricities used in the previous case. The maximum
amplitude now for the variations is around 150 degrees for the
argument of periapsis and 0.059 in eccentricity, in the worst
case, and around 100 degrees in the argument of periapsis
and 0.05 in eccentricity, in the best case, which indicates that
the first orbits are much better, in terms of having smaller
amplitudes of variation. Figure 9 shows the same orbits using
now the semimajor axis of 1670 km, the next best value, for
the same eccentricities used before. The results are similar
to the previous case, but with amplitudes a little bit larger
for all the values of the eccentricity used. Figures 10 and 11
show the same orbits for the situations where the PI is larger
than the previous cases, with semimajor axis of 3132 km and
4682 km, respectively. The orbits are now not limited in the
argument of periapsis, due to the larger perturbations. Of
course there are many other aspects to be considered when
planning a mission, like other values for the eccentricities
of the orbits, goals and constraints of the mission, and so
forth, but the results presented here show that the integral of
the perturbing forces can be an interesting tool for mission
designers during the orbit selection process for a realmission,
constituting one more element to be analyzed.

4. Conclusions

This paper studied the total perturbation acting on a space-
craft in circular orbits around Europa, using an index based
on the integral of the perturbing forces over the time. This
definition proved to be useful in the evaluation of the
perturbation forces acting on a spacecraft around Europa,
therefore allowing good choices for the orbits. A study was
then conducted to calculate the effects of the main terms of
the potential of Europa (𝐽

2
, 𝐽
3
, and 𝐶

22
) and the third-body

perturbation due to Jupiter. The results were used to map
orbits with respect to the perturbations acting on a spacecraft
in each of these orbits. The results show several interesting
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characteristics: (1) the existence of orbits with minimum
values for this index with respect to the semimajor axis, for
a fixed inclination; (2) the existence of orbits with minimum
values for this index with respect to the inclination, for a
fixed semimajor axis; (3) the role of each individual term
of the perturbing forces; (4) the forces having different
directions with respect to each other, so, for a given position
of the spacecraft, some forces are acting to destroy the
keplerian orbit, while others are working together with the
propulsion system to keep the keplerian orbit, therefore
reducing the fuel consumption; (5) orbits with semimajor
axis of 2341 km having a flat minimum, with values for
the integrals about the same for inclinations ranging from
50 to 90 degrees; (6) the perturbation forces acting on the
spacecraft being symmetric with respect to the inclination;
therefore, prograde and retrograde orbits have the same costs;
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Figure 11: Orbits with semimajor axis of 4682 km and eccentricities
of 0.001, 0.002, 0.003, 0.004, and 0.005.

(7) in all the situations studied here, the equatorial orbits
having perturbation integrals with higher values than the
other orbits. After that, the present study is completed by
using this index to choose the semimajor axis of potential
frozen orbits. The results showed that the amplitudes of the
variations of the eccentricity and argument of periapsis are
related to this index, with the minimum values generating
more stable orbits. In this sense, the ideas developed here can
be useful in the analysis of future missions, during the orbit
selection process.
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