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Wemainly solve three problems. Firstly, by the decomposition of the (anti-)Hermitian generalized (anti-)Hamiltonianmatrices, the
necessary and sufficient conditions for the existence of and the expression for the (anti-)Hermitian generalized (anti-)Hamiltonian
solutions to the system of matrix equations 𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷 are derived, respectively. Secondly, the optimal approximation
solution min

𝑋∈𝐾
‖𝑋 − 𝑋‖ is obtained, where 𝐾 is the (anti-)Hermitian generalized (anti-)Hamiltonian solution set of the above

system and 𝑋 is the given matrix. Thirdly, the least squares (anti-)Hermitian generalized (anti-)Hamiltonian solutions are
considered. In addition, algorithms about computing the least squares (anti-)Hermitian generalized (anti-)Hamiltonian solution
and the corresponding numerical examples are presented.

1. Introduction

Throughout this paper, the set of all 𝑚 × 𝑛 complex matrices,
the set of all 𝑛 × 𝑛 Hermitian matrices, the set of all 𝑛 × 𝑛

anti-Hermitian matrices, the set of all 𝑛 × 𝑛 unitary matrices,
and the set of all 𝑛 × 𝑛 antisymmetric orthogonal matrices
are denoted, respectively, byC𝑚×𝑛,𝐻C𝑛×𝑛, 𝐴𝐻C𝑛×𝑛, 𝑈C𝑛×𝑛,
and 𝐴𝑆𝑂R𝑛×𝑛.The symbol 𝐼

𝑛
represents an identity matrix of

order 𝑛 and 𝑟(𝐴), 𝐴
†, and𝐴

∗, respectively, stand for the rank,
the Moore-Penrose inverse, and the conjugate transpose of
matrix 𝐴. For two matrices 𝐴, 𝐵 ∈ C𝑚×𝑛, the inner product is
defined by ⟨𝐴, 𝐵⟩ = tr(𝐵∗𝐴). Obviously, C𝑚×𝑛 is a complete
inner product space. The norm ‖ ⋅ ‖, induced by the inner
product, is called the Frobenius norm. 𝐴 ∗ 𝐵 stands for
the Hadamard product of two matrices 𝐴 and 𝐵. For 𝐴 ∈

C𝑚×𝑛, two matrices 𝐿
𝐴
and 𝑅

𝐴
, respectively, represent two

orthogonal projectors 𝐿
𝐴

= 𝐼
𝑛

− 𝐴
†
𝐴 and 𝑅

𝐴
= 𝐼

𝑚
− 𝐴𝐴

†,
both of which satisfy

𝐿
𝐴

= (𝐿
𝐴

)
2

= (𝐿
𝐴

)
∗

= (𝐿
𝐴

)
†
,

𝑅
𝐴

= (𝑅
𝐴

)
2

= (𝑅
𝐴

)
∗

= (𝑅
𝐴

)
†
.

(1)

The Hamiltonian matrices defined as in [1] are very
important in engineering (see [2] and the references therein).
Moreover, using Hamiltonian matrices to solve algebraic
matrix Riccati equation is a very effective method in optimal
control theory [3–5]. As the extension of the Hamiltonian
matrices, the following four definitions, which can also be
found in [1, 6, 7], are given. Without special statement, we
in this paper always assume that 𝐽 ∈ 𝐴𝑆𝑂R2𝑘×2𝑘 satisfies

𝐽
𝑇

= −𝐽, 𝐽
𝑇
𝐽 = 𝐽𝐽

𝑇
= 𝐼

𝑛
. (2)

Definition 1. A matrix 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 is said to be a Herm-
itian generalized Hamiltonian matrix if 𝑋 = 𝑋

∗ and 𝐽𝑋𝐽 =

𝑋
∗.

Definition 2. Amatrix𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 is said to be a Herm-
itian generalized anti-Hamiltonian matrix if 𝑋 = 𝑋

∗ and
𝐽𝑋𝐽 = −𝑋

∗.

Definition 3. A matrix 𝑋 ∈ 𝐴𝐻𝐴𝐻C2𝑘×2𝑘 is said to be an
anti-Hermitian generalized anti-Hamiltonian matrix if 𝑋 =

−𝑋
∗ and 𝐽𝑋𝐽 = −𝑋

∗.
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Definition 4. Amatrix 𝑋 ∈ 𝐴𝐻𝐻C2𝑘×2𝑘 is said to be an anti-
Hermitian generalized Hamiltonian matrix if 𝑋 = −𝑋

∗ and
𝐽𝑋𝐽 = 𝑋

∗.

The well-known system of matrix equations

𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷, (3)

with unknown matrix 𝑋, has attracted much attention
and has been widely and deeply studied by many authors.
For example, Khatri and Mitra [8] in 1976 established the
Hermitian and nonnegative definite solution to the system
(3). Mitra [9] in 1984 gave the system (3) the minimal rank
solution over the complex field C. Wang in [10] and Wang
et al. [11], respectively, investigated the bisymmetric and
centrosymmetric solutions over the quaternion algebra and
obtained the bisymmetric nonnegative definite solutionswith
extremal ranks and inertias to the system (3). Xu in [12]
studied the common Hermitian and positive solutions to the
adjointable operator equations (3). Yuan in [13] presented the
least squares solutions to the system (3). Some other results
concerning the system (3) can be found in [14–23].

As special cases of the system (3), the classical matrix
equations 𝐴𝑋 = 𝐵 and 𝑋𝐶 = 𝐷 have also been investigated
(see, e.g., [1, 2, 5–7, 24–31]). For instance, Dai [24], by means
of the singular value decomposition, derived the symmetric
solution to equation 𝐴𝑋 = 𝐵. Guan and Jiang [6], using
the decomposition of the anti-Hermitian generalized anti-
Hamiltonian matrices, derived the least squares solution to
equation 𝐴𝑋 = 𝐵. Zhang et al. in [29] and [1], respec-
tively, obtained the general expression of the least squares
Hermitian generalized Hamiltonian solutions to equation
𝑋𝐶 = 𝐷 and got the unite optimal approximation solution
in the least squares solutions set and gave the solvable
conditions and the general representation of the Hermitian
generalized Hamiltonian solutions to equation 𝐴𝑋 = 𝐵, by
using the singular value decomposition and the properties of
Hermitian generalized Hamiltonian matrices.

As far as we know, there has been little informa-
tion on studying the (anti-)Hermitian generalized (anti-)
Hamiltonian solution to the system (3) over C2𝑘×2𝑘. So,
motived by the work mentioned above, especially the work
in [6, 7, 26, 29, 30], we, in this paper, are mainly concerned
with the following three problems.

Problem 5. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, find 𝑋 ∈

𝐻𝐻C2𝑘×2𝑘 (𝐻𝐴𝐻C2𝑘×2𝑘, 𝐴𝐻𝐻C2𝑘×2𝑘, or 𝐴𝐻𝐴𝐻C2𝑘×2𝑘)

such that the system (3) holds.

Problem 6. Given 𝑋 ∈ C2𝑘×2𝑘, find 𝑋 ∈ 𝐾 such that

𝑋 − 𝑋


= min
𝑋∈𝐾


𝑋 − 𝑋


, (4)

where 𝐾 is the solution set of Problem 5.

Problem 7. Let 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞. Find 𝑋 ∈

𝐻𝐻C2𝑘×2𝑘 (𝐻𝐴𝐻C2𝑘×2𝑘, 𝐴𝐻𝐻C2𝑘×2𝑘, or 𝐴𝐻𝐴𝐻C2𝑘×2𝑘)

such that

min
𝑋

= ‖𝐴𝑋 − 𝐵‖
2

+ ‖𝑋𝐶 − 𝐷‖
2
. (5)

The remainder of this paper is arranged as follows. In
Section 2, some lemmaswill be introduced,whichwill be use-
ful for us to obtain the solutions to Problems 5–7. In Section 3,
by applying the decomposition of the (anti-)Hermitian gener-
alized (anti-)Hamiltonian matrices, the solvability condition
and the explicit expression of the solution to Problem 5
will be derived. In Section 4, the optimal approximation
solution to Problem 6 will be established. In Section 5, the
solution to Problem 7 will be investigated and meanwhile the
minimumnormof the solutionwill be obtained. In Section 6,
algorithms and numerical examples about computing the
solution to Problem 7 will be provided. Finally, in Section 7,
some conclusions will be made.

2. Preliminaries

In this section, we focus on introducing some lemmas, which
will play key roles in solving Problems 5–7.

Taking into account Definitions 1–4 and the eigenvalue
decomposition of thematrix 𝐽 ∈ 𝐴𝑆𝑂R2𝑘×2𝑘, it is not difficult
to conclude that the following decompositions of the (anti-)
Hermitian generalized (anti-)Hamiltonian matrices hold,
some of which can also be seen in [6, 26, 29, 30].

Lemma 8. Let the eigenvalue decomposition of matrix 𝐽 ∈

𝐴𝑆𝑂R2𝑘×2𝑘 be

𝐽 = 𝑃 (
𝑖𝐼
𝑘

0

0 −𝑖𝐼
𝑘

) 𝑃
∗
, (6)

where 𝑃 ∈ 𝑈C2𝑘×2𝑘. Then 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 if and only if 𝑋 can
be expressed as

𝑋 = 𝑃 (
0 𝑋

12

𝑋
∗

12
0

) 𝑃
∗
, (7)

where 𝑋
12

∈ C𝑘×𝑘 are arbitrary.

Lemma 9. Let the eigenvalue decomposition of matrix 𝐽 ∈

𝐴𝑆𝑂R2𝑘×2𝑘 be (6). Then 𝑋 ∈ 𝐴𝐻𝐴𝐻C2𝑘×2𝑘 if and only if 𝑋

can be expressed as

𝑋 = 𝑃 (
0 𝑋

12

−𝑋
∗

12
0

) 𝑃
∗
, (8)

where 𝑋
12

∈ C𝑘×𝑘 is arbitrary.

Lemma 10. Let the eigenvalue decomposition of matrix 𝐽 ∈

𝐴𝑆𝑂R2𝑘×2𝑘 be (6). Then 𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 if and only if 𝑋 can
be expressed as

𝑋 = 𝑃 (
𝑋
11

0

0 𝑋
22

) 𝑃
∗
, (9)

where 𝑋
11

, 𝑋
22

∈ 𝐻C𝑘×𝑘 are arbitrary.

Lemma 11. Let the eigenvalue decomposition of matrix 𝐽 ∈

𝐴𝑆𝑂R2𝑘×2𝑘 be (6). Then 𝑋 ∈ 𝐴𝐻𝐻C2𝑘×2𝑘 if and only if 𝑋

can be expressed as

𝑋 = 𝑃 (
𝑋
11

0

0 𝑋
22

) 𝑃
∗
, (10)

where 𝑋
11

, 𝑋
22

∈ 𝐴𝐻C𝑘×𝑘 are arbitrary.
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Lemma 12 (see [20]). Given 𝐴 ∈ C𝑚×𝑛, 𝐵 ∈ C𝑝×𝑙, 𝐶 ∈

C𝑚×𝑝, and 𝐷 ∈ C𝑛×𝑙, then the system of matrix equations

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷 (11)

has a solution 𝑋 ∈ C𝑛×𝑝 if and only if

𝐴𝐴
†
𝐶 = 𝐶, 𝐷𝐵

†
𝐵 = 𝐷, 𝐴𝐷 = 𝐶𝐵, (12)

in which case the general solutions can be expressed as

𝑋 = 𝐴
†
𝐶 + 𝐷𝐵

†
− 𝐴

†
𝐴𝐷𝐵

†
+ (𝐼 − 𝐴

†
𝐴) 𝑊 (𝐼 − 𝐵𝐵

†
) ,

(13)

where 𝑊 ∈ C𝑛×𝑝 is arbitrary.

By applying the singular value decomposition, similar to
the proof of Theorem 1 in [24], the following lemma can be
shown.

Lemma 13. Assume 𝐸, 𝐹 ∈ C𝑚×𝑛. Let the singular value
decomposition of 𝐸 be

𝐸 = 𝑈 (
Σ 0

0 0
) 𝑉

∗
, (14)

where

𝑈 ∈ 𝑈C
𝑚×𝑚

, 𝑉 ∈ 𝑈C
𝑛×𝑛

,

Σ = diag (𝛼
1
, . . . , 𝛼

𝑟
) , 𝛼

𝑖
> 0,

𝑖 = 1, . . . , 𝑟; 𝑟 = 𝑟 (𝐸) .

(15)

Partition

𝑉𝑋𝑉
∗

= (
𝑋
11

𝑋
12

𝑋
∗

12
𝑋
22

) ,

𝑈
∗
𝐹𝑉 = (

𝐹
11

𝐹
12

𝐹
21

𝐹
22

) ,

(16)

where

𝑋
11

∈ 𝐻C𝑟×𝑟, 𝑋
22

∈ 𝐻C(𝑛−𝑟)×(𝑛−𝑟),

𝐹
11

∈ C𝑟×𝑟, 𝐹
22

∈ C(𝑚−𝑟)×(𝑛−𝑟).
(17)

Then the matrix equation

𝐸𝑋 = 𝐹 (18)

has Hermitian solutions if and only if

𝐸𝐸
†
𝐹 = 𝐹, 𝐸𝐹

∗
= 𝐹𝐸

∗
,

𝐹
21

= 0, 𝐹
22

= 0,

(19)

in which case the Hermitian solution can be expressed as

𝑋 = 𝑉 (
Σ
−1

𝐹
11

Σ
−1

𝐹
12

𝐹
∗

12
Σ
−1

𝑋
22

) 𝑉
∗
, (20)

where 𝑋
22

∈ 𝐻C(𝑛−𝑟)×(𝑛−𝑟) is arbitrary.

By the similar way, the following lemma can also be
verified.

Lemma 14. Assume 𝑀, 𝑁 ∈ C𝑚×𝑛. Let the singular value
decomposition of 𝑀 be

𝑀 = 𝑈 (
Π 0

0 0
) 𝑉

∗
, (21)

where

𝑈 ∈ 𝑈C
𝑚×𝑚

, 𝑉 ∈ 𝑈C
𝑛×𝑛

,

Π = diag (𝛽
1
, . . . , 𝛽

𝑠
) , 𝛽

𝑖
> 0,

𝑖 = 1, . . . , 𝑠; 𝑠 = 𝑟 (𝑀) .

(22)

Partition

𝑉𝑋𝑉
∗

= (
𝑋
11

𝑋
12

−𝑋
∗

12
𝑋
22

) ,

𝑈
∗
𝑁𝑉 = (

𝑁
11

𝑁
12

𝑁
21

𝑁
22

) ,

(23)

where

𝑋
11

∈ 𝐴𝐻C𝑠×𝑠, 𝑋
22

∈ 𝐴𝐻C(𝑛−𝑠)×(𝑛−𝑠),

𝑁
11

∈ C𝑠×𝑠, 𝑁
22

∈ C(𝑚−𝑠)×(𝑛−𝑠).
(24)

Then the matrix equation

𝑀𝑋 = 𝑁 (25)

has an anti-Hermitian solution if and only if

𝑀𝑀
†
𝑁 = 𝑁, 𝑀𝑁

∗
= −𝑁𝑀

∗
,

𝑁
21

= 0, 𝑁
22

= 0,

(26)

in which case the anti-Hermitian solution can be expressed as

𝑋 = 𝑉 (
Π
−1

𝑁
11

Π
−1

𝑁
12

−𝑁
∗

12
Π
−1

𝑋
22

) 𝑉
∗
, (27)

where 𝑋
22

∈ 𝐴𝐻C(𝑛−𝑠)×(𝑛−𝑠) is arbitrary.

Lemma 15 (see [31]). Given 𝐴

, 𝐵


∈ C𝑘×(𝑚+𝑞), 𝐶

, 𝐷


∈

C𝑘×(𝑚+𝑞), suppose that the matrices 𝐴
 and 𝐶

, respectively,
have the following singular value decompositions:

𝐴


= 𝑃
1

(
Γ 0

0 0
) 𝑄

∗

1
, 𝐶


= 𝑈

1
(

Λ 0

0 0
) 𝑉

∗

1
, (28)
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where

𝑃
1

= (𝑃11 𝑃
12) ∈ 𝑈C

𝑘×𝑘
, 𝑃

11
∈ C

𝑘×𝑡
1 ;

𝑄
1

= (𝑄11 𝑄
12) ∈ 𝑈C

(𝑚+𝑞)×(𝑚+𝑞)
,

𝑄
11

∈ C
(𝑚+𝑞)×𝑡

1 ;

𝑈
1

= (𝑈11 𝑈
12) ∈ 𝑈C

𝑘×𝑘
, 𝑈

11
∈ C

𝑘×𝑡
2 ;

𝑉
1

= (𝑉11 𝑉
12) ∈ 𝑈C

(𝑚+𝑞)×(𝑚+𝑞)
,

𝑉
11

∈ C
(𝑚+𝑞)×𝑡

2 ;

Γ = diag (𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑡
1

) , 𝛿
𝑖
> 0,

1 ≤ 𝑖 ≤ 𝑡
1
; 𝑡
1

= 𝑟 (𝐴

) ;

Λ = diag (𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑡
2

) , 𝛾
𝑖
> 0,

1 ≤ 𝑖 ≤ 𝑡
2
; 𝑡
2

= 𝑟 (𝐶

) .

(29)

Then the solution set of the problem

𝑓 (𝑋
12

)
Δ

=

(𝐴


)
∗

𝑋
12

− (𝐵

)
∗

2

+

𝑋
12

𝐶

− 𝐷



2

= min
(30)

consists of matrices 𝑋
12

∈ C𝑘×𝑘 with the following form:

𝑋
12

= 𝑃1 (
𝜙 ∗ (𝑃

∗

11
𝐷

𝑉11Λ + Γ𝑄

∗

11
(𝐵

)
∗

𝑈12) Γ
−1
𝑄
∗

11
(𝐵

)
∗

𝑈12

𝑃
∗

12
𝐷

𝑉11Λ

−1
𝑋


22

)𝑈
∗

1
,

(31)

where

𝜙 = (𝜙
𝑖𝑗
) , 𝜙

𝑖𝑗
=

1

𝛿
2

𝑖
+ 𝛾

2

𝑗

,

1 ≤ 𝑖 ≤ 𝑡
1
, 1 ≤ 𝑗 ≤ 𝑡

2
,

(32)

and 𝑋


22
∈ C(𝑘−𝑡1)×(𝑘−𝑡2) is arbitrary.

Lemma 16. Given 𝐸, 𝐹 ∈ C𝑚×𝑛, let the singular value
decomposition of 𝐸, the partitions of 𝑉𝑋𝑉

∗ and 𝑈
∗
𝐹𝑉 be,

respectively, as in (14)–(16). Then the least squares Hermitian
solution to the matrix equation (18) can be expressed as

𝑋 = 𝑉 (
Φ ∗ (Σ𝐹

11
+ 𝐹

∗

11
Σ) Σ

−1
𝐹
12

𝐹
∗

12
Σ
−1

𝑋
22

) 𝑉
∗
, (33)

where

Φ = (
1

𝛼
2

𝑖
+ 𝛼

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑟, (34)

and 𝑋
22

∈ 𝐻C(𝑛−𝑟)×(𝑛−𝑟) is arbitrary.

Proof. Combining (14)–(16) and the unitary invariance of the
Frobenius norm, it is easy to obtain that

‖𝐸𝑋 − 𝐹‖
2

=



(
Σ 0

0 0
) 𝑉

∗
𝑉 (

𝑋
11

𝑋
12

𝑋
∗

12
𝑋
22

) − 𝑈
∗
𝐹𝑉



2

=



(
Σ𝑋

11
Σ𝑋

12

0 0
) − (

𝐹
11

𝐹
12

𝐹
21

𝐹
22

)



2

=
Σ𝑋

11
− 𝐹

11



2
+

Σ𝑋
12

− 𝐹
12



2

+
𝐹
21



2
+

𝐹
22



2
.

(35)

Then ‖𝐸𝑋 − 𝐹‖
2 reaches its minimum if and only if

Σ𝑋
11

− 𝐹
11



2
, (36)

Σ𝑋
12

− 𝐹
12



2 (37)

reach theirminimum. For𝑋
11

= (𝑥
𝑖𝑗
) ∈ 𝐻C𝑟×𝑟, 𝐹

11
= (𝑓

𝑖𝑗
) ∈

C𝑟×𝑟, since 𝑥
𝑖𝑗

= 𝑥
∗

𝑖𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑟, then

Σ𝑋
11

− 𝐹
11



2
=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

(𝛼
𝑖
𝑥
𝑖𝑗

− 𝑓
𝑖𝑗
)
2

=

𝑟

∑

1≤𝑖,𝑗≤𝑟

[(𝛼
2

𝑖
+ 𝛼

2

𝑗
)


𝑥
𝑖𝑗



2

+ 2 (𝛼
𝑖
𝑓
𝑖𝑗

+ 𝛼
𝑗
𝑓
∗

𝑖𝑗
) 𝑥

𝑖𝑗
+ 2


𝑓
𝑖𝑗



2

] .

(38)

Hence, there exists a unique solution 𝑋
11

= (𝑥
𝑖𝑗
) ∈ 𝐻C𝑟×𝑟

for (36) such that

𝑥
𝑖𝑗

=

𝛼
𝑖
𝑓
𝑖𝑗

+ 𝛼
𝑗
𝑓
∗

𝑖𝑗

𝛼
2

𝑖
+ 𝛼

2

𝑗

, 1 ≤ 𝑖, 𝑗 ≤ 𝑟. (39)

That is,

𝑋
11

= Φ ∗ (Σ𝐹
11

+ 𝐹
∗

11
Σ) , (40)

where

Φ = (
1

𝛼
2

𝑖
+ 𝛼

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑟. (41)

When 𝑋
12
can be expressed as

𝑋
12

= Σ
−1

𝐹
12

, (42)

(37) gets its minimum.Therefore, the least squares Hermitian
solution to (18) can be described as (33).

By the similar way, the following result can be obtained.

Lemma 17. Given 𝑀, 𝑁 ∈ C𝑚×𝑛, let the singular value
decomposition of 𝑀, the partitions of 𝑉𝑋𝑉

∗, and 𝑈
∗
𝑁𝑉
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be, respectively, as in (21)–(23). Then the least squares anti-
Hermitian solution to the matrix equation 𝑀𝑋 = 𝑁 can be
expressed as

𝑋 = 𝑉 (
Ψ ∗ (Π𝑁

11
− 𝑁

∗

11
Π) Π

−1
𝑁
12

−𝑁
∗

12
Π
−1

𝑋
22

) 𝑉
∗
, (43)

where

Ψ = (
1

𝛽
2

𝑖
+ 𝛽

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑠, (44)

and 𝑋
22

∈ 𝐴𝐻C(𝑛−𝑠)×(𝑛−𝑠) is arbitrary.

Lemma 18 (see [20]). Given 𝐹 ∈ C𝑚×𝑛, 𝐺 ∈ C𝑝×𝑞, and 𝐿 ∈

C𝑚×𝑞, then the matrix equation 𝐹𝑋𝐺 = 𝐿 has a solution if and
only if

𝐹𝐹
†
𝐿𝐺

†
𝐺 = 𝐿, (45)

in which case the general solution is

𝑋 = 𝐹
†
𝐿𝐺

†
+ 𝑌 − 𝐹

†
𝐹𝑌𝐺𝐺

†
, (46)

where 𝑌 ∈ C𝑛×𝑝 is arbitrary.

The following lemma is due to [25, 32] or [29, Lemma 5].

Lemma 19. Let 𝑀, 𝑁 ∈ C𝑚×𝑛. Then there exists a unique
matrix 𝑊

1
∈ C𝑚×𝑛 such that
𝑊

1
− 𝑀



2
+

𝑊
1

− 𝑁


2

= min
𝑊∈C𝑚×𝑛

(‖𝑊 − 𝑀‖
2

+ ‖𝑊 − 𝑁‖
2
) ,

(47)

where

𝑊
1

=
𝑀 + 𝑁

2
. (48)

3. The Solvability Conditions and the
Expression of the Solution to Problem 5

In this section, our purpose is to derive the necessary and
sufficient conditions of and the explicit expression of the
solution to Problem 5 by using the results introduced in
Section 2.

Theorem 20. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, let the
decomposition of 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 be (7). Partition

𝐴𝑃 = (𝐴1
𝐴
2) , 𝐴

1
∈ C

𝑚×𝑘
, 𝐴

2
∈ C

𝑚×𝑘
; (49)

𝐵𝑃 = (𝐵1 𝐵
2) , 𝐵

1
∈ C

𝑚×𝑘
, 𝐵

2
∈ C

𝑚×𝑘
; (50)

𝑃
∗
𝐶 = (

𝐶
1

𝐶
2

) , 𝐶
1

∈ C
𝑘×𝑞

, 𝐶
2

∈ C
𝑘×𝑞

; (51)

𝑃
∗
𝐷 = (

𝐷
1

𝐷
2

) , 𝐷
1

∈ C
𝑘×𝑞

, 𝐷
2

∈ C
𝑘×𝑞

; (52)

𝐴


= (
𝐴
1

𝐶
∗

1

) , 𝐵


= (
𝐵
2

𝐷
∗

2

) , (53)

𝐶


= (𝐴
∗

2
𝐶
2) , 𝐷


= (𝐵

∗

1
𝐷
1) . (54)

Then Problem 5 has a solution 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 if and only if

𝐴

(𝐴


)
†

𝐵


= 𝐵

, 𝐷


(𝐶


)
†

𝐶


= 𝐷

,

𝐴

𝐷


= 𝐵

𝐶

,

(55)

in which case the Hermitian generalized Hamiltonian solution
to Problem 5 can be expressed as

𝑋 = 𝑃 (
0 𝑋

12

𝑋
∗

12
0

) 𝑃
∗
, (56)

where

𝑋
12

= (𝐴

)
†

𝐵

+ 𝐷


(𝐶


)
†

− (𝐴

)
†

𝐴

𝐷

(𝐶


)
†

+ 𝐿
𝐴
𝑊𝑅

𝐶


(57)

and 𝑊 ∈ C𝑘×𝑘 is arbitrary.

Proof. It follows from (7) and (49)–(52) that the system
(3) can be transformed into the following system of matrix
equations:

𝐴
1
𝑋
12

= 𝐵
2
, 𝑋

12
𝐴
∗

2
= 𝐵

∗

1
,

𝐶
∗

1
𝑋
12

= 𝐷
∗

2
, 𝑋

12
𝐶
2

= 𝐷
1
.

(58)

Then, combining (53) and (54) yields that

𝐴

𝑋
12

= 𝐵

, 𝑋

12
𝐶


= 𝐷

. (59)

Thus, by Lemma 12, the system (59) has a solution𝑋
12

∈ C𝑘×𝑘

if and only if all equalities in (55) hold, in which case the
solution can be written as (57). So the solution to system (3)
can be expressed as (56).

Remark 21. Let 𝐶 and 𝐷 vanish inTheorem 20. Partition

𝐴𝑃 = (𝐴1
𝐴
2) , 𝐴

1
∈ C

𝑚×𝑘
, 𝐴

2
∈ C

𝑚×𝑘
;

𝐵𝑃 = (𝐵1 𝐵
2) , 𝐵

1
∈ C

𝑚×𝑘
, 𝐵

2
∈ C

𝑚×𝑘
.

(60)

Then thematrix equation𝐴𝑋 = 𝐵 has Hermitian generalized
Hamiltonian solutions if and only if

𝐴
1
𝐴
†

1
𝐵
2

= 𝐵
2
, 𝐴

2
𝐴
†

2
𝐵
1

= 𝐵
1
,

𝐴
1
𝐵
∗

1
= 𝐵

2
𝐴
∗

2
,

(61)

in which case its solution can be described as

𝑋 = 𝑃 (
0 𝑋

12

𝑋
∗

12
0

) 𝑃
∗
, (62)

where

𝑋
12

= 𝐴
†

1
𝐵
2

+ 𝐵
∗

1
(𝐴

†

2
)
∗

− 𝐴
†

1
𝐴
1
𝐵
∗

1
(𝐴

†

2
)
∗

+ 𝐿
𝐴
1

𝑊𝐿
𝐴
2

(63)

and𝑊 ∈ C𝑘×𝑘 is arbitrary. It is clear that this result is different
fromTheorem 3.1 given in [1].
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Similarly, by Lemmas 9 and 12, we can get the anti-
Hermitian generalized anti-Hamiltonian solution to system
(3).

Theorem 22. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, let the
decomposition of 𝑋 ∈ 𝐴𝐻𝐴𝐻C2𝑘×2𝑘 be (8). 𝐴𝑃, 𝐵𝑃, 𝑃

∗
𝐶, and

𝑃
∗
𝐷, respectively, have the partitions as in (49)–(52). Put

𝐴 = (
𝐴
1

𝐶
∗

1

) , 𝐵 = (
𝐵
2

−𝐷
∗

2

) ,

𝐶 = (𝐴
∗

2
𝐶
2) , 𝐷 = (−𝐵

∗

1
𝐷
1) .

(64)

Then Problem 5 has a solution 𝑋 ∈ 𝐴𝐻𝐴𝐻C2𝑘×2𝑘 if and only
if

𝐴𝐴
†
𝐵 = 𝐵, 𝐷𝐶

†
𝐶 = 𝐷, 𝐴𝐷 = 𝐵𝐶, (65)

in which case the anti-Hermitian generalized anti-Hamil-
tonian solution to Problem 5 can be expressed as

𝑋 = 𝑃 (
0 𝑋

12

−𝑋
∗

12
0

) 𝑃
∗
, (66)

where

𝑋
12

= 𝐴
†
𝐵 + 𝐷𝐶

†
− 𝐴

†
𝐴𝐷𝐶

†
+ 𝐿

𝐴
𝑍𝑅

�̃�
(67)

and 𝑍 ∈ C𝑘×𝑘 is arbitrary.

Now, we investigate the Hermitian generalized anti-
Hamiltonian solution to the system (3).

Theorem 23. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, let the
decomposition of 𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 be (9). 𝐴𝑃, 𝐵𝑃, 𝑃

∗
𝐶, and

𝑃
∗
𝐷, respectively, have the partitions as in (49)–(52). Denote

𝐴 = (
𝐴
1

𝐶
∗

1

) , 𝐵 = (
𝐵
1

𝐷
∗

1

) , (68)

𝐶 = (
𝐴
2

𝐶
∗

2

) , 𝐷 = (
𝐵
2

𝐷
∗

2

) . (69)

Let the singular value decompositions of 𝐴 and 𝐶 be, respec-
tively,

𝐴 = 𝑈 (
Σ 0

0 0
) 𝑉

∗
, (70)

𝐶 = 𝑄 (
Π 0

0 0
) 𝑅

∗
, (71)

where
𝑈 ∈ 𝑈C(𝑚+𝑞)×𝑘, 𝑉 ∈ 𝑈C𝑘×𝑘,

Σ = diag (𝛼
1
, . . . , 𝛼

𝑟
) , 𝛼

𝑖
> 0,

𝑖 = 1, . . . , 𝑟; 𝑟 = 𝑟 (𝐴) ,

𝑄 ∈ 𝑈C
(𝑚+𝑞)×𝑘

, 𝑅 ∈ 𝑈C
𝑘×𝑘

,

Π = diag (𝛽
1
, . . . , 𝛽

𝑠
) , 𝛽

𝑗
> 0,

𝑗 = 1, . . . , 𝑠; 𝑠 = 𝑟 (𝐶) .

(72)

Set

𝑉𝑋
11

𝑉
∗

= (
𝑋
11

𝑋
12

𝑋
∗

12
𝑋
22

) ; (73)

𝑈
∗
𝐵𝑉 = (

𝐵
11

𝐵
12

𝐵
21

𝐵
22

) ; (74)

𝑅𝑋
22

𝑅
∗

= (
𝑋
11

𝑋
12

𝑋
∗

12
𝑋
22

) ; (75)

𝑄
∗
𝐷𝑅 = (

𝐷
11

𝐷
12

𝐷
21

𝐷
22

) , (76)

where

𝑋
11

∈ 𝐻C
𝑟×𝑟

, 𝑋
11

∈ 𝐻C
𝑠×𝑠

,

𝑋
22

∈ 𝐻C
(𝑘−𝑟)×(𝑘−𝑟)

, 𝑋
22

∈ 𝐻C
(𝑘−𝑠)×(𝑘−𝑠)

,

𝐵
11

∈ C
𝑟×𝑟

, 𝐷
11

∈ C
𝑠×𝑠

,

𝐵
22

∈ C
(𝑚+𝑞−𝑟)×(𝑘−𝑟)

, 𝐷
22

∈ C
(𝑚+𝑞−𝑠)×(𝑘−𝑠)

.

(77)

Then Problem 5 has a solution 𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 if and only if

𝐴(𝐴)
†

𝐵 = 𝐵, 𝐴(𝐵)
∗

= 𝐵(𝐴)
∗

,

𝐵
21

= 0, 𝐵
22

= 0,

(78)

𝐶(𝐶)
†

𝐷 = 𝐷, 𝐶(𝐷)
∗

= 𝐷(𝐶)
∗

,

𝐷
21

= 0, 𝐷
22

= 0,

(79)

in which case the Hermitian generalized anti-Hamiltonian
solution to Problem 5 can be described as

𝑋 = 𝑃 (
𝑋
11

0

0 𝑋
22

) 𝑃
∗
, (80)

where

𝑋
11

= 𝑉 (
Σ
−1

𝐵
11

Σ
−1

𝐵
12

(𝐵
12

)
∗

Σ
−1

𝑋
22

) 𝑉
∗
, (81)

𝑋
22

= 𝑅 (
Π
−1

𝐷
11

Π
−1

𝐷
12

(𝐷
12

)
∗

Π
−1

𝑋
22

) 𝑅
∗
, (82)

and 𝑋
22

∈ 𝐻C(𝑘−𝑟)×(𝑘−𝑟), 𝑋
22

∈ 𝐻C(𝑘−𝑠)×(𝑘−𝑠) are arbitrary.

Proof. It can be derived from (9), (49)–(52), and (68)-(69)
that the system (3) is consistent if and only if the following
two equations:

𝐴𝑋
11

= 𝐵, (83)

𝐶𝑋
22

= 𝐷, (84)

are solvable. By (70), (73), and (74), and then combining
Lemma 13, we can obtain that there exists Hermitian solution
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𝑋
11

such that (83) holds if and only if all equalities in (78)
hold, in which case the solution can be written as (81). By
the similar way, there exists Hermitian solution𝑋

22
such that

(84) holds if and only if all equalities in (79) hold, in which
case the solution can be described as (82). Therefore, the
Hermitian generalized anti-Hamiltonian solution to Problem
5 can be expressed as (80).

From Lemmas 11 and 14, it is not difficult to obtain the
anti-Hermitian generalizedHamiltonian solution to Problem
5, which can be described as follows.

Theorem 24. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, let the
decomposition of 𝑋 ∈ 𝐴𝐻𝐻C2𝑘×2𝑘 be (10). 𝐴𝑃, 𝐵𝑃, 𝑃

∗
𝐶, and

𝑃
∗
𝐷, respectively, have the partitions as in (49)–(52). Denote

𝐴 = (
𝐴
1

𝐶
∗

1

) , 𝐵 = (
𝐵
1

−𝐷
∗

1

) ,

𝐶 = (
𝐴
2

𝐶
∗

2

) , 𝐷 = (
𝐵
2

−𝐷
∗

2

) .

(85)

Let the singular value decompositions of 𝐴 and 𝐶 be, respec-
tively,

𝐴 = 𝑈 (
Σ 0

0 0
) 𝑉

∗
,

𝐶 = 𝑄 (
Π 0

0 0
) 𝑅

∗
,

(86)

where

𝑈 ∈ 𝑈C
(𝑚+𝑞)×𝑘

, 𝑉 ∈ 𝑈C
𝑘×𝑘

,

Σ = diag (𝛼
1
, . . . , 𝛼

𝑟
) , 𝛼

𝑖
> 0,

𝑖 = 1, . . . , 𝑟; 𝑟 = 𝑟 (𝐴) ,

𝑄 ∈ 𝑈C
(𝑚+𝑞)×𝑘

, 𝑅 ∈ 𝑈C
𝑘×𝑘

,

Π = diag (𝛽
1
, . . . , 𝛽

𝑠
) , 𝛽

𝑗
> 0,

𝑗 = 1, . . . , 𝑠; 𝑠 = 𝑟 (𝐶) .

(87)

Set

𝑉𝑋
11

𝑉
∗

= (
𝑋
11

𝑋
12

−𝑋
∗

12
𝑋
22

) ;

𝑈
∗
𝐵𝑉 = (

𝐵
11

𝐵
12

𝐵
21

𝐵
22

) ;

𝑅𝑋
22

𝑅
∗

= (
𝑋
11

𝑋
12

−𝑋
∗

12
𝑋
22

) ;

𝑄
∗
𝐷𝑅 = (

𝐷
11

𝐷
12

𝐷
21

𝐷
22

) ,

(88)

where

𝑋
11

∈ 𝐻C
𝑟×𝑟

, 𝑋
11

∈ 𝐻C
𝑠×𝑠

,

𝑋
22

∈ 𝐻C
(𝑘−𝑟)×(𝑘−𝑟)

, 𝑋
22

∈ 𝐻C
(𝑘−𝑠)×(𝑘−𝑠)

,

𝐵
11

∈ C
𝑟×𝑟

, 𝐷
11

∈ C
𝑠×𝑠

,

𝐵
22

∈ C
(𝑚+𝑞−𝑟)×(𝑘−𝑟)

, 𝐷
22

∈ C
(𝑚+𝑞−𝑠)×(𝑘−𝑠)

.

(89)

Then Problem 5 has a solution 𝑋 ∈ 𝐴𝐻𝐻C2𝑘×2𝑘 if and only if

𝐴𝐴
†
𝐵 = 𝐵, 𝐴𝐵

∗
= −𝐵𝐴

∗
,

𝐵
21

= 0, 𝐵
22

= 0,

𝐶𝐶
†
𝐷 = 𝐷, 𝐶𝐷

∗
= −𝐷𝐶

∗
,

𝐷
21

= 0, 𝐷
22

= 0,

(90)

in which case the anti-Hermitian generalized Hamiltonian
solution to Problem 5 can be described as

𝑋 = 𝑃 (
𝑋
11

0

0 𝑋
22

) 𝑃
∗
, (91)

where

𝑋
11

= 𝑉 (
Σ
−1

𝐵
11

Σ
−1

𝐵
12

−𝐵
∗

12
Σ
−1

𝑋
22

) 𝑉
∗
,

𝑋
22

= 𝑅 (
Π
−1

𝐷
11

Π
−1

𝐷
12

−𝐷
∗

12
Π
−1

𝑋
22

) 𝑅
∗
,

(92)

and 𝑋
22

∈ 𝐴𝐻C(𝑘−𝑟)×(𝑘−𝑟), 𝑋
22

∈ 𝐴𝐻C(𝑘−𝑠)×(𝑘−𝑠) are
arbitrary.

4. The Expression of the Unique
Solution to Problem 6

In this section, our aim is to derive the optimal approximation
solution to Problem 6.

Theorem 25. Given 𝑋 ∈ C2𝑘×2𝑘, under the hypotheses of
Theorem 20, let

𝑃
∗
𝑋𝑃 = (

𝑋
11

𝑋
12

𝑋
21

𝑋
22

) , 𝑋
11

∈ C
𝑘×𝑘

, 𝑋
22

∈ C
𝑘×𝑘

. (93)

If Problem 5 has Hermitian generalized Hamiltonian solutions,
then Problem 6 has a unique solution 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 if and
only if

𝐿
𝐴
 (

𝑋
12

+ (𝑋
21

)
∗

2
− 𝑋

0
) 𝑅

𝐶
 =

𝑋
12

+ (𝑋
21

)
∗

2
− 𝑋

0
,

(94)

in which case the unique solution 𝑋 can be expressed as

𝑋 = 𝑃 (
0 𝑋

0

(𝑋
0
)
∗

0
) 𝑃

∗
, (95)
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where

𝑋
0

=

𝑋
12

+ (𝑋
21

)
∗

2
,

𝑋
0

= (𝐴

)
†

𝐵

+ 𝐷


(𝐶


)
†

− (𝐴

)
†

𝐴

𝐷

(𝐶


)
†

.

(96)

Proof. When the Hermitian generalized Hamiltonian solu-
tion set𝐾 of Problem 5 is nonempty, it is not difficult to verify
that 𝐾 is a closed convex set. Then by [33], Problem 6 has a
unique solution 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘. From Theorem 20, for any
𝑋 ∈ 𝐾, 𝑋 can be expressed as

𝑋 = 𝑃 (
0 𝑋

0

𝑋
∗

0
0

) 𝑃
∗

+ 𝑃 (
0 𝐿

𝐴
𝑊𝑅

𝐶


𝑅
𝐶
𝑊

∗
𝐿
𝐴
 0

) 𝑃
∗
,

(97)

where

𝑋
0

= (𝐴

)
†

𝐵

+ 𝐷


(𝐶


)
†

− (𝐴

)
†

𝐴

𝐷

(𝐶


)
† (98)

and 𝑊 ∈ C𝑘×𝑘 is arbitrary.Then it follows from the equalities
in (93) and (97) and the unitary invariance of the Frobenius
norm that


𝑋 − 𝑋



2

=

𝑃
∗
𝑋𝑃 − 𝑃

∗
𝑋𝑃



2

=



(
𝑋
11

𝑋
12

− 𝑋
0

− 𝐿
𝐴
𝑊𝑅

𝐶


𝑋
21

− 𝑋
∗

0
− 𝑅

𝐶
𝑊

∗
𝐿
𝐴
 𝑋

22

)



2

=

𝑋
11



2

+

𝑋
22



2

+

𝑋
12

− 𝑋
0

− 𝐿
𝐴
𝑊𝑅

𝐶




2

+

𝑋
21

− 𝑋
∗

0
− 𝑅

𝐶
𝑊

∗
𝐿
𝐴




2

=

𝑋
11



2

+

𝑋
22



2

+

𝐿
𝐴
𝑊𝑅

𝐶
 − (−𝑋

0
+ 𝑋

12
)


2

+

𝐿
𝐴
𝑊𝑅

𝐶
 − (−𝑋

0
+ 𝑋

∗

21
)


2

.

(99)

Thus, Problem 6 has a unique solution 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 if and
only if there exists 𝑊 such that


𝐿
𝐴
𝑊𝑅

𝐶
 − (−𝑋

0
+ 𝑋

12
)


2

+

𝐿
𝐴
𝑊𝑅

𝐶
 − (−𝑋

0
+ (𝑋

21
)
∗

)


2
(100)

reaches its minimum. Therefore, by Lemma 19, (100) arrives
at its minimum if and only if there exists 𝑊 such that the
matrix equation

𝐿
𝐴
𝑊𝑅

𝐶
 =

−𝑋
0

+ 𝑋
12

− 𝑋
0

+ (𝑋
21

)
∗

2

=

𝑋
12

+ (𝑋
21

)
∗

2
− 𝑋

0

(101)

holds, which, by Lemma 18, has a solution if and only if (94)
holds, in which case the solution can be expressed as

𝑊 = 𝐿
𝐴
 (

𝑋
12

+ (𝑋
21

)
∗

2
− 𝑋

0
) 𝑅

𝐶
 + 𝑍 − 𝐿

𝐴
𝑍𝑅

𝐶
 ,

(102)

where 𝑍 ∈ C𝑘×𝑘 is arbitrary. Inserting (102) into (97), and
then combining (94) yields (95).

Analogously, the following theorem can be shown.

Theorem 26. Given 𝑋 ∈ C2𝑘×2𝑘, under the hypotheses of
Theorem 22, let

𝑃
∗
𝑋𝑃 = (

𝑋
11

𝑋
12

𝑋
21

𝑋
22

) , 𝑋
11

∈ C
𝑘×𝑘

, 𝑋
22

∈ C
𝑘×𝑘

. (103)

If Problem 5 has anti-Hermitian generalized anti-Hamiltonian
solutions, then Problem 6 has a unique solution 𝑋 ∈

𝐴𝐻𝐴𝐻C2𝑘×2𝑘 if and only if

𝐿
𝐴

(

𝑋
12

− (𝑋
21

)
∗

2
− 𝑋

0
) 𝑅

�̃�
=

𝑋
12

− (𝑋
21

)
∗

2
− 𝑋

0
,

(104)

in which case the unique solution 𝑋 can be expressed as

𝑋 = 𝑃 (
0 𝑋

0

−(𝑋
0
)
∗

0
) 𝑃

∗
, (105)

where

𝑋
0

=

𝑋
12

− (𝑋
21

)
∗

2
,

𝑋
0

= (𝐴)
†

𝐵 + 𝐷(𝐶)
†

− (𝐴)
†

𝐴𝐷(𝐶)
†

.

(106)

Now, we give the unique Hermitian generalized anti-
Hamiltonian solution to Problem 6.

Theorem 27. Given 𝑋 ∈ C2𝑘×2𝑘, under the hypotheses of
Theorem 23, let

𝑃
∗𝑋 + 𝑋

∗

2
𝑃 = (

𝑋


11
𝑋


12

(𝑋


12
)
∗

𝑋


22

) ,

𝑋


11
∈ 𝐻C

𝑘×𝑘
, 𝑋



22
∈ 𝐻C

𝑘×𝑘
;

(107)

𝑉
∗
𝑋


11
𝑉 = (

𝑋
∘

11
𝑋
∘

12

(𝑋
∘

12
)
∗

𝑋
∘

22

) ,

𝑋
∘

11
∈ 𝐻C

𝑟×𝑟
, 𝑋

∘

22
∈ 𝐻C

(𝑘−𝑟)×(𝑘−𝑟)
;

(108)

𝑅
∗
𝑋


22
𝑅 = (

𝑋


11
𝑋


12

(𝑋


12
)
∗

𝑋


22

) ,

𝑋


11
∈ 𝐻C

𝑠×𝑠
, 𝑋



22
∈ 𝐻C

(𝑘−𝑠)×(𝑘−𝑠)
.

(109)
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If Problem 5 hasHermitian generalized anti-Hamiltonian solu-
tions, then the unique solution 𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 to Problem 6
can be expressed as

𝑋 = 𝑃 (
𝑋
∘

11
0

0 𝑋
∘

22

) 𝑃
∗
, (110)

where

𝑋
∘

11
= 𝑉 (

Σ
−1

𝐵
11

Σ
−1

𝐵
12

(𝐵
12

)
∗

Σ
−1

𝑋
∘

22

) 𝑉
∗
, (111)

𝑋
∘

22
= 𝑅 (

Π
−1

𝐷
11

Π
−1

𝐷
12

(𝐷
12

)
∗

Π
−1

𝑋


22

) 𝑅
∗
. (112)

Proof. When the Hermitian generalized anti-Hamiltonian
solution set 𝐾 of Problem 5 is nonempty, it is easy to prove
that 𝐾 is a closed convex set. Then, Problem 6 has a unique
solution 𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 by the aid of [33]. For any 𝑋 ∈ 𝐾,
due to Theorem 23, 𝑋 can be expressed as

𝑋 = 𝑃 (
𝑋
11

0

0 𝑋
22

) 𝑃
∗
, (113)

where 𝑋
11

and 𝑋
22

have the expressions as in (81) and (82).
Combining the equalities in (80)–(82) and (107) and the
unitary invariance of the Frobenius norm yields that


𝑋 − 𝑋



2

=



𝑋 −
𝑋 + 𝑋

∗

2



2

+



𝑋 − 𝑋
∗

2



2

=



𝑃 (
𝑋
11

0

0 𝑋
22

) 𝑃
∗

−
𝑋 + 𝑋

∗

2



2

+



𝑋 − 𝑋
∗

2



2

=



(
𝑋
11

0

0 𝑋
22

) − (
𝑋


11
𝑋


12

(𝑋


12
)
∗

𝑋


22

)



2

+



𝑋 − 𝑋
∗

2



2

=

𝑋
11

− 𝑋


11



2

+

𝑋
22

− 𝑋


22



2

+ 2

𝑋


12



2

+



𝑋 − 𝑋
∗

2



2

.

(114)

So,

min
𝑋∈∈𝐻𝐴𝐻C2𝑘×2𝑘


𝑋 − 𝑋



2

holds

⇐⇒ min
𝑋
11
∈𝐻C𝑘×𝑘


𝑋
11

−𝑋


11



2

holds

and min
𝑋
22
∈𝐻C𝑘×𝑘


𝑋
22

−𝑋


22



2

holds.

(115)

By (81), (108), and the unitary invariance of the Frobenius
norm, we obtain


𝑋
11

− 𝑋


11



2

=



(
Σ
−1

𝐵
11

Σ
−1

𝐵
12

(𝐵
12

)
∗

Σ
−1

𝑋
22

) − (
𝑋
∘

11
𝑋
∘

12

(𝑋
∘

12
)
∗

𝑋
∘

22

)



2

=

Σ
−1

𝐵
11

− 𝑋
∘

11



2

+

𝑋
22

− 𝑋
∘

22



2

+ 2

Σ
−1

𝐵
12

− 𝑋
∘

12



2

.

(116)

Then

min
𝑋
11
∈𝐻C𝑘×𝑘


𝑋
11

−𝑋


11



2

ℎ𝑜𝑙𝑑𝑠

⇐⇒ min
𝑋
22
∈𝐻C(𝑘−𝑟)×(𝑘−𝑟)


𝑋
22

−𝑋
∘

22



2

ℎ𝑜𝑙𝑑𝑠.

(117)

Therefore, when 𝑋
22
can be expressed as

𝑋
22

= 𝑋
∘

22
, (118)

min
𝑋
11
∈𝐻C𝑘×𝑘‖𝑋

11
− 𝑋



11
‖
2 holds. Then combining (81) yields

(111). Similarly, we can derive the expression in (112) by (82)
and (109).Thus, (110) is the unique solution to Problem 6.

By the method used in Theorem 27, the following theo-
rem can also be shown.

Theorem 28. Given 𝑋 ∈ C2𝑘×2𝑘, under the hypotheses of
Theorem 24, let

𝑃
∗𝑋 − 𝑋

∗

2
𝑃 = (

𝑋


11
𝑋


12

−(𝑋


12
)
∗

𝑋


22

) ,

𝑋


11
∈ 𝐴𝐻C

𝑘×𝑘
, 𝑋



22
∈ 𝐴𝐻C

𝑘×𝑘
;

𝑉
∗
𝑋


11
𝑉 = (

𝑋
∘

11
𝑋
∘

12

−(𝑋
∘

12
)
∗

𝑋
∘

22

) ,

𝑋
∘

11
∈ 𝐴𝐻C

𝑟×𝑟
, 𝑋

∘

22
∈ 𝐴𝐻C

(𝑘−𝑟)×(𝑘−𝑟)
;

𝑅
∗
𝑋


22
𝑅 = (

𝑋


11
𝑋


12

−(𝑋


12
)
∗

𝑋


22

) ,

𝑋


11
∈ 𝐴𝐻C

𝑠×𝑠
, 𝑋



22
∈ 𝐴𝐻C

(𝑘−𝑠)×(𝑘−𝑠)
.

(119)

If Problem 5 has anti-Hermitian generalized Hamiltonian
solutions, then the unique solution 𝑋 ∈ 𝐴𝐻𝐻C2𝑘×2𝑘 to
Problem 6 can be expressed as

𝑋 = 𝑃 (
𝑋
∘

11
0

0 𝑋
∘

22

) 𝑃
∗
, (120)

where

𝑋
∘

11
= 𝑉 (

Σ
−1

𝐵
11

Σ
−1

𝐵
12

−𝐵
∗

12
Σ
−1

𝑋
∘

22

) 𝑉
∗
,

𝑋
∘

22
= 𝑅 (

Π
−1

𝐷
11

Π
−1

𝐷
12

−𝐷
∗

12
Π
−1

𝑋


22

) 𝑅
∗
.

(121)
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5. The Expression of the Solution to Problem 7

If the solvability conditions of linear matrix equations are not
satisfied, the least squares solution is usually considered. So,
in this section, the solution to Problem 7 is constructed.

Theorem 29. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞,
let the decomposition of 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 be (7).
𝐴𝑃, 𝐵𝑃, 𝑃

∗
𝐶, 𝑃

∗
𝐷, 𝐶

, and𝐷
, respectively, have the partitions

as in (49)–(52) and (54). Denote

𝐴


= (𝐴
∗

1
𝐶
1) , 𝐵


= (𝐵

∗

2
𝐷
2) . (122)

Let the singular value decompositions of 𝐴
 and 𝐶

 be as
given in (28). Then the least squares Hermitian generalized
Hamiltonian solution to Problem 7 can be described as (7),
where 𝑋

12
has the expression as in (31).

Proof. Combining (7), (49)–(52), (54), (122), and the unitary
invariance of the Frobenius norm yields that

‖𝐴𝑋 − 𝐵‖
2

+ ‖𝑋𝐶 − 𝐷‖
2

=

(𝐴


)
∗

𝑋
12

− (𝐵

)
∗

2

+

𝑋
12

𝐶

− 𝐷



2

.

(123)

Therefore, by Lemma 15, if 𝑋
12

has the expression as in
(31), then (123) reaches its minimum. Then, substituting (31)
into (7), we obtain the least squares Hermitian generalized
Hamiltonian solution to Problem 7.

Corollary 30. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, under
the conditions of Theorem 29, the least squares Hermitian
generalized Hamiltonian solution with minimum norm to
Problem 7 can be described as (7), where𝑋

12
has the expression

as in (31) with 𝑋


22
= 0.

By the same way, we can also derive the least squares anti-
Hermitian generalized anti-Hamiltonian solution to Problem
7.

Theorem 31. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, let the
decomposition of 𝑋 ∈ 𝐴𝐻𝐴𝐻C2𝑘×2𝑘 be (8). 𝐴𝑃, 𝐵𝑃, 𝑃

∗
𝐶, and

𝑃
∗
𝐷, respectively, have the partitions as in (49)–(52). Denote

𝐴


= (𝐴
∗

1
𝐶
1) , 𝐵


= (𝐵

∗

2
−𝐷

2) ,

𝐶


= (𝐴
∗

2
𝐶
2) , 𝐷


= (−𝐵

∗

1
𝐷
1) .

(124)

Let the singular value decompositions of 𝐴
 and 𝐶

 be as in
(28). Then the least squares anti-Hermitian generalized anti-
Hamiltonian solution to Problem 7 can be described as (8),
where 𝑋

12
has the expression as in (31).

Corollary 32. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, under
the conditions of Theorem 31, the least squares anti-Hermitian
generalized anti-Hamiltonian solution with minimum norm to
Problem 7 can be described as (8), where𝑋

12
has the expression

as in (31) with 𝑋


22
= 0.

At present, we give the least squares Hermitian general-
ized anti-Hamiltonian solution to Problem 7.

Theorem 33. Assume 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞. Let the
decomposition of 𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 be (9). 𝐴𝑃, 𝐵𝑃, 𝑃

∗
𝐶, 𝑃

∗
𝐷,

𝐴, 𝐵, 𝐶, and 𝐷, respectively, have the partitions as in (49)–
(52), (68), and (69). Let the singular value decompositions
of 𝐴 and 𝐶 be, respectively, (70) and (71), 𝑉𝑋

11
𝑉
∗
, 𝑈

∗
𝐵𝑉,

𝑅𝑋
22

𝑅
∗
, and 𝑄

∗
𝐷𝑅 have the partitions as in (73)–(76). Then

the least squares Hermitian generalized anti-Hamiltonian
solution to Problem 7 can be expressed as (9) with

𝑋
11

= 𝑉 (
Φ
1

∗ (Σ𝐵
11

+ 𝐵
∗

11
Σ) Σ

−1
𝐵
12

𝐵
∗

12
Σ
−1

𝑋
22

) 𝑉
∗
, (125)

𝑋
22

= 𝑅 (
Φ
2

∗ (Π𝐷
11

+ 𝐷
∗

11
Π) Π

−1
𝐷
12

𝐷
∗

12
Π
−1

𝑋
22

) 𝑅
∗
, (126)

where

Φ
1

= (
1

𝛼
2

𝑖
+ 𝛼

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑟;

Φ
2

= (
1

𝛽
2

𝑖
+ 𝛽

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑠,

(127)

and 𝑋
22

∈ 𝐻C(𝑘−𝑟)×(𝑘−𝑟), 𝑋
22

∈ 𝐻C(𝑘−𝑠)×(𝑘−𝑠) are arbitrary.

Proof. It follows from (9), (49)–(52), (68), (69), and the
unitary invariance of the Frobenius norm that

‖𝐴𝑋 − 𝐵‖
2

+ ‖𝑋𝐶 − 𝐷‖
2

=

𝐴𝑋

11
− 𝐵



2

+

𝐶𝑋

22
− 𝐷



2

.

(128)

Then

‖𝐴𝑋 − 𝐵‖
2

+ ‖𝑋𝐶 − 𝐷‖
2 (129)

gains its minimum value if and only if

min =

𝐴𝑋

11
− 𝐵



2

ℎ𝑜𝑙𝑑𝑠, (130)

min =

𝐶𝑋

22
− 𝐷



2

ℎ𝑜𝑙𝑑𝑠. (131)

So, by (68), (70), (73), and (74) and then combining
Lemma 16, we get that if 𝑋

11
has the expression as in (125),

then (130) holds. Similarly, if 𝑋
22

has the expression as in
(126), then (131) holds. Thus, the least squares Hermitian
generalized anti-Hamiltonian solution to Problem 7 can be
expressed as (9), where 𝑋

11
and 𝑋

22
have the expressions as

in (125) and (126).

Corollary 34. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, under
the conditions of Theorem 33, the least squares Hermitian
generalized anti-Hamiltonian solution with minimum norm to
Problem 7 can be expressed as (9)with 𝑋

11
and 𝑋

22
having the

expressions as in (125) and (126), where 𝑋
22

= 0, 𝑋
22

= 0.

At last, on the basis of Lemma 17, we can obtain the least
squares anti-Hermitian generalized Hamiltonian solution to
Problem 7, the proof of which is analogous to the proof of
Theorem 33.
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Theorem 35. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, let
the decomposition of 𝑋 ∈ 𝐴𝐻𝐻C2𝑘×2𝑘 be (10). 𝐴𝑃, 𝐵𝑃,

𝑃
∗
𝐶, 𝑃

∗
𝐷, 𝐴, 𝐵, 𝐶, and 𝐷, respectively, have the partitions as

in (49)–(52), (85). Assume that the singular value decom-
positions of 𝐴 and 𝐶 are, respectively, expressed as in (86)
and 𝑉𝑋

11
𝑉
∗
, 𝑈

∗
𝐵𝑉, 𝑅𝑋

22
𝑅
∗
, 𝑄

∗
𝐷𝑅 have the partitions as

in (88). Then the least squares anti-Hermitian generalized
Hamiltonian solution to Problem 7 can be expressed as (10)
with

𝑋
11

= 𝑉 (
Ψ
1

∗ (Σ𝐵
11

− 𝐵
∗

11
Σ) Σ

−1
𝐵
12

−𝐵
∗

12
Σ
−1

𝑋
22

) 𝑉
∗
,

𝑋
22

= 𝑅 (
Ψ
2

∗ (Π𝐷
11

− 𝐷
∗

11
Π) Π

−1
𝐷
12

−𝐷
∗

12
Π
−1

𝑋
22

) 𝑅
∗
,

(132)

where

Ψ
1

= (
1

𝛼
2

𝑖
+ 𝛼

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑟;

Ψ
2

= (
1

𝛽
2

𝑖
+ 𝛽

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑠,

(133)

and 𝑋
22

∈ 𝐴𝐻C(𝑘−𝑟)×(𝑘−𝑟), 𝑋
22

∈ 𝐴𝐻C(𝑘−𝑠)×(𝑘−𝑠) are
arbitrary.

Corollary 36. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, under
the conditions of Theorem 35, the least squares anti-Hermitian
generalized Hamiltonian solution with minimum norm to
Problem 7 can be expressed as (10) with 𝑋

11
and 𝑋

22
having

the expressions as in (132), where 𝑋
22

= 0, 𝑋
22

= 0.

6. Algorithms and Numerical Examples

In this section, algorithms are given to compute the solution
to Problem 7, and meanwhile some numerical examples are
presented to show that the algorithms provided are feasible.
Note that all the tests are performed by MATLAB 7.6.

An algorithm is firstly presented to compute the least
squaresHermitian generalizedHamiltonian solution to Prob-
lem 7.

Algorithm 37. Step 1. Input 𝐴, 𝐵, 𝐶, 𝐷, 𝐽.

Step 2.Compute the eigenvalue decomposition of 𝐽 according
to (6).

Step 3. Compute 𝐴𝑃, 𝐵𝑃, 𝑃
∗
𝐶, 𝑃

∗
𝐷 according to (49)–(52).

Step 4. Compute 𝐴

, 𝐵

, 𝐶

, 𝐷

 according to (53) and (54).
If the conditions in (55) hold, then compute the Hermitian
generalized Hamiltonian solution to Problem 5 according to
(56) and (57). Otherwise, turn to Step 5.

Step 5. Compute 𝐴

, 𝐵

, 𝐶

, 𝐷

 according to (53) and (122).

Step 6.Compute the singular value decompositions of𝐴
 and

𝐶
 according to (28).

Step 7. Compute 𝑋
12
according to (31).

Step 8. Compute 𝑋 according to (7), and output 𝑋.

Example 38. Given

𝐴 = (
3 + 6𝑖 2 + 𝑖 7 − 2𝑖 8 + 3𝑖

2 − 3𝑖 5 − 4𝑖 1 + 4𝑖 9 + 3𝑖
) ,

𝐵 = (
2 − 4𝑖 3 + 2𝑖 5 + 𝑖 4 + 𝑖

6 + 𝑖 2 − 5𝑖 1 + 6𝑖 5 + 3𝑖
) ,

𝐶 = (

4 + 7𝑖 10 + 3𝑖 7 + 𝑖

8 + 7𝑖 3 + 9𝑖 1 − 6𝑖

2 − 5𝑖 5 + 6𝑖 2 + 7𝑖

2 3𝑖 3 + 7𝑖

) ,

𝐷 = (

7 + 3𝑖 5 2𝑖

5 + 2𝑖 2 − 3𝑖 6 − 𝑖

3 + 𝑖 9 − 𝑖 4

4 − 2𝑖 5 + 2𝑖 1 + 4𝑖

) ,

𝐽 = (

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

) ,

(134)

it can be easily verified that the conditions in (55) are not
satisfied. Then, according to Algorithm 37, the least squares
Hermitian generalized Hamiltonian solution 𝑋 to Problem 7
can be expressed as

𝑋 = (

0.0865 − 𝑖 0.0141 − 0.0359𝑖 0.0317 − 0.0312𝑖 0.1174 + 0.0824𝑖

0.0141 + 0.0359𝑖 −0.0148 −0.0201 − 0.0682𝑖 0.1189 + 0.0954𝑖

0.0317 + 0.0302𝑖 −0.0201 + 0.0682𝑖 −0.0724 0.1114 + 0.0359𝑖

0.1173 − 0.0824𝑖 0.1189 − 0.0954𝑖 0.1114 − 0.0359𝑖 0.0006

) ,

min
𝑋∈𝐻𝐻C2𝑘×2𝑘

𝑋 − 𝑋
∗ = 0.0000,

min
𝑋∈𝐻𝐻C2𝑘×2𝑘

𝑋
∗

− 𝐽𝑋𝐽
 = 0.6000.

(135)
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Remark 39. (1) There exists a unique least squares Hermitian
generalized Hamiltonian solution to Problem 7 if and only
if both 𝐴

 and 𝐶
 in Theorem 29 have full row ranks.

Example 38 just illustrates it.
(2) Similarly, the algorithm about computing the least

squares anti-Hermitian generalized anti-Hamiltonian solu-
tion to Problem 7 can be shown. We omit it here.

Now, we provide another algorithm to compute the least
squares Hermitian generalized anti-Hamiltonian solution to
Problem 7.

Algorithm 40. Step 1. Input 𝐴, 𝐵, 𝐶, 𝐷, 𝐽.

Step 2. Compute the eigenvalue decomposition of 𝐽 according
to (6).

Step 3. Compute 𝐴𝑃, 𝐵𝑃, 𝑃
∗
𝐶, 𝑃

∗
𝐷 according to (49)–(52).

Step 4. Compute 𝐴, 𝐵, 𝐶, 𝐷 according to (68) and (69).

Step 5. Compute the singular value decompositions of 𝐴 and
𝐶 according to (70)-(71).

Step 6. Compute the partitions of 𝑈
∗
𝐵𝑉, 𝑄

∗
𝐷𝑅 according to

(74) and (76). If the conditions in (78) and (79) are all satisfied,
then compute the Hermitian generalized anti-Hamiltonian
solution to Problem5 according to (80)–(82).Otherwise, turn
to Step 7.

Step 7. Compute 𝑋
11
and 𝑋

22
according to (125) and (126).

Step 8. Compute 𝑋 according to (9), and output 𝑋.

Example 41. Let 𝐴, 𝐵, 𝐶, 𝐷, 𝐽 be as given in Example 38.
It is not difficult to prove that the conditions in (78) and

(79) do not hold. So, according to Algorithm 40, the least
squares Hermitian generalized anti-Hamiltonian solution to
Problem 7 can be written as

𝑋 = (

0.3671 0.1579 − 0.1804𝑖 0.1822 + 0.1400𝑖 0.0179 − 0.0012𝑖

0.1579 + 0.1804𝑖 0.2324 0.0179 + 0.1149𝑖 −0.0662 − 0.1400𝑖

0.1822 − 0.1400𝑖 0.0179 − 0.1149𝑖 0.2143 0.1221 − 0.0849𝑖

0.0179 + 0.0012𝑖 −0.0662 + 0.1400𝑖 0.1221 + 0.0849𝑖 0.5764

) ,

min
𝑋∈𝐻𝐴𝐻C2𝑘×2𝑘

𝑋 − 𝑋
∗ = 0.0000,

min
𝑋∈𝐻𝐴𝐻C2𝑘×2𝑘

𝑋
∗

+ 𝐽𝑋𝐽
 = 0.8309.

(136)

Remark 42. (1)There exists a unique least squares Hermitian
generalized anti-Hamiltonian solution to Problem 7 if and
only if both 𝐴 and 𝐶 in Theorem 33 have full column ranks.
Example 41 is just the case.

(2) Similarly, the algorithm about computing the least
squares anti-Hermitian generalized Hamiltonian solution to
Problem 7 can be obtained. We also omit it here.

7. Conclusions

In the previous sections, using the decomposition of the
(anti-)Hermitian generalized (anti-)Hamiltonian matrices,
the necessary and sufficient conditions for the existence of
and the expression for the solution to Problem 5 have been
firstly derived, respectively. Then the solutions to Problems 6
and 7 have been individually given. Finally, algorithms have
been given to compute the least squares Hermitian general-
ized Hamiltonian solution and the least squares Hermitian
generalized anti-Hamiltonian solution to Problem 7, and the
corresponding examples have also been presented to show
that the algorithms are reasonable.
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