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Homomorphic aggregate signature (HAS) is a linearly homomorphic signature (LHS) for multiple users, which can be applied for a
variety of purposes, such as multi-source network coding and sensor data aggregation. In order to design an efficient postquantum
secure HAS scheme, we borrow the idea of the lattice-based LHS scheme over binary field in the single-user case, and develop
it into a new lattice-based HAS scheme in this paper. The security of the proposed scheme is proved by showing a reduction to
the single-user case and the signature length remains invariant. Compared with the existing lattice-based homomorphic aggregate
signature scheme, our new scheme enjoys shorter signature length and high efficiency.

1. Introduction

Thehomomorphic signature, proposed originally by Johnson
et al. [1], is an important cryptographic primitive commonly
used to secure computation. In a linear homomorphic signa-
ture scheme, a user generates a set of signatures on the
corresponding messages in an information subspace. When
the collection of messages is operated by a linear function
which generates a new message belonging to the same
information subspace, any other user, who does not know
the signing private key, can produce a valid signature on this
result of the linear function.

The linear homomorphic signature has been the subject
of many researches in terms of its definitions, security
model, and privacy property. The homomorphic property
of signature scheme, proposed by Boneh et al. in [2], was
viewed as signing a subspace and instantiated based on
the bilinear maps over large prime fields in the random
model. Later on, Gennaro et al. [3] showed the efficient
homomorphic signature based on RSA over integers in the
random model too. In the standard model, Freeman [4]
defined a generic framework of linearly homomorphic signa-
tures, in which three ordinary signature schemes having

certain properties could be converted into linearly homo-
morphic signature schemes. More importantly, the frame-
work provides enhanced security in the standard model
under the computational Diffie-Hellman assumption, the q-
strong Diffie-Hellman assumption, and the RSA assumption,
respectively. Recently, the breakthrough has been achieved by
Bohen andFreeman [5, 6].Theirworks give an example of lin-
early homomorphic signature built using the lattice assump-
tion over binary field [5], while they also show that a
homomorphic signature supporting authenticated polyno-
mial functions on signed data can be constructed by using
“ideal lattice” in the random model [6]. Follow-up work by
Wang et al. [7] implements an efficient lattice-based linearly
homomorphic signature schemeusing an additive homomor-
phic hash function over 𝐹

2
, in which both the public key

size and signature length are shorter. In addition, for the
privacy of homomorphic signature, a notion of the so-called
“weakly context hiding” is defined in [5], which requires
the derived signature not to leak any information about the
original messages provided that the original signatures are
kept private. For attaining the stronger privacy notion, Ahn
et al. [8] defines the concept of “strong context hiding,” which
requires the infeasibility of linking the derived signature to
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the signatures it was derived from even in the condition that
the original signatures are public. After that, Attrapadung
et al. [9, 10] proposed a new definition of privacy, called
“adaptively context hiding,” which requires context hiding
on adversarially chosen signature with private key exposure.
In other words, if a linearly homomorphic signature scheme
guarantees unlinkability even when the original signatures
are produced by illegitimate signing algorithm, this scheme
holds the privacy of adaptively context hiding.

The linearly homomorphic signature can be used for
many purposes, such as authenticating packets in network
coding protocols and computing statistics on authenticated
data. In particular for the secure network coding, it is
the most effective cryptographic tool to prevent “pollution
attack.” Most of the above-mentioned linearly homomorphic
signature schemes can be applied to prevent the pollution
attack by the malicious node.

Here wewant to point out that all of the above-mentioned
authentication schemes could only be applicable to the case of
single user or single source network coding system. Usually,
in real world some applications involve many signatures on
messages produced by many different users or sources. For
example, in the multi-source network coding system [11, 12],
packets from multiple different sources are needed to be
linearly combined so as to exploit the benefits provided by
network coding. For such multi-source network coding in an
adversary situation, Agrawal et al. [13] constructed a complex
scheme against pollution attack in the general case, in which a
merged algorithm is used to generate several public keys and
signatures in the mediate nodes. In order to find more effi-
cient and practical solutions, the follow-up works [14–16] all
considered the specific case where only the packets (or mes-
sages) that have the same identifier are combined together.
Czap and Vajda’s work [14] is obtained from the pairing-
based homomorphic signature scheme proposed in [2], while
Yan et al. [15] proposed an elegant homomorphic signature
scheme based on the bilinear pairings and obtained a shorter
homomorphic signature by using a novel homomorphic hash
function. Recently, Zhang et al. [16] introduced aggregation
property into homomorphic signature for multiple users case
and formed a homomorphic aggregation signature scheme
(HAS) by using preimage sampling function and Bonsai tree
technique over random lattice.

However, these authentication schemes designed formul-
tiuser case (or multi-source case) all have their own flaws. As
is shown from the above, the unforgeability of both [14, 15]
is based on CDH (computational Diffie-Hellman problem)
in the bilinear group. As a result, these schemes involve a
large number of point multiplication on elliptic curve. If
a homomorphic signature scheme for multi-source can be
used in network coding, it is necessary that this scheme
should support the linearly homomorphic operations over
binary field, just like that in [5, 7] for the single source.
In addition, we need to emphasize that their security based
on classical number theoretic problem is threatened by the
power of quantum computers. As for the HAS proposed in
[16], although its security is based on the hard assumption
over lattice which is considered infeasible even under the
quantum computer, the length of the aggregate signature

is two times that of each original signature. We know the
larger the length of the signature, the higher overhead of
verification. Hence, it is significant to construct an efficient
postquantum linearly homomorphic signature scheme for
the multiple users case.

In this paper, we propose a short latticed-based linearly
homomorphic aggregate signature scheme over binary field
after optimizing our initial scheme in the multiple users
case. Our scheme is an extension of the lattice-based linearly
homomorphic signature scheme over 𝐹

2
in [7]. Each user,

in our scheme, signs the original messages using their
own private key, and the aggregate signature on aggregate
message which is the combination of original messages from
different users can be generated just by using the combination
of original signatures without knowing any user’s private
key. In this way, these valid aggregate messages can be
authenticated using a common public key formed by all the
users’ public keys. We point out that the common public key
is independent of the signed message space, which means
our signature scheme still supports signature on multiple
message subspaces (or files) without updating the public
keys. Compared to the HAS in [16], the length of aggregate
signature in our scheme is as short as that of original
signatures, which is only half the length of aggregate signature
proposed in [16]. More importantly, this length of aggregate
signature is independent of the number of the signing users.
In addition, we also prove that the security of our solution
can be reduced to that of the latticed-based LHS scheme in
the single user case in [7].

The rest of this paper is organized as follows. In Section
2, we introduce the background about lattice and briefly
overview themodel of linearly homomorphic signature based
on lattice over binary field in [7]. Our HAS scheme is
described in detail in Section 3, including the general model
definition, the initial scheme, and optimization. Section 4
proves the security of the presented scheme, and Section
5 is the analysis of the efficiency. Finally, in Section 6, we
summarize this paper.

2. Preliminaries

2.1. Notation. We use Z and R to denote the set of integers
and the set of real numbers, respectively. For any integer
𝑞, let Z

𝑞
denote the ring of integer mod 𝑞. By convention,

we use bold lower case letters for vectors (e.g., a) and bold
upper case letters for matrix (e.g., A). The member of vector
is denoted by lowercase (e.g., 𝑎

𝑖
), while the 𝑖th column of a

matrix is denoted by a
𝑖
. For a positive integer 𝑘, [𝑘] denotes

{1, . . . , 𝑘}. In this paper, let A denote the Gram-Schmidt
orthogonalization of matrix A. The Euclidean norm of a
vector is considered as its length (e.g., ‖a‖), and the length of
a matrix is the norm of its longest column vector (e.g., ‖A‖ =
max ‖a

𝑖
‖). In addition, the function negl(𝑛) is negligible in 𝑛

if it is smaller than all polynomial fractions for larger 𝑛.

2.2. Random Lattice and Hard Assumption. Let B =

{b
1
, . . . , b

𝑛
} ⊂ R𝑚 be a set of 𝑛 linearly independent vectors;

then, the lattice Λ generated by the basis B is Λ = {B ⋅ x :

x ∈ Z𝑛} ⊂ R𝑚. In the cryptography based on lattice, we
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always focus on the integer lattice where the lattice points are
contained in Z𝑚. For some integer 𝑞 ≥ 2, 𝑚, 𝑛, let A ∈ Z𝑛×𝑚

𝑞

be a randommatrix.Then, the two kinds of full rank random
lattice defined by A are used in this paper. Their specific
definitions are as follows:

Λ
⊥

𝑞
(A) = {e ∈ Z

𝑚

𝑞
: A ⋅ e = 0 mod 𝑞} ,

Λ
u
𝑞
(A) = {e ∈ Z

𝑚

𝑞
: A ⋅ e = u mod 𝑞} .

(1)

In fact, the lattice Λ
u
𝑞
(A) is a coset of Λ⊥

𝑞
(A). Namely,

Λ
u
𝑞
(A) = Λ

⊥

𝑞
(A) + t, where A ⋅ t = u mod 𝑞. In addition, it is

noted that the variable 𝑛 is the security parameter as the prior
works defined, and the other variables are the functions of 𝑛.
Typically, 𝑚 is 𝑂 (𝑛 log 𝑛) and the modulus 𝑞 is some small
polynomial, for example, 𝑂(𝑛3).

Hard Assumption. The security of lattice-based LHS schemes
[5, 7] is all based on the hardness assumption of the short
integer solution (SIS) problem over the lattice Λ

⊥

𝑞
(A). The

definition of SIS problem is as follows.

Definition 1. Given positive integers 𝑞,𝑚, 𝑛 and a real 𝛿, for a
randommatrixA ∈ Z𝑛×𝑚

𝑞
, the goal of SIS (𝑞,𝑚, 𝛿) is to find a

nonzero vector k ∈ Λ
⊥

𝑞
(A) such that ‖k‖ ≤ 𝛿.

In [17], it has been proven that solving SIS problem on the
average is as hard as approximating certain lattice problems in
the worst case, such as SIVP problem (shortest independent
vectors problem).

2.3. Gaussian Distribution on Lattices. Gaussian distribution
technique is widely used in the analysis of the results in the
area of lattice-based cryptography. Here, we briefly review
some important conclusion from previous works [5, 15, 16],
which will be used to analyze our scheme.

Discrete Gaussian Distribution. For the parameter 𝜎 > 0

and any vector c ∈ R𝑚, the probability density function of
Gaussian distribution 𝐷

𝜎,c on R𝑚 centered at c is defined
as 𝜌
𝜎,c = exp(−𝜋‖x − c‖2/𝜎2). For the 𝑚-dimensional lattice

Λ, the discrete Gaussian distribution over Λ is a conditional
probability distribution with center c and parameter 𝜎,
which is defined as 𝐷

Λ,𝜎,c(x) = 𝜌
𝜎,c(x)/∑k∈Λ 𝜌𝜎,c(k), where

x ∈ Λ. Micciancio and Regev [17] introduced the notion
of “smoothing parameter” of lattice and showed that if
the parameter 𝜎 is greater than the smoothing parameter,
then the discrete distribution 𝐷

Λ,𝜎,c is statically close to the
continuous distribution𝐷

𝜎,c. In particular, Ρx∼𝐷Λ,𝜎,c{‖x − c‖ >
𝜎√𝑚} ≤ negl(𝑛).

Sampling fromDiscrete Gaussian. Gentry et al. [18] gave a new
bound on the smoothing parameter relative to a certain lattice
quality and showed algorithm for sampling from discrete
Gaussian distributionwhichwas commonly used in signature
scheme [5, 7, 16, 19]. In addition, Boneh and Freeman in
[5] showed that the sum of independent discrete Gaussian
variables still remains discrete Gaussian distribution. Some
relevant facts are listed as follows.

Lemma 2 (see [18, Theorem 4.1]). Given a basis T of any
dimension lattice Λ, a parameter 𝜎 > ‖T‖ ⋅ 𝜔(√log 𝑛), and
a center c ∈ R𝑚, there is a PPT (probabilistic polynomial-
time) algorithm that outputs a sample from a distribution that
is statically close to𝐷

Λ,𝜎,c.

Lemma 3 (see [18, Theorem 5.6]). Let 𝑛 be a positive integer,
𝑞 ≥ 2, and 𝑚 > 2𝑛 log(𝑞). For a matrix A ∈ Z𝑛×𝑚

𝑞
, let T be

a basis of Λ⊥
𝑞
(A) and 𝜎 > ‖T‖ ⋅ 𝜔(√log 𝑛); then, one has the

following.

(1) For any t ∈ Z𝑛, there is a probability polynomial-time
algorithm SamplePre (A,T, 𝜎, t) that outputs a sample
t󸀠 from a distribution that is statically close to𝐷

Λ
t
𝑞
(A),𝜎..

In particular, the vector t󸀠 satisfies ‖t󸀠‖ ≤ 𝜎√𝑚 with
overwhelming probability.

(2) For any t ∼ 𝐷Z𝑚 ,𝜎,0, the distribution of syndrome u =

A ⋅ t mod 𝑞 is statically close to uniform over Z𝑛
𝑞
.

Lemma 4 (see [5,Theorem 9]). For a lattice Λ, the parameter
𝜎 ∈ R, and t

𝑖∈[𝑘]
∈ Z𝑚, let x

𝑖∈[𝑘]
be mutually independent ran-

dom variables sampled from a discrete Gaussian distribution
𝐷t𝑖+Λ,𝜎,0. Let c = (𝑐

1
, . . . , 𝑐

𝑘
) ∈ Z𝑘, 𝑔 = gcd(c1, . . . , ck), and

t = ∑
𝑘

𝑖=1
𝑐
𝑖
⋅ t
𝑖
. Suppose that 𝜎 > ‖c‖ ⋅ 𝜂

𝜀
(Λ) where 𝜂

𝜀
(Λ) is

the smooth parameter of lattice Λ for some negligible number
𝜀; then, z = ∑

𝑘

𝑖=1
𝑐
𝑖
⋅ x
𝑖
is statically close to𝐷t+𝑔Λ,‖c‖⋅𝜎,0.

2.4. Short Basis of Lattice. In cryptography based on lattice,
a short basis of a lattice can be considered a trapdoor basis
which was used as private key in cryptographic application.
For the latticeΛ⊥

𝑞
(A), its short basis T can be generated using

the TrapGen algorithm proposed by Alwen and Peikert in
[20]. In addition, the common public key used to sign in our
initial HAS scheme consists of the public keys of multiple
users in the form of A = A

1
‖ ⋅ ⋅ ⋅ ‖A

𝑙
, where 𝑙 is the number

of the signing users. To derive a new short basis of the high-
dimension latticeΛ⊥(A) ⊂ Z𝑙𝑚

𝑞
, some lemmas about the basis

delegation mechanism proposed by Cash et al. in [21] will be
employed. All of them are listed below.

Lemma 5 (see [19, Theorem 3.2]). For 𝑞 > 2 and 𝑚 >

5𝑛 log 𝑞, there is a probabilistic polynomial-time algorithm
𝑇𝑟𝑎𝑝𝐺𝑒𝑛(1

𝑛
) that outputs a matrix A ∈ Z𝑛×𝑚

𝑞
statically close

to a uniform matrix in Z𝑛×𝑚
𝑞

and a basis T ∈ Z𝑛×𝑚
𝑞

of the
latticeΛ⊥

𝑞
(A) such that ‖T‖ ≤ O(√n log q)with overwhelming

probability.

Lemma 6. For an arbitrary basis T ∈ Z𝑚×𝑚
𝑞

of the lattice
Λ
⊥
(A) about a random matrix A ∈ Z𝑛×𝑚

𝑞
and the parameter

𝜎 > ‖T‖ ⋅ 𝜔(√log 𝑛); then,

(1) (see [20, Lemma 3.2]) for any matrix A󸀠 ∈ Z𝑛×𝑚
󸀠

𝑞
,

there is a deterministic polynomial-time algorithm
𝐸𝑥𝑡𝐵𝑎𝑠𝑖𝑠(T,B = A‖A󸀠) that outputs a basis T󸀠 of the
lattice Λ⊥

𝑞
(B) ⊂ Z(𝑚+𝑚

󸀠
)×(𝑚+𝑚

󸀠
) such that ‖T󸀠‖ = ‖T‖;
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(2) (see [20, Lemma 3.3]) there is a probabilistic poly-
nomial-time algorithm 𝑅𝑎𝑛𝑑𝐵𝑎𝑠𝑖𝑠(T, 𝜎) that outputs
another basisT󸀠 of the latticeΛ⊥

𝑞
(A), which is statically

independent of the original basis T and is still short.

2.5. Linearly Homomorphic Signature Scheme (LHS) Based
on Lattice over 𝐹

2
. Our homomorphic aggregate signature

scheme is an extension of an efficient linearly homomorphic
signature scheme proposed by Wang et al. in the single
user case [7], which makes improvement on the scheme of
Boneh and Freeman [5]. At present, lattice-based LHS over
𝐹
2
is called 𝐿-limited, which means we can only guarantee

successful verification for combination of a finite number of
valid signatures where 𝐿 is the maximal number. Here, we
briefly describe the LHS1 as follows, and the details about
lattice-based LHS over binary field can be referred to [5, 7].

Homomorphic Hash ℎ
𝛼
Based-on Lattice. Lyubashevsky and

Micciancio in [22] defined a secure hash function based on
the approximate SVP (short vector problem) of lattice, which
was used in [5]. This hash function family maps Z𝑚

𝑞
to Z
𝑞
in

the way of inner product and holds homomorphic property.
Specifically, given that vectors 𝛼, k

1
, k
2
belonged to Z𝑚

𝑞
with

vector 𝛼 fixed, the hash function ℎ
𝛼

= ⟨𝛼, k
𝑖
⟩ (𝑖 is 1 or 2)

satisfies linearly homomorphic conditions. Namely, it holds
ℎ
𝛼
(k
1
+ k
2
) = ℎ
𝛼
(k
1
) + ℎ
𝛼
(k
2
) and ℎ

𝛼
⟨𝑐 ⋅ k
𝑖
⟩ = 𝑐 ⋅ ℎ

𝛼
(k
𝑖
) where

𝑐 ∈ Z
𝑞
.

Wang’s Signature Scheme. The Wang’s lattice-based LHS
scheme [7], which will be called LHS1, consists of four
polynomial-time algorithms proposed as follows.

WSetup.Let the parameters (𝑞,𝑚, 𝑛, 𝜎) be the same as those in
Lemma 5. Given that𝐻 be a collision-resistant hash function
which maps (0, 1)∗ to Z𝑚

𝑞
and letting the coefficients 𝑎 of the

linearly function belong to 𝐹
2
, the signer runs 𝑇𝑟𝑎𝑝𝐺𝑒𝑛(1𝑛)

algorithm to produce the pair of public key and private key
{T ∈ Z𝑚×𝑚

𝑞
,A ∈ Z𝑛×𝑚

𝑞
}.

WSign. To sign a subspace 𝑉id of the message space {0, 1}𝑚,
where id ∈ {0, 1}

𝑛 is a identifier of 𝑉, given the fact that the
set of vectors {k

1
, . . . , k

𝑘
} is the basis of 𝑉, the signer does as

follows to sign a basis vector k
𝑗∈[𝑘]

.

(1) Compute 𝑛 vectors 𝛼
𝑖∈[𝑛]

= 𝐻(id‖𝑖) ⊂ Z𝑚
𝑞
.

(2) Compute the hash value of k
𝑗
through homomorphic

hash function ℎ
𝛼
, and denote it as a column vector

h
𝑗

= (V
𝑖∈[𝑛]

)
𝑇

∈ Z𝑛
𝑞
, where the element is V

𝑖
=

ℎ
𝛼
(k
𝑗
) mod 𝑞.

(3) Use the 𝑆𝑎𝑚𝑝𝑙𝑒𝑃𝑟𝑒(A,T, 𝜎, h
𝑗
) algorithm in

Lemma 3 to attain a signature s
𝑗

of the hash
value h

𝑗
, and the linearly homomorphic signature on

k
𝑗
can be denoted by (id, s

𝑗
).

WVerify. Let 𝐿 be the maximal number of signatures that can
be combined. To verify the linearly homomorphic signature
of the message k

𝑗
, the verifier firstly computes the hash value

h
𝑗
of k
𝑗
just as steps (1) and (2) in Sign do and then outputs

1 (accept) if and only if the conditions hold, such as A ⋅ s
𝑗
=

h
𝑗
mod 𝑞 and ‖e

𝑗
‖ ≤ 𝐿𝜎√𝑚, or outputs 0 (reject).

WCombine. Given 𝑙 pairs of (𝑎
𝑖
, s
𝑖
, k
𝑖
), where 𝑙 ≤ 𝐿, it outputs

a vector ∑𝑙
𝑖=1

𝑎
𝑖
⋅ s
𝑖
(mod𝑞) as the signature of the message

∑
𝑙

𝑖=1
𝑎
𝑖
⋅ k
𝑖
(mod𝑞).

For the linearly homomorphic signature in adversary
situation, there is two types of forgeability. For example, an
output (id∗, k∗, s∗) produced by an adversary can be accepted
by Verify algorithm where either (1) id∗ ̸= id or (2) id∗ = id,
but k∗ ∉ 𝑉id.Theorem 2 in [7] shows that LHS1 is unforgeable
against these types of adversaries in oracle model.

Lemma 7 (see [7, Theorem 2]). If an stateful adversary
without knowing the signing private can output any kind of the
above forgery with the probability 𝜀, the SIS problem can be
solved by a challenger with a probability 2𝜀.

3. Homomorphic Aggregate Signature
Based on Lattice

For the most general setting of multiuser, Agrawal et al. in
[13] have shown that it is difficult to find efficient solutions to
homomorphic signature. In this paper, we deal with the spe-
cific case, the same one considered in [11–13], where only the
messages tagged the same identifier are combined together. In
addition, our signature scheme requires that a trusted private
key generator (PKG) is available, whichmakes it possible that
all users have their own public-private key pairs.

In the HAS, assuming id ∈ {0, 1}
𝑛 is a unique identifier of

messages subspace, for amessage k
𝑖
from the subspace𝑉id, the

signedmessage is a tuple of (id, k
𝑖
, s
𝑖
), where s

𝑖
is the signature

of k
𝑖
from the 𝑗th user using his (or her) own private key. So,

the aggregatemessage is gained through linearly combination
of different messages tagged the same id from distinct users.
Now, we present the systemmodel of HAS and give a detailed
structure of our signature scheme.

3.1. Definition of HAS. The presented system definition of
lattice-basedHAS is a variant of that of linearly homomorphic
signature in [5]. Compared with the model of single-user
homomorphic signature [5, 7], the Setup and Verify parts
of HAS system need to define some new properties and
additional operators, while the Sign part does not change.
Formally, the definition of HAS is a tuple of polynomial-time
algorithms 𝐻𝐴𝑆(𝑆𝑒𝑡𝑢𝑝, 𝑆𝑖𝑔𝑛

𝑠𝑘𝑖
, 𝐶𝑜𝑚𝑏𝑖𝑛𝑒, 𝑉𝑒𝑟𝑖𝑓𝑦

𝑐𝑝𝑘
), which

is as follows.

𝑆𝑒𝑡𝑢𝑝(1
𝑛
, 𝐿). This probabilistic algorithm takes as input the

security parameter 1𝑛 and the maximum number of users 𝐿
and outputs the public-private pair (𝑝𝑘

𝑖
, 𝑠𝑘
𝑖
) for each user

(0 < 𝑖 ≤ 𝐿) and the common public key 𝑝𝑐𝑘 shared with
everyone.

𝑆𝑖𝑔𝑛(𝑖𝑑,m
𝑖
, 𝑠𝑘
𝑖
). For the 𝑗th user, this probabilistic algorithm

takes as input a message m
𝑖
of subspace 𝑉id and the private

key 𝑠𝑘
𝑗
, and outputs the signature s

𝑖
on messagem

𝑖
.

𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝑖𝑑, a, {(m
𝑖
, s
𝑖
)}
𝑙

𝑖=1
). Given the combination coeffi-

cient vector a and 𝑙 (𝑙 ≤ 𝐿) pairs of message sharing the same
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id and the corresponding signature, output the aggregate
signature s on the aggregate message ∑𝑙

𝑖=1
𝑎
𝑖
m
𝑖
.

𝑉𝑒𝑟𝑖𝑓𝑦
𝑐𝑝𝑘

(𝑖𝑑, ∑
𝑙

𝑖=1
𝑎
𝑖
m
𝑖
, s). This is a deterministic algorithm.

Given an identifier id, the common public key 𝑐𝑝𝑘, the aggre-
gate message ∑

𝑙

𝑖=1
𝑎
𝑖
m
𝑖
, and the corresponding signature s,

output either 1 (accept) or 0 (reject).
In terms of the correctness and security for the homo-

morphic aggregate signature scheme, it should have not only
the characteristics of general linearly homomorphic signature
in case of one user, but also some features of its own in
multiuser case. On the one hand, assume that each user is
honest, the verification should be able to accept the valid
signedmessage from each user, while a forged signedmessage
must be rejected, which is the same as in the case of the single
user. On the other hand, given a series of valid signedmessage
(id,m

𝑖
, 𝑠𝑘
𝑖
), where 𝑖 ∈ [𝑙], a new valid signed message

denoted by (id, ∑𝑙
𝑖=1

𝑎
𝑖
m
𝑖
, s) can be produced without having

access to any private key.

3.2. Our Scheme. According to the definition of HAS, we
show how to extend the homomorphic signature scheme
LHS1 described in Section 2.5 to handle multiuser case. Our
initial HAS scheme is as follows.

𝑆𝑒𝑡𝑢𝑝(1
𝑛
, 𝐿). Given a security parameter 𝑛 and themaximum

number of users 𝐿, the PKG initializes the scheme from four
aspects.

(1) Choose parameters params = {𝑚, 𝑞}. For 𝛽 = poly(𝑛)
and let 𝑞 ≥ 𝛽𝜔(√log 𝑛) and 𝑚 > 𝑐𝑛 log(𝑞), where
𝑐 > 0 is a constant.

(2) For 𝐿 users, 𝑇𝑟𝑎𝑝𝐺𝑒𝑛(1𝑛) algorithm is repeatedly
run 𝐿 times to generate matrix A

𝑖
∈ Z𝑛×𝑚
𝑞

and the
corresponding trapdoor basisT

𝑖
ofΛ⊥
𝑞
(A
𝑖
), where 0 <

𝑖 ≤ 𝐿.
(3) Let 𝐻 : {0, 1}

∗
→ Z𝐿𝑚
𝑞

be a collision-resistant hash
function which is viewed as a random oracle, and
let ℎ be a lattice-based homomorphic hash function
described in Section 2.5.

(4) The pair of {A
𝑖
,T
𝑖
} is assigned to the corresponding

user 𝑢
𝑖
as the user’s private key and public key,

respectively. Let A
0
= A
1
‖ ⋅ ⋅ ⋅ ‖A

𝐿
∈ Z𝑛×𝐿𝑚
𝑞

be the
common public key and publish it to all the users. Of
course, it is required that delivering the private key
should be done secretly.

𝑆𝑖𝑔𝑛(𝑖𝑑,m
𝑖
,T
𝑖
). For the 𝑖th user, given the common signing

key A
0
, private key T

𝑖
, and one of basis vectors of message

subspace 𝑉id, for example,m
𝑖
∈ 𝑉id ⊂ Z𝑚

2
where id ∈ {0, 1}

𝑛,
the signature on messagem

𝑖
is produced as follows.

(1) To obtain the short basis of Λ
⊥
(A
0
) ⊂ Z𝑙𝑚, the

algorithm 𝐸𝑥𝑡𝑒𝑛𝑑𝐵𝑎𝑠𝑖𝑠(T
𝑖
,A
0
) in Lemma 6 is run to

get S
𝑖
such that ‖S

𝑖
‖ = ‖T

𝑖
‖.

(2) Use the homomorphic hash function to produce the
hash value h

𝑖
∈ Z𝑛
𝑞
of the message m

𝑖
, as is done in

theWSign of LHS1.

(3) Output the signature e
𝑖
∈ Z𝑙𝑚
𝑞

on the hash value by
using algorithm 𝑆𝑎𝑚𝑝𝑙𝑒𝑃𝑟𝑒(A

0
, S
𝑖
, 𝜎, h
𝑖
).

𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝑖𝑑,A
0
, {(𝑐
𝑖
,m
𝑖
, e
𝑖
)}
𝑙

𝑖=1
). Given a common public key

A
0
and the 𝑙 ≤ 𝐿 messages tagged the same id from the

corresponding users, output an aggregate signature∑𝑙
𝑖=1

𝑐
𝑖
⋅ e
𝑖

on the combined message ∑𝑙
𝑖=1

𝑐
𝑖
⋅m
𝑖
, where 𝑐

𝑖
∈ {0, 1}.

𝑉𝑒𝑟𝑖𝑓𝑦(𝑖𝑑,A
0
,m
𝑎𝑔𝑔

= ∑
𝑙

𝑖=1
𝑐
𝑖
m
𝑖
, e
𝑎𝑔𝑔

= ∑
𝑙

𝑖=1
𝑐
𝑖
e
𝑖
). Given a

common public keyA
0
, an identifier id, an aggregatemessage

magg, and the corresponding signature eagg, do the following.

(1) Compute the hash value hagg of magg using the
homomorphic hash function just like the step (2) of
Sign does.

(2) Verify two conditions such as A
0
eagg = hagg(mod 𝑞)

and ‖eagg‖ ≤ 𝐿𝜎√𝑙𝑚.
(3) Output 1 (accept) if and only if the above two

conditions hold. Otherwise, output 0 (reject).

3.3. Correctness. First of all, we show the correctness of the
proposed HAS scheme provided that the related functions
are all computed successfully, such as homomorphic hash
function ℎ

𝛼
, preimage sampling function, and collision-

resistant hash function𝐻.
We know that magg = ∑

𝑙

𝑖=1
𝑐
𝑖
m
𝑖
, eagg = ∑

𝑙

𝑖=1
𝑐
𝑖
e
𝑖
, and

ℎ
𝛼𝑖,𝑗

(m
𝑖
) = (ℎ

𝛼𝑖,1
(m
𝑖
) ⋅ ⋅ ⋅ ℎ
𝛼𝑖,𝑛

(m
𝑖
))
𝑇, where 𝑐

𝑖
∈ {0, 1}, 0 < 𝑖 ≤

𝑙 ≤ 𝐿, 0 < 𝑗 ≤ 𝑛 and the vector 𝛼
𝑖,𝑗

= 𝐻(id‖𝑗). Since the
messages combined are tagged the same identifier, the vectors
𝛼
𝑖∈[𝑙],𝑗∈[𝑛]

originated from𝐻(id‖𝑗) are the same for each user.
Thus, we can directly use ℎ

𝛼
(m
𝑖
) to represent the hash value

ofm
𝑖
in order to simplify the notations. Then

A
0
⋅ eagg = A

0
⋅

𝑙

∑

𝑖=1

𝑐
𝑖
e
𝑖

=

𝑙

∑

𝑖=1

𝑐
𝑖
A
0
e
𝑖

=

𝑙

∑

𝑖=1

𝑐
𝑖
ℎ
𝛼
(m
𝑖
)

=

𝑙

∑

𝑖=1

ℎ
𝛼
(𝑐
𝑖
m
𝑖
)

= ℎ
𝛼
(

𝑙

∑

𝑖=1

𝑐
𝑖
m
𝑖
)

= ℎ
𝛼
(magg) mod 𝑞.

(2)

Hence, the condition one in the progress ofVerifyholds, while
(2) holds because of the homomorphic property of func-
tion ℎ

𝛼
. Furthermore, since each signature e

𝑖
on massage

is obtained by preimage sampling algorithm 𝑆𝑎𝑚𝑝𝑙𝑒𝑃𝑟𝑒(A
0
,

S
𝑖
, 𝜎, h
𝑖
), the length of e

𝑖
denoted by the Euclidean norm is not
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larger than 𝜎√𝑙𝑚. Thus, the upper length bound of aggregate
signature is as follow:

󵄩󵄩󵄩󵄩󵄩
eagg

󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑙

∑

𝑖=1

𝑐
𝑖
e
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

𝑙

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑐𝑖e𝑖
󵄩󵄩󵄩󵄩 ≤ 𝐿𝜎√𝑙𝑚, (3)

where 𝑐
𝑖
∈ {0, 1} and the first inequality over (3) holds by

the triangle inequality theorem. It is inferred from the above
analysis that the signature eagg on message ∑𝑙

𝑖=1
𝑐
𝑖
m
𝑖
can be

verified and can satisfy the requirement of correctness of
aggregate signature model defined in Section 2.1.

3.4. Optimization. Theaggregated signature (id,magg, eagg) of
the proposed HAS scheme is accepted by Verify algorithm
and confirms to the definition of HAS. However, compared
with the signature of single user scheme in [7], it is easy to
observe that, in our scheme, the length of each signature on
message grows linearly with the number of users. The cause
for this problem is that the dimension of random lattice used
to sign in our multiuser scheme increases with the number
of users, which can be clearly seen from the common public
key A

0
∈ Z𝑛×𝑙𝑚
𝑞

. Obviously, the larger the common public
key size, the longer the length of aggregate signature and the
larger communication cost. Through the observation of the
entire HAS scheme, it is clear that the common public key
A
0
is shared by each user. In order to reduce the common

public key size, the algorithm 𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑎𝑠𝑖𝑠 in Lemma 6 is
introduced to our signature scheme, which could generate
several different short bases through an arbitrary basis of a
lattice. So, we can optimize the proposed HAS scheme from
the following aspects.

In the 𝑆𝑒𝑡𝑢𝑝(1
𝑛
, 𝐿) phase, while the parameters are

consistent with those of the initial scheme, we firstly use
𝑇𝑟𝑎𝑝𝐺𝑒𝑛(1

𝑛
) algorithm only once to get a matrix A ∈ Z𝑛×𝑚

𝑞

and a short basis T
1
of lattice Λ

⊥
(A) ∈ Z𝑚

𝑞
, and then,

call 𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑎𝑠𝑖𝑠(T
1
, 𝜎) algorithm repeatedly to generate

𝑙 − 1 independent short basis T
𝑖
(2 ≤ 𝑖 < 𝑙) of lattice

Λ
⊥
(A). Therefore, let the vectors T

𝑖
(1 ≤ 𝑖 < 𝑙) be

user’s private key, respectively, and let A be the common
public key shared by everyone, just like the way in [16].
In 𝑆𝑖𝑔𝑛(id,m

𝑖
,T
𝑖
), we can directly take preimage sampling

algorithm 𝑆𝑎𝑚𝑝𝑙𝑒𝑃𝑟𝑒(A,T
𝑖
, 𝜎, ℎ
𝛼
(m
𝑖
)) to get the signature

e
𝑖
∈ Z𝑚
𝑞
on the hash value of m

𝑖
denoted by ℎ

𝛼
(m
𝑖
), where

ℎ
𝛼
(m
𝑖
) is obtained as done in the initial scheme. It should be

noted that each user should use his private key in the signing
progress. As for theCombine andVerify, the operation of both
sections is almost unchanged except that one of verification
conditions becomes ‖eagg‖ ≤ 𝐿𝜎√𝑚.

It can be proved that the optimized solution meets the
correctness of homomorphic aggregate signature model, just
like the way of proving in the initial HAS scheme. More
importantly, the optimization reduces the size of the common
public key and signature to as short as the sizes of those in the
single user scheme LHS1.

4. Security Analysis

For the security of linearly homomorphic signature (LHS),
two aspects, including unforgeability and privacy, are

generally considered in solutions [4]. Clearly, this consider-
ation also can apply to the security of linearly homomorphic
aggregate signature scheme (HAS). In this section, we focus
on the security of LHS scheme.

To prove the unforgeability and privacy of the proposed
signature scheme, a reduction to the case of the single user
is shown [7]. Obviously, if the number of users equals one
(𝐿 = 1), our (optimized) scheme is almost identical to LHS1
scheme. Next, we discuss unforgeability and privacy of the
proposed HAS scheme in the multiuser case.

4.1. Unforgeability. Assuming that no polynomial-time algo-
rithm can solve SIS problem in the average case, Lemma 7
proves that in LHS1 the advantage in winning the unforge-
ability game is negligible. Based on this result, it is able to
prove computational security from a reduction of our HAS
signature scheme to LHS1 and get the following theorem.

Theorem 8. The presented HAS scheme is unforgeable, if the
lattice-based linearly homomorphic signature scheme LHS1 in
[7] is unforgeable.

Proof. With the usual method of reduction, assuming there is
a polynomial-time algorithm 𝐴

∗ to generate a forged signed
aggregate message in HAS, an efficient algorithm 𝐶 is able to
be constructed to produce a forged signed message for LHS1
in polynomial time.

The algorithm 𝐴
∗ takes as input the tuple of public

parameters, the common signing key shared by all users, and
the set of corresponding signed messages in the subspace 𝑉id
from 𝑙 ≤ 𝐿 users. The signed message from the 𝑖th user
is denoted by (id,m

𝑖
, s
𝑖
), where id is the valid identifier for

message subspace. The output of algorithm 𝐴
∗, denoted by

(id∗,𝛽∗, y∗, s∗), can be accepted by theVerify algorithmof the
presented homomorphic aggregated signature, where 𝛽∗ ∈

𝐹
𝑙

2
is the aggregate coefficient vector. However, this is a forged

signed aggregatemessage, inwhich either id∗ ̸= id or id∗ = id
and y∗ ̸= ∑

𝑙

𝑖=1
𝛽
∗

𝑖
m
𝑖
for y∗ ̸= 0.

We assume that the challenger takes the system param-
eters (𝑞, 𝑚, 𝑛, 𝜎, 𝑙, 𝐻) and the key-pair (A,T) to employ 𝐴

∗

algorithm, where T is a short vector of lattice Λ
⊥
(A) ∈

Z𝑚
𝑞

and 𝑙 is the dimension of the subspace 𝑉id. Thus, the
construction of algorithm 𝐶 by challenger is as follows.

(1) Construct a homomorphic aggregated signature
scheme (HAS) with 𝑙 users. First of all, the challenger
extends the WSetup of LHS1 to generate the 𝑙 key-
pairs (A,T

𝑗∈[𝑙]
) for users. Specifically, let matrix A

be the common public key shared by users, and the
corresponding private key T

𝑗
of the 𝑗th user is the

output of the algorithm 𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑎𝑠𝑖𝑠(T, 𝜎), which
run repeatedly 𝑙 times. Then, for message subspace
𝑉id, assume that challenger keeps several answers
from the random oracle 𝐻 and is stored in a list
(e.g., 𝐿𝑖𝑠𝑡1), which is just like what the𝐻-𝑄𝑢𝑒𝑟𝑦 does
in LHS1. As a result, each element 𝑎id of 𝐿𝑖𝑠𝑡1 is a
tuple (id, {(e

𝑗
, u
𝑗
)}
𝑙

𝑖=1
) where e

𝑗
∼ 𝐷Z𝑚 ,𝜎,0 is directly

sampled from the discrete Gaussian distribution𝐷Z𝑚

for Gaussian parameter 𝜎, and u
𝑗
= Ae

𝑗
mod 𝑞 is



Mathematical Problems in Engineering 7

statically close to uniform distribution according to
Lemma 3, which could be considered as the basis
vectors of 𝑉id. Thereby, a signature s

𝑗
on message u

𝑗

from the 𝑗th user can be produced by calling the
algorithm 𝑆𝑎𝑚𝑝𝑙𝑒𝑃𝑟𝑒(A,T

𝑖
, u
𝑗
).

(2) Call algorithm 𝐴
∗, which takes on inputs the system

parameters and 𝑙 signedmessages (id, k
𝑗
, s
𝑗
). The out-

put of 𝐴∗ is a forged signed message (id∗,𝛽∗, y∗, s∗)
in the HAS scheme, where 𝛽∗ ∈ 𝐹

𝑙

2
is the aggregate

coefficient vector and s∗ is the aggregate signature on
the aggregatemessage y∗ = ∑

𝑙

𝑗=1
u∗
𝑗
. It is worth noting

that the vectors u∗
𝑗
∈ Z𝑛
𝑞
eventually exist, though they

are not known and may not be unique.
(3) The algorithm 𝐶 outputs the signed message (id∗,
𝛽
∗
, y∗, s∗∗) where s∗∗ = s∗.

Now, we analyze the reduction and show that the output
of 𝐶 is a forged signed message in LHS1. Firstly, it should
be determined whether the output of 𝐶 can be accepted by
LHS1. Since the output of A∗ passes the verification of the
homomorphic aggregate signature (HAS) scheme, we can
know As∗ = y∗(mod𝑞) and ‖s∗‖ ≤ 𝐿𝜎√𝑚. According to
this result, it is easy to obtain that it can pass the verification in
LSH1 because the parameters used to verify in both schemes
are the same, for example, the matrix A and 𝜎. On the other
hand, the output of𝐶 is a forged signedmessage inLHS1 if and
only if either id∗ ̸= id or id∗ = id and y∗ ̸= ∑

𝑙

𝑖=1
𝛽
∗

𝑖
m
𝑖
for y∗ ̸=

0. Since the signedmessage (id∗,𝛽∗, y∗, s∗) is a forged signed
aggregate message, this means that the condition above is
satisfied. Consequently, this signed message (id∗, y∗, s∗∗) is a
forged signedmessage in LHS1, andTheorem 8 is proved.

4.2. Privacy. In order to prove the privacy of this presented
signature scheme, we introduce the “weakly context hiding”
of the linearly homomorphic aggregate signature, which is
adapted from [5] in the case of single user. The “weakly con-
text hiding” property of the linearly homomorphic signature
means the signature on the derivedmessage in somemessage
subspace spanned by {k

1
, . . . , k

𝑙
} does not disclose any infor-

mation about the original messages {k
1
, . . . , k

𝑙
}. However, the

linear function to combine the messages k
𝑖
is not hidden

while the original signatures on these messages are kept
private, which is why it is called “weakly context hiding.”
According to the definition of the linearly homomorphic
aggregate signature, we know that this property also applies to
our scheme in the case of multiuser, which is shown through
provingTheorem 9.

Theorem 9. The proposed linearly homomorphic aggregate
signature scheme has the “weakly context hiding” property.

Proof. Suppose that there are 𝑙 ≤ 𝐿 users who are assigned
the corresponding private key T

𝑖∈[𝑙]
by running the 𝑆𝑒𝑡𝑢𝑝 of

the proposed signature scheme. In the proposed signature
scheme, the 𝑖th user employs the algorithm 𝑆𝑎𝑚𝑝𝑙𝑒𝑃𝑟𝑒 to
sign original message m

𝑖
, and the aggregate signature sagg

on message ∑
𝑙

𝑖=1
𝑐
𝑖
m
𝑖
is generated through combining the

original signatures s
𝑖
of the corresponding messages m

𝑖
,

where each message combined should be tagged the same id
and 𝑐
𝑖
∈ {0, 1}. According to Lemma 3 about the distribution

of original signatures, despite coming fromdifferent users, we
know they are all statically close to the Gaussian distribution,
for example, s

𝑖
∼ 𝐷t𝑖+Λ⊥(A),𝜎,0, where t𝑖 ∈ Z𝑚 is an arbitrary

solution to At
𝑖

= ℎ
𝛼
(m
𝑖
) mod 𝑞 and the definitions of

remaining variables are the same as those in the Sign part
of proposed scheme. Hence, by knowledge of Lemma 4, the
distribution of the aggregate signature sagg = ∑

𝑙

𝑖
𝑐
𝑖
⋅ s
𝑖
(mod

𝑞) on the aggregate message ∑
𝑙

𝑖=1
𝑐
𝑖
m
𝑖
is statically close to

Gaussian distribution, for example, sagg ∼ 𝐷t+𝑔Λ,‖c‖𝜎,0, where
t = ∑

𝑙

𝑖=1
𝑐
𝑖
⋅ t
𝑖
and 𝑐
𝑖
∈ {0, 1}. Formally, the distribution of

signature on aggregate message only depends on the linear
function that was used to compute magg rather than on
each original message m

𝑖
. Thus, it follows that the aggregate

signature does not leak any of the original message except for
the aggregatemessage itself, andTheorem 9 above is true.

5. Efficiency

In order to analyze the performance, we compare the pro-
posed signatures scheme with previous lattice-based linearly
homomorphic signature schemes [5, 7, 16] in terms of public
key size, signature length, signing cost, verifying overhead,
and multiuser supporting, respectively.

Let 𝑇ps denote the time cost to run once 𝑆𝑎𝑚𝑝𝑙𝑒𝑃𝑟𝑒 algo-
rithm and let 𝑇bs denote the time cost to run once 𝐸𝑥𝑡𝐵𝑎𝑠𝑖𝑠
algorithm. Since these two algorithms commonly used in
lattice-based signature scheme take up most of the time cost
throughout the whole signature process, 𝑇ps and 𝑇bs could be
the main indicators in comparison of signing cost. However,
the verifying part of schemesmainly involves simple addition
and multiplication operations over the modulo, so we use
space overhead as the indicator in comparison of the verifying
cost. In addition, in the comparison of signature length, for
example, (id, s), the length of id can be ignored because this
length is the same for each scheme.

Table 1 shows that Wang’s scheme [7] is more efficient
than Boneh’s scheme [5] in the case of single user. In the case
of multiple users, our scheme displays the same efficiency as
Wang’s in the single user case. Compared with our scheme,
the length of signature in Zhang’s scheme [16] is twice that of
our scheme, and its verifying cost is four times.

6. Conclusions

In this paper, we propose a novel lattice-based HAS scheme
with short signature, which is an extension of LHS scheme
based on lattice over binary field in the single user case
[7]. Our scheme holds both homomorphic property and
aggregate property, in which a signed aggregate message can
be verified by using the combination of signatures of the
original messages and the common public key derived from
the public keys of the corresponding users. We prove its
security through decreasing to the single user case. At the
same time, the “weakly context hiding” property holds in the
proposed scheme. Furthermore, it is more practical than the
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Table 1: Comparison of several lattice-based linearly homomorphic signature schemes.

Scheme Multiuser supporting Public key length Signature length Signing cost Verifying cost (Space overhead)
Boneh’s [5] No 𝑛𝑚 + 𝑛𝑚 lg 𝑞 2𝑚 + 2𝑚 lg 𝑞 𝑇ps + 𝑇bs 𝑛𝑚

2
+ 2𝑛𝑚

2 lg 𝑞 + 𝑛𝑚
2
(lg 𝑞)2

Wang’s [7] No 𝑛𝑚 lg 𝑞 𝑚 lg 𝑞 𝑇ps 𝑛𝑚
2
(lg 𝑞)2

Zhang’s [16] Yes 𝑛𝑚 lg 𝑞 2𝑚 lg 𝑞 𝑇ps + 𝑇bs 4𝑛𝑚2(lg 𝑞)2

Our scheme Yes 𝑛𝑚 lg 𝑞 𝑚 lg 𝑞 𝑇ps 𝑛𝑚
2
(lg 𝑞)2

Zhang’s HAS scheme [16]. However, there is still much work
to be done in order to improve the capability of the scheme,
such as how to design a variant of the scheme with “strong
context hiding” property and how to take advantage of “ideal
lattice” to decrease the public key size.
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