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Cloud computing realizes a utility computing paradigm by offering shared resources through an Internet-based computing.
However, how a system control can enhance profit and simultaneously satisfy the service level agreements (SLAs) has become one
of themajor interests for cloud providers. In this paper, a cloud server farm providedwith finite capacity ismodeled as anM/M/𝑅/𝐾
queuing system. Revenue losses are estimated according to the system controls and impatient customer behaviors.Three important
issues are solved in this paper. First, a profit function is developed in which both the system blocking loss and the user abandonment
loss are evaluated in total revenue. A tradeoff between meeting system performances and reducing operating costs is conducted.
Second, the effects of system capacity control and utilization on various performances of waiting time, loss probability, and final
arrival rate are demonstrated. Finally, the proposed optimal profit control (OPC) policy allows a cloud provider tomake the optimal
decision in the number of servers and system capacity, so as tomaximize profit. As compared to a systemwithout applying the OPC
policy, enhancing providers’ profit and improving system performances can be obtained.

1. Introduction

Cloud computing is a popular service paradigm recently in an
information technology (IT) industry that offers infrastruc-
ture, platform, software, and so forth as services. Consumers
can eliminate the burden of expensive hardware/software
spending and complex infrastructure management. Service
resources (e.g., networks, servers, storage, applications, and
services) are allowed to be dynamically rented with minimal
management effort based on consumer’s needs rather than
traditional “own-and-use” patterns. For example, Amazon
EC2, Google’s AppEngine,Microsoft’s Azure, and so forth are
some typical cloud service providers.

Before starting a service, there has been a formal con-
tract known as service level agreement (SLA) that needs to
be agreed and signed by consumers and cloud providers
in advance. Quality of service (QoS) is a part of a SLA
negotiation to specify consumer’s expectation in terms of
constraints [1]. Mean waiting time, expected queuing length,
blocking probability, mean time to failure (MTTF), and so
forth are all important performance indicators. In case of

violating the SLA contract, a penalty or compensation is
required in accordance with seriousness. Hence, it is crucial
to do an accurate performance analysis due to the fact that
a performance guarantee plays a crucial role in a service-
oriented system.

Since no system is accompanied by infinite waiting buffer
space, an analytic queuing model with finite capacity is
suitable for the study of various server configuration settings
[2, 3]. There are two common situations in a system that will
result in revenue losses. First, “customer abandonment” can
be found from communication systems to network services
in daily life, no exception in cloud computing services.
Abandonment means that an arrival task will leave a system
without obtaining service due to long queuing length or
latency. Second, reducing waiting buffer in a system is one
of the simplest ways to mitigate system congestion and
shorten queuing length. However, the overflowing tasks will
be rejected from the system [4], which will directly result in
revenue losses for a cloud provider.

Maintaining performance is usually the prime objec-
tive in system administration [5]. Besides, the relationship
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between system control (e.g., server quantity and waiting
buffer) and user abandonment (e.g., reneging) on effective
arrival rate and performances must all be taken into account.
In this paper, we discuss the problem of profit optimization
in an abandonment system provided with finite capacity. Our
contribution in this paper is threefold as follows.

(i) Blocking loss and abandonment loss that are rarely
analyzed in previous works are considered in our
cloud model to give a more practical analysis in
revenue estimation. A profit function is developed
by taking resources provisioning cost, power con-
sumption cost, system congestion cost, and expected
revenue into account.

(ii) The first presented optimal profit control (OPC)
policy combined with a heuristic algorithm allows
a cloud provider to effectively address constrained
optimization problems. Besides, the effects of system
capacities and utilizations on system performances
and loss probabilities are demonstrated.

(iii) Simulations show that the optimal decision making
in server quantity and system capacity to maxi-
mize profit within a loss probability guarantee can
be obtained by applying the proposed OPC policy.
Enhancing providers’ profit and improving system
performances can be verified as compared to a system
without applying our policy.

The rest of the paper is organized as follows. Section 2
gives a brief overviewof existing researches related to queuing
models and profit optimization in cloud systems. A cloud
service model with system capacity and server provisioning
controls is presented in Section 3. The effects of system
capacity and utilization on various performances are also
demonstrated. In Section 4, a profit function is developed
based on the expected revenue analysis and costs estima-
tion. An algorithm (Algorithm 1) is presented to effectively
solve constrained optimization problems. Section 5 shows
the comparison of experimental results with respect to the
optimal system control within a loss probability constraint.
Finally, some conclusions are discussed in Section 6.

2. Related Work

2.1. Queuing Models with Finite Capacity. Researches in
queuing models with finite capacity have a long history; here
we refer to [6, 7]. In [6], the authors addressed a rate control
problem associated with a single server. The controller could
choose a buffer size for the queuing system and dynamically
control the service rate depending on the current state of
the system. An infinite horizon cost minimization problem
was considered. An explicit optimal strategy for the limiting
diffusion control problem was obtained. This solution was
then used to construct an asymptotically optimal control
policy.

An analytic cost model for M/G/1/N queuing systems
was presented in [7]. The costs of customer loss versus
customer delays by varying buffer size and processor speed
were considered. In their analytic study, the authors explored

the interplay of queue size, customer loss, and mean service
time for various service time distributions. However, the
possibility of adding multiple servers and some form of
processor sharingwere ignored in their work. Although cloud
computing has attracted many research attentions [8–10]
based on queuing models for a performance analysis, few
literatures took buffer capacity restriction into consideration.

In [8], the authors described a novel approximate ana-
lytical model for performance evaluation of cloud server
farms and solved it to obtain accurate estimation of complete
probability distribution, request response time, and other
important performance indicators.They also pointed out that
accommodating heterogeneous services in a cloud center
might impose longer waiting time for its clients as compared
to its homogeneous equivalent with the same system utiliza-
tion. However, they only focused on performance analysis;
no cost analysis or profit evaluation was discussed in their
research.

In [9], the authors presented algorithms for scheduling
service requests and prioritizing their data accesses in a cloud
service with the main objective of maximizing profit. The
processor sharing (PS) was used for developing a pricing
model for clouds, and then the data service was modeled as
M/M/1/FCFS.They assumed that consumer’s service requests
might pay the service provider to reduce the rate of incoming
requests in order to maintain a satisfactory response time. In
[10], a cloud center was modeled as an M/M/m/m queuing
system to conduct a preliminary study of the fault recovery
impact on a cloud service performance.

When a user submitted a service request to the cloud, the
request would first arrive at the cloud management system
(CMS) which maintained a request queue. If the queue
was not full, the request would enter the queue; otherwise
it would be dropped and the service fails. Cloud service
performance was quantified by service response time, whose
probability density function was derived. This was similar
to our queuing model but their work only focused on fault
tolerance analysis. No system capacity control, cost analysis,
or profit optimization was discussed in their work.

2.2. Profit Optimization in Cloud Systems. In [11], the authors
had presented a characterization of cloud federation aimed at
enhancing providers’ profit and they characterized these deci-
sions as a function of several parameters. They studied the
effect of these decisions on the provider’s profit and evaluated
the most appropriate provider’s configuration depending on
the environment conditions. Evaluated parameters included
the provider’s incomingworkload and the cost ofmaintaining
the provider’s resources operating. Results demonstrated that
local resources were preferred over outsourced resources
though the latter could enhance the provider’s profit when the
workload could not be supported locally.

In [12], the authors proposed policies that helped in
the decision-making process to increase resources utilization
and profit. Since each provider had restricted amount of
capacity, increasing in load might overload a provider’s
data center and result in QoS violation or users’ request
rejection.Thiswork attempted to incorporate the outsourcing
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Input Data:
(1) Arrival rate 𝜆.
(2) Potential abandonment index and expected revenue [𝑑(𝑠, 𝑡),𝑁(𝑠, 𝑡)].
(3) Cost matrix [𝐶

𝐻
, 𝐶
𝑊
, 𝐶
𝑈
, 𝐶
𝑅
].

(4) A given execution rate 𝜇 and a baseline rate 𝜇
𝐵
.

(5) Loss probability threshold T.
(6) The upper bound parameters (𝑢 and 𝑏) for server

quantity and system capacity, respectively.
Output Data:
𝑅
∗ and 𝐾∗ and 𝐹(𝑅∗, 𝐾∗)

Step 1. For 𝑖 = 1; 𝑖 = 𝑢; 𝑖++
Set 𝑅
𝑖
← 𝑎 current server quantity;

Step 2. For 𝑗 = 0; 𝑗 = 𝑏; 𝑗++
Set 𝐾

𝑗
← 𝑎 current system capacity;

Step 3. Calculate 𝜌
𝑠
, 𝑃
𝐾
, 𝐿
𝑞
, 𝜆
𝑑
, 𝜆∗ and loss probability using

(5)–(14) and (15), respectively.
Step 4. If loss probability < 𝑇

Then, record the current joint value of (𝑅
𝑖
, 𝐾
𝑗
) and

identify it as an approved test
parameter;

Else
Return to Step 1 and begin to test next

index of parameters;
End

Step 5. When all test parameters have been done,
{𝑅
𝑖+𝑎
, 𝐾
𝑗+𝑎
}, . . . , {𝑅

𝑢
, 𝐾
𝑏
} ← current approved

parameters;
Bring all revenue and cost parameters into the
developed profit function and test all current approved
parameters

Step 6. If a joint value of (𝑅
𝑖+𝑎
, 𝐾
𝑗+𝑎

) obtains the maximum
profit value in all tests,
Then

Output (𝑅
𝑖+𝑎
, 𝐾
𝑗+𝑎

) and F(𝑅
𝑖+𝑎
, 𝐾
𝑗+𝑎

);
Else

Return to Step 5 and begin to test next index
of the approved parameters.

End

Algorithm 1: OPC algorithm.

problem with option of terminating spot VMs within a data
center. Their objective was to maximize a provider’s profit by
accommodating as many on-demand requests as possible.

In [13], the authors treated a multiserver system as an
M/M/m queuing model, such that the problem of optimal
multiserver configuration for profit maximization in a cloud
computing environment could be formulated and solved ana-
lytically.Their pricingmodel took the amount of a service, the
workload of an application environment, the configuration
of a multiserver system, the service level agreement, and so
forth into consideration. They also considered two server
speed and power consumption models, namely, the idle-
speed model and the constant-speed model.

In [14], the response time based on different allocation
of resources was modeled and used for different servers. The
total profit in their system was the total price gained from
the clients subtracted by the cost of operating the active
servers in their system.The problemwas formulized based on

Generalized Processor Sharing and an elaborate multistage
heuristic algorithm was used to solve the problem. However,
previous studies did not take customer abandonment behav-
iors, system capacity control, loss probability estimation, and
so forth into consideration. To the best of our knowledge,
profit and system control analysis in a cloud computing
system with abandonment events has not been investigated.

3. A Cloud Multiserver Model

3.1.𝑀/𝑀/𝑅/𝐾 Queuing System. We consider a cloud server
farm with finite waiting buffer and model it as an M/M/𝑅/𝐾
queuing system [15]. The mathematical expressions are
derived in detail as follows. There are 𝑅 identical servers in
operation and at most 𝐾 tasks are allowed in the system
including those in services and in queue. Task demands arrive
from an infinite source with mean arrival rate 𝜆 of Poisson
distribution. Service times are assumed to be independently
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and identically distributed and have an exponential distribu-
tion with parameter 𝜇. The service discipline is first-come-
first-served (FCFS). In the cloud server farm, let the states 𝑛
represent the number of tasks currently in the system. The
values of the arrival rate and service rate are taken to be

𝜆
𝑛
= {

𝜆, 0 ≤ 𝑛 ≤ 𝐾 − 1,

0, 𝑛 ≥ 𝐾,

𝜇
𝑛
= {

𝑛𝜇, 1 ≤ 𝑛 ≤ 𝑅 − 1,

𝑅𝜇, 𝑅 ≤ 𝑛 ≤ 𝐾.

(1)

We denote the notation 𝑃
𝑛
by the probability of 𝑛 task

currently served in the system (𝑛 = 0, 1, 2, . . . ,∞) and 𝑃
𝑜

implies the probability that there is no task in system. For
a steady-state case, the state probability functions 𝑃

𝑛
can be

obtained from the birth-and-death formula. According to
the value 𝑛 (number of task services) that may happen, two
segments are defined by the vector: [Segment 1, Segment 2] =
[1 ≤ 𝑛 ≤ 𝑅 − 1, 𝑅 ≤ 𝑛 ≤ 𝐾]. With the expressions in (1), the
initial state probability functions 𝑃

𝑛
can be derived in terms

of two segments as follows.

Segment 1: 1 ≤ 𝑛 ≤ 𝑅 − 1

𝑃
𝑛
=
𝜆
0
⋅ 𝜆
1
⋅ 𝜆
2
⋅ ⋅ ⋅ 𝜆
𝑛−1

𝜇
1
⋅ 𝜇
2
⋅ 𝜇
3
⋅ ⋅ ⋅ 𝜇
𝑛

, 𝑃
𝑜
=
𝜆
𝑛

𝑛!𝜇𝑛
𝑃
𝑜
. (2)

Segment 2: 𝑅 ≤ 𝑛 ≤ 𝐾

𝑃
𝑛
=

𝜆
𝑛

𝑅!𝑅𝑛−𝑅𝜇𝑛
𝑃
𝑜
. (3)

Equations (2) and (3) are the closed forms of the state
probability functions 𝑃

𝑛
in which the number of tasks in

service system may happen. To obtain 𝑃
𝑜
, (2) and (3) are

brought into the normalizing equation: ∑𝐾
𝑛=0
𝑃
𝑛
= 1,

𝐾

∑

𝑛=0

𝑃
𝑛
= 𝑃
𝑜
⋅ (1 +

𝑅−1

∑

𝑛=1

𝜆
𝑛

𝜇𝑛𝑛!
+

𝐾

∑

𝑛=𝑅

𝜆
𝑛

𝜇𝑛𝑅!𝑅𝑛−𝑅
) . (4)

Then, the steady-state probability of zero service 𝑃
𝑜
can be

obtained as follows:

𝑃
𝑜
= [

𝑅−1

∑

𝑛=0

𝜆
𝑛

𝜇𝑛𝑛!
+

𝐾

∑

𝑛=𝑅

𝜆
𝑛

𝜇𝑛𝑅!𝑅𝑛−𝑅
]

−1

. (5)

3.2. A Designed Cloud Control Model. The proposed cloud
service model is provided with finite capacity (denoted by
𝐾), as shown in Figure 1. The system blocking rate, effective
arrival rate, user abandonment rate, and final arrival rate
will be analyzed according to the system capacity and server
provisioning control. Users are allowed to send task demands
into the service system if there has been some waiting space
left (as long as the current number of tasks in buffer are less
than𝐾−𝑅). Otherwise, theywould be rejected by prerejecting
mechanism (PRM) and lost.

PRM is used to control and block excess tasks in advance
before they are sent into the system. It is reasonable to

assume that if customers are rejected before they send task
demands, a service provider has no responsibility to give any
compensation. Therefore, rejection penalties can be avoided
[16] in this proposed model with PRM. A cloud system
controller must distinguish carefully between the original
arrival rate and the effective arrival rate, denoted by 𝜆

𝛼
; the

relevant notations are described in Notation Section.
The fraction of rejecting arrival tasks in a steady state are

referred to as the blocking probability, denoted by 𝑃
𝐾
. This

can be obtained by giving 𝑛 = 𝐾 in (3) as follows:

𝑃
𝐾
=

𝜆
𝐾

𝑅! ⋅ 𝑅𝐾−𝑅𝜇𝐾
, 𝑃

𝑜
=

𝜌
𝐾

𝑅! ⋅ 𝑅𝐾−𝑅
𝑃
𝑜
. (6)

The effective arrival rate can be obtained as

𝜆
𝛼
= 𝜆 (1 − 𝑃

𝐾
) . (7)

Customers that are rejected still can come back later after
a random time and they will be treated as a new arrival in
subsequent periods.

3.3. Abandonment Rate. When there are no idle servers
available, an accepted task will be forwarded to a queue and
wait until all tasks in front have completed their required
services. Hence, using (2) and (3), the expected queuing
length 𝐿

𝑞
can be obtained as

𝐿
𝑞
=

𝐾

∑

𝑛=𝑅

(𝑛 − 𝑅) 𝑃𝑛. (8)

To find the predicted waiting time𝑊
𝑞
in queue, we apply the

well-known Little’s law [15], which is a widely used formula
in queuing theory. It states that the average number of items
in queue is equal to the average arrival rate multiplied by the
expected waiting time. Historically, it can be written as

𝐿
𝑞
= 𝜆𝑊
𝑞
. (9)

We get the expected waiting time in queue prior to service as

𝑊
𝑞
=

𝐿
𝑞

𝜆 (1 − 𝑃
𝐾
)
. (10)

“Balking” and “reneging” are used to describe customers’
abandonment behavior in queuing systems. Balking means
that tasks leave a system without getting service due to
long queuing length. Unlike balking case, customers always
renege after facing a long waiting time in a queue. In our
service system, the waiting-time information is sent to each
arrival for the purpose of enhancing service quality [17,
18]. After being notified, some impatient customers may
feel that waiting time is too long to endure and they will
abandon the system without obtaining service. There are
various reneging rules presented by previous researchers [19].
Waiting time is usually the main factor to affect customer’s
decisions. In addition, reneging events also depend on some
potential factors. Therefore, a cloud provider will record the
abandonment rate and update the latest data per planning
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Arrival rate 𝜆
Throughput

rate
W

System capacity

Rejection rate Waiting-time
informationAbandonment rate

Prerejecting mechanism

System capacity K

Dispatcher

Server quantity

Effective arrival
rate

OPC policy

...

Figure 1: A designed cloud service model with the system capacity and server provisioning controls.

period in this proposed model to analyze the severity of
abandonment rate. The notation 𝜆

𝑑
is defined as the average

abandonment rate for a certain service pattern 𝑠 (while 𝑠 ∈ 𝑆)
at period 𝑡 (while 𝑡 ∈ 𝑇). Then, taking 𝜆

𝑑
divided by the

predicted waiting time and effective arrival rate, the potential
abandonment index can be obtained as

𝑑 (𝑠, 𝑡) =
𝜆
𝑑

𝑊
𝑞
× 𝜆
𝛼

. (11)

The abandonment probability can be calculated as the
expected waiting time𝑊

𝑞
multiplying by 𝑑(𝑠, 𝑡):

𝑃
𝑑
= 𝑊
𝑞
× 𝑑 (𝑠, 𝑡) =

𝜆
𝑑

𝜆
𝛼

. (12)

3.4. Loss Probability. Users decide to accept the cloud service
with probability 1 − 𝑃

𝑑
, or abandon this cloud service with

probability 𝑃
𝑑
. Then, the expected abandonment rate 𝜆

𝑑
can

be obtained as

𝜆
𝑑
= 𝜆
𝛼
× 𝑃
𝑑
= 𝜆 (1 − 𝑃

𝐾
) × 𝑊

𝑞
× 𝑑 (𝑠, 𝑡) . (13)

According to historical records, we obtain the mean final
arrival rate 𝜆∗ that really wants to receive service as

𝜆
∗
= 𝜆
𝛼
− 𝜆
𝑑
= 𝜆
𝛼
− 𝜆
𝛼
𝑃
𝑑

= 𝜆
𝛼
(1 − 𝑃

𝑑
) = 𝜆 (1 − 𝑃

𝐾
) (1 − 𝑃

𝑑
) .

(14)

Finally, the loss probability can be obtained as

Loss probability = 𝜆 − 𝜆
∗

𝜆
=
𝜆 [1 − (1 − 𝑃

𝐾
) (1 − 𝑃

𝑑
)]

𝜆

= 𝑃
𝐾
+ 𝑃
𝑑
− 𝑃
𝐾
⋅ 𝑃
𝑑
.

(15)

To gain more insight into the designed system behavior
and compare system performances among different capaci-
ties, several experiments are demonstrated. It is assumed that
𝑅 = 20, 𝜇 = 45, and abandonment index = 0.01, while

the system capacity 𝐾 is made a variable from 𝐾 = 1.5𝑅 to
𝐾 = 1.8𝑅 (ranging from 30, 32, and 34 to 36) in four steps
and different arrival rates are considered. It is known that a
system provided with more waiting buffer can reduce system
blocking probability; however, it will result in long waiting
time, as shown in Figure 2(a).

Final arrival rate distribution under various system
capacities and arrival rates is shown in Figure 2(b). It is noted
that final arrival rate reduces as system capacity and arrival
rate increase. This is due to the fact that an arriving task is
not very likely to obtain service immediately when a system is
congested; instead, it has to wait in queue. In other words, the
situation of final arrival rate decrease is caused by providing
excessive waiting buffer with fixed servers which will directly
increase the user abandonment rate. Figure 3 demonstrates
the final arrival rate when the number of servers is increased
to 24 as compared to Figure 2(b). It is noted that the final
arrival rates increase as arrival rate increases; however, it
starts to decrease as arrival rate further increases.

Results show that although final arrival rate can be
increased by providing more servers, it will result in higher
server provisioning cost. Therefore, comprehensive evalua-
tions for system losses and operational cost are necessary. In
the following, we compare the system loss probability in an
abandonment system with a nonabandonment system. The
effects of various system utilizations and system capacities
on the loss probability are studied. It is assumed that system
utilizations = 0.65, 0.7 0.75, and 0.8 and a cloud server farm
is configured with 64 servers. The system capacity is made
variable from 𝑅 + 1 to 2𝑅 (ranging from 65 to 128) and 𝜆 =
2500/min. Loss probability in a nonabandonment system is
shown in Figure 4(a). It is noticeable that keeping system in a
higher utilization will lead to a higher loss probability, while
the loss probability decreases rapidly as the system capacity
further increases.

In an abandonment system, a loss probability directly
depends on the system blocking loss and user abandonment
loss. Figure 4(b) demonstrates the loss probability when
an abandonment index is assumed value of 0.01. Results
show that the loss probabilities become stable rather than
decreasing rapidly (see Figure 4(a)) as the system capacity
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Figure 2: Waiting time and final arrival rate under various system capacities.

further increases. It seems more real as compared to a
nonabandonment system since a loss probability in a service
system is less likely to approach zero. Although reducing
the system capacity can effectively reduce waiting time (see
Figure 2(a)), it causes a higher loss probability when a system
is under a higher utilization.Therefore, conducting a tradeoff
analysis in a cloud system is essential to achieve a successful
control for different performance levels.

4. Revenue and Cost Analysis

4.1. Revenue Function. Profit is one of the most important
indicators of how well a business development is, no excep-
tion in a cloud computing industry. A value of expected
revenue per task demand is denoted by 𝑁(𝑠, 𝑡) for a service
pattern 𝑠 (𝑆 = 1, 2, 3, . . . , 𝑠) at period 𝑡 (𝑇 = 1, 2, 3, . . . , 𝑡).
It is known that expecting more profit comes from revenue
expansion, cost reduction, or both simultaneously. The total
revenue is the original expected revenue minus the blocking
loss and user abandonment loss, which is equivalent to
the value of final arrival rate multiplying 𝑁(𝑠, 𝑡). Then, an
expected total revenue 𝑅(𝑅,𝐾) per unit time under 𝑅 servers
with capacity𝐾 can be written as

𝑅 (𝑅,𝐾) = 𝜆𝛼 (1 − 𝑃𝑟)𝑁 (𝑠, 𝑡)

= 𝜆 (1 − 𝑃
𝐾
) (1 − 𝑃

𝑟
)𝑁 (𝑠, 𝑡) .

(16)

4.2. Power Consumption Cost. Not only server provisioning
but also operating power consumption is major cost burdens
in a cloud system. Typically, the power consumed by a CPU
is approximately proportional to a CPU frequency 𝑓 and to
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Figure 3: Final arrival rate under various system capacities when
𝑅 = 24.

the square of a CPU voltage 𝑉, defined by 𝑃 = 𝑎 ⋅ 𝐶 ⋅ 𝑉2 ⋅ 𝑓,
where “𝐶” is the capacitance being switched per clock cycle.
Since most gates do not operate at every clock cycle, they
are often accompanied by an activity factor “𝑎” [20–23]. If
a processor execution rate is not given in accordance with
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Figure 4: Loss probabilities (a) in a nonabandonment system and (b) in an abandonment system under various 𝜌 and 𝐾 values.

Table 1: Cost and system parameters.

Parameter Description
𝐶
𝑅

Server provisioning cost per server per unit time
𝜀 Power consumption cost per Watt per unit time
𝜇
𝑏

A baseline service rate
𝜇 A given execution rate (𝜇 > 𝜇

𝑏
)

𝜇
󸀠 An increased execution rate (𝜇 − 𝜇

𝑏
)

𝐶
𝐻

Cost incurred by holding tasks in buffer per unit
time

𝐶
𝑊

Cost incurred by tasks waiting in buffer per unit time

𝐶
𝑈

Cost incurred by providing per waiting buffer space
per unit time

a baseline rate 𝜇
𝑏
, the operating cost of accelerating rate 𝜇󸀠

needs to be calculated. It is known that the voltage and the
clock frequency are related to 𝑉 ∝ 𝑓

𝑥 (𝑥 > 0) for an ideal
case. Therefore, both 𝜇󸀠 = 𝑧𝑓 and 𝑉 = 𝑦𝑓

𝑥 (𝑥, 𝑦 > 0)
are set to facilitate the discussion of execution rate power
consumption [24]. The power consumption 𝑃 can be written
as𝑃 = 𝑎⋅𝐶⋅𝑉2 ⋅𝑓 = 𝑎⋅𝐶⋅𝑦2 ⋅𝑓2𝑥+1 = 𝑎⋅𝐶⋅𝑦2 ⋅(𝜇󸀠/𝑧)2𝑥+1 = 𝜑𝜇󸀠𝜐,
where𝜑 = 𝑎⋅𝐶⋅𝑦2/𝑧2𝑥+1 and 𝜐 = 2𝑥+1.The related notations
are listed in Table 1.

Notation 𝐵 is denoted by the power consumption of
baseline execution rate and notation 𝜀 is denoted by the
incurred cost per Watt per unit time, as presented in Table 1.
Let 𝜇 denote the given execution rate (𝜇 > 𝜇

𝑏
); then,

the expected power consumption cost 𝑉(𝑅, 𝜇) per unit time

under 𝑅 servers with the given execution rate 𝜇 can be
obtained as

𝑉 (𝑅, 𝜇) = 𝜌
∗−1
𝜀𝑅 (𝜑(𝜇 − 𝜇

𝑏
)
𝜐
+ 𝐵)

= 𝜌
∗−1
𝜀𝑅 (𝜑𝜇

󸀠𝜐
+ 𝐵) .

(17)

Besides, it is known that a systemutilization, denoted by𝜌∗, is
also an important factor to affect resources provisioning cost
[25, 26].

4.3. System Congestion Cost. Service applications for an on-
demand service pattern are typically time sensitive. There-
fore, cloud providers have the responsibility to make a com-
pensation for differentiated levels of service. As presented in
Table 1, cost items that are considered in a system congestion
function include 𝐶

𝑊
(incurred by tasks waiting in a queue),

𝐶
𝐻
(incurred by holding tasks in a queue), and 𝐶

𝑈
(incurred

by providing per waiting buffer space). Hence, a system
congestion cost, denoted by 𝑆(𝑅,𝐾) under 𝑅 servers with
capacity 𝐾, can be obtained as

𝑆 (𝑅,𝐾) = 𝐶𝑊𝑊
∗
+ 𝐶
𝐻
𝐿
∗
+ 𝐶
𝑈 (𝐾 − 𝑅) . (18)

4.4. Profit Function. After constructing the revenue and cost
functions, an expected profit function per unit time can be
developed. Our objective is to determine an optimal joint
value of 𝑅∗ and𝐾∗ under a given execution rate 𝜇 in a cloud
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server farm, so as tomaximize profit.Theprofitmaximization
(PM) problem can be presented mathematically as

Maximize PM

Subject to 0 ≤ 𝜇
𝑏
< 𝜇

Loss probability < 𝑇,

where PM = 𝐹 (𝑅,𝐾)

= 𝑅 (𝑅,𝐾) − 𝜌
∗−1
𝑅𝐶
𝑅
− 𝜌
∗−1
𝑉 (𝑅, 𝜇) − 𝑆 (𝑅,𝐾)

= 𝜆 (1 − 𝑃
𝐾
) (1 − 𝑃

𝑑
)𝑁 (𝑠, 𝑡) − 𝜌

∗−1
𝑅𝐶
𝑅

− 𝜌
∗−1
𝜀𝑅 (𝜑(𝜇 − 𝜇

𝑏
)
𝜐
+ 𝐵) − 𝐶

𝑊
𝑊
∗

− 𝐶
𝐻
𝐿
∗
− 𝐶
𝑈
𝛼.

(19)

It is known that a loss probability is one of the major
concerns for customers since no one wants to be rejected
or leave because of facing long waiting time. In this work, a
SLA is specified by the following relationship: loss probability
≤ 𝑇, where 𝑇 is the maximum threshold value. It is extremely
difficult to obtain the analytical results for the optimal value
(𝑅∗, 𝐾∗) due to the fact that this profit function is nonlinear
andhighly complex. Instead, the optimal profit control (OPC)
algorithm is presented to find the optimal solution. For the
OPC policy, satisfying the SLA constraint has the highest
priority in determining the optimal solution.

5. Numerical Validation

Experiments are conducted to validate that (i) the optimal
resources provisioning can be obtained by implementing
the proposed heuristic algorithms and show that the OPC
policy is practical and (ii) more profit gaining and significant
performance improvement can be achieved by applying the
OPC policy as compared to a general method, which is
given only by considering a performance guarantee. Simula-
tions are demonstrated by considering the following system
parameters and cost parameters: 𝜀 = 0.1, 𝜐 = 2, 𝜑 = 2,
𝐵 = 8, 𝜇

𝑏
= 40/sec, 𝜇 = 45/sec, 𝐶

𝐻
= 60, 𝐶

𝑊
= 60,

𝐶
𝑈
= 30, 𝐶

𝑅
= 800, 𝜆 = 4000/min, and 𝑑(𝑠, 𝑡) = 0.01;

and all computational programs are coded by MATLAB.The
OPCheuristic algorithm is applied to search the optimal joint
solution of the number of servers and system capacity within
the loss probability guarantee of𝑇 = 0.01 in a SLA constraint.

Profit distribution under various number of servers and
system capacities is shown in Figure 5. As can be seen,
profit increases as the number of servers and system capacity
increase in the beginning. However, as the server quantity or
system capacity further exceeds a certain value, it will cause
no more increasing in profit and begin to decrease gradually.
Figure 6 shows the loss probability distribution under various
number of servers and system capacities. As can be seen,
the loss probability decreases obviously as the number of
servers increases. The effect of server quantity on reducing
loss probability is more obvious than system capacity. It is
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Figure 5: Profit distribution under various system capacities and the
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Figure 6: Loss probability constraint.

also noted that only when the number of servers is larger than
102, a system can satisfy the 𝑇 = 0.01 constraint. Within the
𝑇 = 0.01 constraint, the maximum profit of 1094322 and loss
probability of 0.56% can be obtained at the optimal solution
(𝑅
∗
, 𝐾
∗
) = (103, 119).

Next, the proposed OPC policy is evaluated on the basis
of comparisons with a general method. It implies that a cloud
resources provisioning is controlled based on a performance
guarantee/threshold (in most cloud system management
algorithms/methods [27–29]). For brevity, here it is referred
to as a non-OPC policy since no system loss evaluation and
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profit optimality analysis are considered. Here, simulations
differ from previous investigations since we try to verify that
the OPC policy is also applicable if a system is provided
with a fixed capacity. A system with different arrival rates
of 980, 990, and 1000 is considered and others use the same
parameters as previous simulations.

A system capacity is fixed by 36 and both policies need
to comply with the same constraint of 𝑇 = 0.1. Loss
probability and abandonment rate comparisons are shown
in Figures 7 and 8, respectively. The solutions determined
by a non-OPC policy are 0.099, 0.069, and 0.063 to meet
𝑇 = 0.1 constraint, respectively. It is noted that the number
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of servers determined by a non-OPC policy is 25, 26, and 26,
respectively, which is fewer than the OPC policy since the
general solution is determined only based on its performance
guarantee for the purpose of reducing server provisioning
cost and power consumption cost. Although the number of
servers controlled by the OPC policy is larger than a non-
OPC policy, it can obtain lower loss probability and alleviate
user abandonment rate.

The abandonment rates are 7.34, 8.29, and 9.35, respec-
tively, for the OPC policy and 74.17, 49.82, and 43.73,
respectively, for the non-OPC policy. Besides, more profit
also can be achieved, as shown in Figure 9. The profit values
are 258383, 261179, and 263905, respectively, for the OPC
policy and 238298, 251846, and 252123, respectively, for a
non-OPC policy. Finally, the QoS improvement rates are
measured which calculate the relative value of improvements
to an original value instead of an absolute value; the results are
shown in Figure 10. As can be seen, applying the OPC policy
not only can obtain more profit, but also has the potential
to greatly improve various performances, including waiting
time, abandonment rate, blocking rate, and loss probability.

6. Conclusions

Developing a successful cloud service system depends on
accurate performance evaluations and effective system con-
trols. Enhancing profit and simultaneously satisfying the SLA
constraint have become one of the major interests for a
cloud provider. In this paper, the relationship between system
controls and user abandonment on the loss probability is
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Figure 10: QoS improvement rates by applying the OPC policy.

estimated in the designed model. The effects of various
system capacities and utilizations on the waiting time, final
arrival rate, and system loss probability are studied. Our
main goal is to maximize profit under a loss probability
guarantee. Revenue is evaluated by taking system blocking
loss, abandonment loss, and final arrival rate into con-
sideration. The first proposed OPC policy combined with
a heuristic algorithm allows cloud providers to effectively
conduct the server quantity and the system capacity controls.
It also contributes to addressing the tradeoffproblembetween
maintaining systemperformances and enhancing profit. Sim-
ulation results show that the effectiveness of the OPC policy
can be validated. The benefits of enhancing providers’ profit
and improving performances can be achieved as compared to
a general method.

Notations

𝑃
𝐾
: Blocking probability while system capacity is𝐾

𝜆
𝛼
: Efficient arrival rate where tasks originally look

forward to receiving service
𝑑(𝑠, 𝑡): Potential abandonment index depended on

historical records at period 𝑡 (while 𝑡 ∈ 𝑇) for a
service type 𝑠 (while 𝑠 ∈ 𝑆)

𝑃
𝑑
: Potential abandonment probability which

would be expressed as a function of 𝑑(𝑠, 𝑡) and
𝑊
𝑞

𝜆
𝑑
: Abandonment rate which would be expressed

as a function of 𝑑(𝑠, 𝑡),𝑊
𝑞
, and 𝜆

𝛼

𝜆
∗: Expected final arrival rate
𝐿
∗: Mean final queuing length
𝑊
∗: Mean final waiting time.
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