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This paper deals with the problem of guaranteed cost control for a class of nonlinear networked control systems (NCSs) with
time-varying delay. A guaranteed cost controller design method is proposed to achieve the desired control performance based on
the switched T-S fuzzy model. The switching mechanism is introduced to handle the uncertainties of NCSs. Based on Lyapunov
functional approach, some sufficient conditions for the existence of state feedback robust guaranteed cost controller are presented.
Simulation results show that the proposedmethod is effective to guarantee system’s global asymptotic stability and quality of service
(QoS).

1. Introduction

As network technology advanced in the last decade, net-
worked control system (NCS) has increasingly become a
research focus. Considerable attention on the modeling and
controller design of NCSs has been paid in [1–5]. There are
many advantages to NCSs, such as reduced system wiring,
facilitated system maintenance, and increased systems flex-
ibility.

However, due to the insertion of communication chan-
nels, this bringsmany challenging problems such as network-
induced delay and data packet dropout. Regardless of the
type of network used, these special issues degrade the system
dynamic performance and are a source of potential instability.
There are a number of design methods that have been
proposed to deal with these problems. One of the most
general methods is to model the NCS as a system with time-
varying delays. So the stability of an NCS is equivalent to the
stability of a system with time-varying delays [2]. Moreover,
the sampling behavior has also an important impact on
the design of the NCS controller because the states of the
feedback controller are not continuous as a result of the
existence of zeroth-order hold (ZOH). In [1], a model of
NCS was provided considering network-induced delay and

packet dropout in the transmission. In [3], an observer-based
stabilizing controller was designed for the NCSs involving
both random measurement and actuation delays. Robust
controllers for uncertain NCSs were also obtained in [4, 5].
However, how to analyze the stability of nonlinear NCSs has
increasingly become a challenging topic. Some results about
the stability of nonlinear NCSs were obtained in [6, 7]. In
[8], a stochastic optimal controller design for nonlinear NCSs
with uncertain dynamics via neurodynamic programming
was proposed. The closed-loop stability of the nonlinear
NCSs was demonstrated by selecting neural network (NN)
update laws. However, these methods often require some
strict assumptions for a system model, so it is difficult for
practical applications.

In the last few years, the fuzzy control is a useful approach
to solve the control problems of nonlinear systems. The
Takagi-Sugeno (T-S) fuzzy system proposed in [9] is widely
applied to industrial control fields because of its simple
structure with local dynamics. In the T-S fuzzy model, local
dynamics in different state-space regions are represented by
many linear models so that linear system theory can conve-
niently be employed to analyze the stability of overall closed-
loop system and to design the feedback controller.The typical
design approaches are carried out based on fuzzy model
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via the so-called parallel distributed compensation (PDC)
method [10]. Considering the time-delay characteristic of
nonlinear systems, many results about the T-S fuzzy model
with a time-delay term are obtained to deal with stability and
stabilization problems of nonlinear systems with time delays
[2, 11–13]. The guaranteed cost control for a T-S fuzzy system
with time delays was presented in [2, 11, 12]. In [13], robust
control problem was studied for a class of large-scale NCSs,
and the decentralized design was presented using T-S fuzzy
approach.

Nevertheless, an inherent drawback remains since the
number of fuzzy rules of a T-S model increases exponentially
with the number of nonlinearities constituting the matched
nonlinear system [14].Thismakes fuzzy controller design and
implementation difficult as the complexity of the nonlinear
system to be controlled increases [15]. To outline the problem
of rules explosion in fuzzy T-S modeling, some authors have
proposed to combine the merit of switched systems with T-S
ones to deal with nonlinear control problems [16–18]. To do
so, partitioning the state space of a nonlinear system allows
defining a switched nonlinear system. Then, inside each
partition, a T-S model can be obtained. As stated in [18], the
resulting switched T-S system inherits some essential features
of hybrid systems and maintains all the information and
knowledge representation capacity of fuzzy systems. How-
ever, few papers have studied stabilization issues of switched
fuzzy systems based on switching Lyapunov functions [16] or
quadratic approaches [17]. In [19], based on barrier Lyapunov
functions (BLFs), a new control design for constrained non-
linear switched systems was investigated to achieve output
tracking. By ensuring the boundedness of the BLFs in the
closed loop, the proposed approaches can guarantee that all
states in the switched systems do not violate the desired
constraints and that all closed-loop signals are bounded. For
many nonlinear systems, some of the premise variables of the
corresponding T-S fuzzy models are measurable when they
aremodeled as T-S fuzzymodels, while the partswith unmea-
surable premise variables can be modeled as uncertainties.
Thus, the overall systems can be described by T-S fuzzy parts
with measurable premise variables and uncertainty parts. In
[20], a switching stabilizing controller is designed for a non-
linear system with unknown parameters or unmeasurable
premise variables. However, the uncertainties cannot be well
handled. In [21], a switching fuzzy dynamic output feedback
control scheme is proposed, where the switching mechanism
is introduced to handle the unknown parameters.

In designing a controller for a real plant, it is invariably
necessary to design a control system which not only is stable
but also possesses a strong robust performance. One way
to deal with this is the so-called guaranteed cost control
approach [2].This addresses the robust performance problem
andhas the advantage of providing anupper boundon a given
performance index guaranteeing that system performance
degradation incurred by uncertainty is less than this bound.
For the NCSs, the quality of service (QoS) is one of the most
important performance indexes.Therefore, it is vital to design
a guaranteed cost controller such that the NCSs are stable as
well as satisfactory with the required QoS.
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Figure 1: A general NCS.

In this paper, we aim at the problem of guaranteed
cost control for a class of uncertain nonlinear NCSs with
time delays. Considering the QoS of NCSs, we propose a
guaranteed cost control scheme to achieve the desired control
performance based on switched T-S fuzzy control method,
where the switching mechanism is introduced to handle
the uncertainties. Moreover, the sufficient condition for the
existence of the robust guaranteed cost controller and the
design method of the corresponding switching control law
are obtained via Lyapunov functions. Comparing with [2,
11, 12], the proposed switching fuzzy approach inherits some
essential features of hybrid systems to deal with the uncertain
nonlinear NCSs and avoids the inherent drawback of rules
explosion in modeling a fuzzy T-S model. In addition, we
consider the stabilization problem of the switched fuzzy T-S
system with time delays in NCSs.

The innovations of this paper are as follows: (1) the
guaranteed cost controller is proposed for nonlinear NCSs
with time-varying delay to achieve the desired control
performance based on the switched T-S fuzzy model with
uncertain parameters, and (2) the sufficient condition for the
robust guaranteed cost control law is presented to uncertain
nonlinear NCSs.

The paper is organized as follows. The basic problem for-
mulation of the nonlinear networked control system is given
in Section 2.The switching fuzzy controller via state feedback
is analyzed in Section 3. In Section 4, the sufficient stability
conditions and guaranteed cost control law are discussed
by Lyapunov functions. Section 5 provides simulation results
to demonstrate the effectiveness of the proposed method.
Finally, concluding remarks are given in Section 6.

2. Problem Formulation

A general NCS configuration is illustrated in Figure 1, which
is composed of a controller and a remote system containing
a physical plant, sensors, and actuators. The controller and
the plant are physically located at different locations and are
directly linked by a data network in order to perform remote
closed-loop control.

In Figure 1, the nonlinear networked control system can
be described as follows:

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) ,

𝑦 (𝑡) = 𝑔 (𝑥 (𝑡) , 𝑢 (𝑡)) ,

(1)
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where 𝑥(𝑡) ∈ 𝑅𝑛 is the state variation, 𝑢(𝑡) ∈ 𝑅𝑚 is the control
input, 𝑦(𝑡) ∈ 𝑅

𝑠 is the regulated output, 𝑓(𝑥, 𝑢) and 𝑔(𝑥, 𝑢)
are the nonlinear functions. Currently, it has been proved
that the T-S fuzzy models are universal approximations of
many nonlinear dynamic systems. So we introduce a T-S
fuzzy system to model a class of nonlinear NCSs. Without
considering the disturbance input, we use the following T-S
fuzzy model to approximate 𝑓(𝑥(𝑡), 𝑢(𝑡)) and 𝑔(𝑥(𝑡), 𝑢(𝑡)):

𝑅

𝑖
: IF 𝜃

1
(𝑡) is 𝑁

𝑖1
, . . . , and 𝜃

𝑔
(𝑡) is 𝑁

𝑖𝑔
,

THEN{

𝑥̇ (𝑡) = 𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶

𝑖
𝑥 (𝑡) ,

(2)

where 𝑖 = 1, 2, . . . , 𝑟 is the index number of fuzzy rules,
𝜃

1
(𝑡), 𝜃

2
(𝑡), . . . , 𝜃

𝑔
(𝑡) are the known premise variables, 𝑁

𝑖𝑘
is

the fuzzy sets (𝑘 = 1, 2, . . . , 𝑔), 𝑥(𝑡) ∈ 𝑅

𝑛 is the state vector,
𝑦(𝑡) ∈ 𝑅

𝑠 is the output vector, 𝑢(𝑡) ∈ 𝑅𝑚 is the control input,
𝐴

𝑖
∈ 𝑅

𝑛×𝑛 is known system matrices, 𝐵
𝑖
∈ 𝑅

𝑛×𝑚 is the input
matrix, and 𝐶

𝑖
∈ 𝑅

𝑛×𝑠 is the output matrix.
Before designing the controller, we make the following

reasonable assumptions.

Assumption 1. The sensor is clock-driven. The controller
and actuator are event-driven. The clocks among them are
synchronized.

Assumption 2. Time-varying network-induced delay is less
than one sampling period.

Assumption 3. The computational delay is negligible.

Assumption 4. The signal is single-packet transmission with-
out packet drop.

Assuming the node sampling period is𝑇, sowe can obtain
the discrete T-S fuzzy model of nonlinear networked control
systems with time-varying delay:

𝑅

𝑖
: IF 𝜃

1
(𝑘) is 𝑁

𝑖1
, . . . , and 𝜃

𝑔
(𝑘) is 𝑁

𝑖𝑔
,

THEN
{

{

{

{

{

{

{

{

{

𝑥 (𝑘 + 1)

= Φ

𝑖
𝑥 (𝑘) + Γ

𝑖0
(𝜏

𝑘
) 𝑢 (𝑘)

+Γ

𝑖1
(𝜏

𝑘
) 𝑢 (𝑘 − 1) ,

𝑦 (𝑘) = 𝐶

𝑖
𝑥 (𝑘) ,

(3)

where Φ

𝑖
= 𝑒

𝐴𝑖𝑇, Γ
𝑖0
(𝜏

𝑘
) = ∫

𝑇−𝜏𝑘

0

𝑒

𝐴𝑖𝑇

𝑑𝑡 ⋅ 𝐵

𝑖
, Γ
𝑖1
(𝜏

𝑘
) =

∫

𝑇

𝑇−𝜏𝑘

𝑒

𝐴𝑖𝑇

𝑑𝑡 ⋅ 𝐵

𝑖
, and 𝜏

𝑘
is the network-induced delay, 𝑖 =

0, 1, 2, . . . , 𝑟.
Furthermore, (3) can be transformed into the following

form with uncertain parameters:

𝑥 (𝑘 + 1) = Φ

𝑖
𝑥 (𝑘) + (Γ

𝑖0
+ 𝐷

𝑖
𝐹

𝑖
(𝜏

𝑘
) 𝐸

𝑖
) 𝑢 (𝑘)

+ (Γ

𝑖1
− 𝐷

𝑖
𝐹

𝑖
(𝜏

𝑘
) 𝐸

𝑖
) 𝑢 (𝑘 − 1) ,

𝑦 (𝑘) = 𝐶

𝑖
𝑥 (𝑘) ,

(4)

where 𝐷

𝑖
, 𝐸
𝑖
are known constant matrices of appropriate

dimensions and 𝐹
𝑖
is an unknown matrix function satisfying

𝐹

𝑇

𝐹 ≤ 𝐼,

Γ

𝑖0
(𝜏

𝑘
) = Γ

𝑖0
+ 𝐷

𝑖
𝐹

𝑖
(𝜏

𝑘
) 𝐸

𝑖
,

Γ

𝑖1
(𝜏

𝑘
) = Γ

𝑖1
− 𝐷

𝑖
𝐹

𝑖
(𝜏

𝑘
) 𝐸

𝑖
.

(5)

For any given 𝑥(𝑘) and 𝑢(𝑘), by using a weighted-average
defuzzifier, product inference, and singleton fuzzifier, the
local models can be integrated into a global nonlinear model:

𝑥 (𝑘 + 1) =

𝑟

∑

𝑖=1

𝜇

𝑖
(𝜃 (𝑘)) [Φ

𝑖
𝑥 (𝑘) + Γ

𝑖0
(𝜏

𝑘
) 𝑢 (𝑘)

+ Γ

𝑖1
(𝜏

𝑘
) 𝑢 (𝑘 − 1)] ,

𝑦 (𝑘) = 𝐶

𝑖
𝑥 (𝑘) ,

(6)

where

𝜃 (𝑘) = [𝜃

𝑇

1
(𝑘), 𝜃

𝑇

2
(𝑘), . . . , 𝜃

𝑇

𝑔
(𝑘)]

𝑇

,

𝜇

𝑖
(𝜃 (𝑘)) =

∏

𝑔

𝑙=1
𝑁

𝑖𝑙
(𝑞

𝑙
(𝑘))

∑

𝑟

𝑖=1
∏

𝑔

𝑙=1
𝑁

𝑖𝑙
(𝜃

𝑙
(𝑘))

.

(7)

𝑁

𝑖𝑙
(𝜃

𝑙
(𝑘)) is the grade of membership of 𝜃

𝑙
(𝑘) in the fuzzy set

𝑁

𝑖𝑙
. Notice the following facts:

𝜇

𝑖
(𝜃 (𝑘)) ≥ 0,

𝑟

∑

𝑖=1

𝜇

𝑖
(𝜃 (𝑘)) = 1. (8)

The guaranteed cost function associated with system (3)
is given by

𝐽 =

∞

∑

𝑘=0

[𝑥

𝑇

(𝑘) 𝑄𝑥 (𝑘) + 𝑢

𝑇

𝜎
(𝑘) 𝑅𝑢

𝜎
(𝑘)] . (9)

Definition 5. Consider the uncertain system (3) and cost
function (9). If there exists a control law 𝑢

∗

𝜎
(𝑘) and a positive

scalar 𝐽∗ such that for all admissible uncertainties, the closed-
loop system is asymptotically stable and the value of the cost
function (9) satisfies 𝐽 ≤ 𝐽

∗, then 𝐽∗ is said to be a guaranteed
cost and 𝑢∗

𝜎
(𝑘) is said to be a guaranteed cost control law.

3. Controller Design

We assume that switched fuzzy controller is constituted with
𝑁 switching rules. The 𝜎th subfuzzy controller is

𝑅

𝜎

𝑖
: IF 𝜃

1
(𝑡) is 𝑁

𝑖1
, . . . , and 𝜃

𝑔
(𝑡) is 𝑁

𝑖𝑔
,

THEN 𝑢

𝜎
(𝑘) = 𝐾

𝜎𝑖
𝑥 (𝑘) ,

(10)

where 𝜎 = 1, 2, . . . , 𝑁 is a piecewise constant function
representing the switching signal and 𝑅𝜎

𝑖
represents 𝑖th fuzzy
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rule of the 𝜎th subfuzzy controller.The switching control law
is constituted by the following fuzzy controller:

𝑢

1
(𝑘) =

𝑟

∑

𝑖=1

𝜇

𝑖
(𝜃 (𝑘))𝐾

1𝑖
𝑥 (𝑘) ,

𝑢

2
(𝑘) =

𝑟

∑

𝑖=1

𝜇

𝑖
(𝜃 (𝑘))𝐾

2𝑖
𝑥 (𝑘) ,

...

𝑢

𝑁
(𝑘) =

𝑟

∑

𝑖=1

𝜇

𝑖
(𝜃 (𝑘))𝐾

𝑁𝑖
𝑥 (𝑘) .

(11)

When the controlled system is in 𝜎th switching subsys-
tem, the global fuzzy equation is as follows

𝑥 (𝑘 + 1)

=

𝑟

∑

𝑖=1

𝜇

𝑖
[Φ

𝑖
𝑥 (𝑘) + Γ

𝑖0
(𝜏

𝑘
) 𝑢 (𝑘) + Γ

𝑖1
(𝜏

𝑘
) 𝑢 (𝑘 − 1)]

=

𝑟

∑

𝑖=1

𝜇

𝑖
Φ

𝑖
𝑥 (𝑘)

+

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇

𝑖
𝜇

𝑗
[Γ

𝑖0
(𝜏

𝑘
)𝐾

𝜎𝑗
𝑥 (𝑘) + Γ

𝑖1
(𝜏

𝑘
)𝐾

𝜎𝑗
𝑥 (𝑘 − 1)]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇

𝑖
𝜇

𝑗

× [Φ

𝑖
𝑥 (𝑘) + Γ

𝑖0
(𝜏

𝑘
)𝐾

𝜎𝑗
𝑥 (𝑘)

+ Γ

𝑖1
(𝜏

𝑘
)𝐾

𝜎𝑗
𝑥 (𝑘 − 1)]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇

𝑖
𝜇

𝑗

× {[Φ

𝑖
+ Γ

𝑖0
(𝜏

𝑘
)𝐾

𝜎𝑗
] 𝑥 (𝑘)

+ Γ

𝑖1
(𝜏

𝑘
)𝐾

𝜎𝑗
𝑥 (𝑘 − 1)}

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇

𝑖
𝜇

𝑗
{[Φ

𝑖
+ (Γ

𝑖1
− 𝐷

𝑖
𝐹

𝑖
(𝜏

𝑘
) 𝐸

𝑖
)𝐾

𝜎𝑗
] 𝑥 (𝑘)

+ (Γ

𝑖1
− 𝐷

𝑖
𝐹

𝑖
(𝜏

𝑘
) 𝐸

𝑖
)𝐾

𝜎𝑗
𝑥 (𝑘 − 1)} .

(12)

LetΩ
1
, Ω

2
, . . . , Ω

𝑁
be a partition of the set𝑅𝑛; then⋃𝑁

𝑖=1
Ω

𝑖
=

𝑅

𝑛

\ {0}, Ω
𝑖
⋂Ω

𝑗
= Φ, 𝑖 = 𝑗. The switching law that is

determined by Ω
1
, Ω

2
, . . ., and Ω

𝑁
is 𝜎 = 𝜎(𝑥(𝑡)) = 𝑖, when

𝑥(𝑡) ∈ Ω

𝑖
. This switching law can be completely described by

the following function:

V
𝜎
(𝑥 (𝑡)) = {

1, 𝑥 (𝑡) ∈ Ω

𝜎
,

0, 𝑥 (𝑡) ∉ Ω

𝜎
,

𝜎 = 1, 2, . . . , 𝑁. (13)

Thus, we have

𝑥 (𝑘 + 1) =

𝑁

∑

𝜎=1

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

V
𝜎
𝜇

𝑖
𝜇

𝑗

× {[Φ

𝑖
+ (Γ

𝑖1
− 𝐷

𝑖
𝐹

𝑖
(𝜏

𝑘
) 𝐸

𝑖
)𝐾

𝜎𝑗
] 𝑥 (𝑘)

+ (Γ

𝑖1
− 𝐷

𝑖
𝐹

𝑖
(𝜏

𝑘
) 𝐸

𝑖
)𝐾

𝜎𝑗
𝑥 (𝑘 − 1)} ,

(14)

where 𝜏
𝑘
is the network-induced delay.

4. Sufficient Condition for
Guaranteed Cost Control

Lemma 6 (see [22] (Schur complement)). For a given sym-
metric matrix,

𝑆 = [

𝑆

11
𝑆

12

𝑆

21
𝑆

22

] . (15)

Then, the following three conditions are mutually equivalent:

(1) 𝑆 < 0,
(2) 𝑆
11
< 0, 𝑆

22
− 𝑆

𝑇

12
𝑆

−1

11
𝑆

12
< 0,

(3) 𝑆
22
< 0, 𝑆

11
− 𝑆

12
𝑆

−1

22
𝑆

𝑇

12
< 0.

Lemma 7 (see [23]). Given matrices 𝑌, 𝐷, 𝐸, and 𝐼 of appro-
priate dimensions and with 𝑌 and 𝐼 symmetrical and 𝐼 > 0,
then

𝑌 + 𝐷𝐹𝐸 + 𝐸

𝑇

𝐹

𝑇

𝐷

𝑇

< 0 (16)

for all 𝐹 satisfying 𝐹𝑇𝐹 ≤ 𝐼, if and only if there exists some
𝜀 > 0 such that

𝑌 + 𝜀

2

𝐷𝐷

𝑇

+ 𝜀

−2

𝐸

𝑇

𝐸 < 0. (17)

Theorem 8. Consider the uncertain nonlinear networked
control systems (3) and the cost function (9). If there exist
some constants 𝜆

𝜎
∈ [0, 1], ∑𝑙

𝜎=1
𝜆

𝜎
= 1, a group of positive

constants 𝜀
𝜎
> 0, and positive definite matrices 𝑋, 𝑍, 𝑌

𝜎𝑖
,

𝜎 = 1, . . . , 𝑙, 𝑖 = 1, . . . , 𝑟, such that the following matrix
inequalities (18) hold:

𝑙

∑

𝜎=1

𝜆

𝜎

[

[

[

[

[

[

[

[

[

[

[

𝐿 𝑈 𝑉 0 0 0 0

∗ −2𝑋 + 2𝑍 0 2𝑋 (𝑌

𝜎𝑖
+ 𝑌

𝜎𝑗
)

𝑇

(𝐸

𝑖
𝑌

𝜎𝑗
)

𝑇

(𝐸

𝑗
𝑌

𝜎𝑖
)

𝑇

∗ ∗ −2𝑍 0 0 −(𝐸

𝑖
𝑌

𝜎𝑗
)

𝑇

−(𝐸

𝑗
𝑌

𝜎𝑖
)

𝑇

∗ ∗ ∗ −2𝑄

−1

0 0 0

∗ ∗ ∗ ∗ −2𝑅

−1

0 0

∗ ∗ ∗ ∗ ∗ −𝜀

𝜎
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀

𝜎
𝐼

]

]

]

]

]

]

]

]

]

]

]

< 0,

1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟,

(18)
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where

𝑋 = 𝑃

−1

, 𝑌

𝜎𝑖
= 𝑘

𝜎𝑖
𝑋,

𝑍 = 𝑋𝑆𝑋,

𝐿 = −2𝑋 + 𝜀

𝜎
(𝐷

𝑖
𝐷

𝑇

𝑖
+ 𝐷

𝑗
𝐷

𝑇

𝑗
) ,

𝑈 = Φ

𝑖
+ Φ

𝑗
+ Γ

𝑖0
𝑌

𝜎𝑗
+ Γ

𝑗0
𝑌

𝜎𝑖
,

𝑉 = Γ

𝑖1
𝑌

𝜎𝑗
+ Γ

𝑗1
𝑌

𝜎𝑖
,

(19)

then close-loop system (14) with the guaranteed cost controller
(11) and the switching law 𝜎 = 𝜎(𝑥(𝑘)) is globally asymp-
totically stable. The guaranteed cost function (9) satisfies the
following bound:

𝐽 ≤ 𝑥

𝑇

(0) 𝑃𝑥 (0) + 𝑥

𝑇

(−1) 𝑆𝑥 (−1) .
(20)

Proof. For the networked control system (3), we lead the
performance index as follows:

𝐽 =

∞

∑

𝑘=0

[𝑥

𝑇

(𝑘) 𝑄𝑥 (𝑘) + 𝑢

𝑇

𝜎
(𝑘) 𝑅𝑢

𝜎
(𝑘)]

=

∞

∑

𝑘=0

[

[

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇

𝑖
𝜇

𝑗
𝑥

𝑇

(𝑘) (𝑄 + 𝐾

𝑇

𝜎𝑖
𝑅𝐾

𝜎𝑗
) 𝑥 (𝑘)

]

]

=

∞

∑

𝑘=0

[

[

𝑟

∑

𝑖=1

𝜇

2

𝑖
𝑥

𝑇

(𝑘) (𝑄 + 𝐾

𝑇

𝜎𝑖
𝑅𝐾

𝜎𝑖
) 𝑥 (𝑘)

+2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇

𝑖
𝜇

𝑗
𝑥

𝑇

(𝑘) (𝑄 + 𝐾

𝑇

𝜎𝑖
𝑅𝐾

𝜎𝑗
) 𝑥 (𝑘)

]

]

=

∞

∑

𝑘=0

[

[

𝑟

∑

𝑖=1

𝜇

2

𝑖
𝑥

𝑇

(𝑘) (𝑄 + 𝐾

𝑇

𝜎𝑖
𝑅𝐾

𝜎𝑖
) 𝑥 (𝑘)

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇

𝑖
𝜇

𝑗
𝑥

𝑇

(𝑘)

×(𝑄 +

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

𝑇

2

𝑅

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

2

)𝑥 (𝑘)

]

]

.

(21)

Consider the Lyapunov function as

𝑉 (𝑥 (𝑘)) = 𝑥

𝑇

(𝑘) 𝑃𝑥 (𝑘)

+ 𝑥

𝑇

(𝑘 − 1) 𝑆𝑥 (𝑘 − 1) .

(22)

Let

Θ = [

𝐺

𝑇

𝜎𝑖𝑗
𝑃𝐺

𝜎𝑛𝑚
− 𝑃 + 𝑆 𝐺

𝑇

𝜎𝑖𝑗
𝑃𝐻

𝜎𝑛𝑚

𝐻

𝑇

𝜎𝑖𝑗
𝑃𝐺

𝜎𝑛𝑚
𝐻

𝑇

𝜎𝑖𝑗
𝑃𝐻

𝜎𝑛𝑚
− 𝑆

] ,

𝐺

𝜎𝑖𝑗
= Φ

𝑖
+ Γ

𝑖0
𝐾

𝜎𝑗
+ 𝐷

𝑖
𝐹

𝑖
(𝜏

𝑘
) 𝐸

𝑖
𝐾

𝜎𝑗
,

𝛼

𝜎𝑖𝑗
= 𝐺

𝜎𝑖𝑗
+ 𝐺

𝜎𝑗𝑖
,

𝐻

𝜎𝑖𝑗
= Γ

𝑖1
𝐾

𝜎𝑗
− 𝐷

𝑖
𝐹

𝑖
(𝜏

𝑘
) 𝐸

𝑖
𝐾

𝜎𝑗
,

𝛽

𝜎𝑖𝑗
= 𝐻

𝜎𝑖𝑗
+ 𝐻

𝜎𝑗𝑖
.

(23)

Along any trajectory of the closed-loop system (14), the
forward difference of 𝑉(𝑘) is

Δ𝑉 (𝑥 (𝑘)) = 𝑉 (𝑥 (𝑘 + 1)) − 𝑉 (𝑥 (𝑘))

= 𝑥

𝑇

(𝑘 + 1) 𝑃𝑥 (𝑘 + 1) + 𝑥

𝑇

(𝑘) 𝑆𝑥 (𝑘) − 𝑥

𝑇

(𝑘) 𝑃𝑥 (𝑘) − 𝑥

𝑇

(𝑘 − 1) 𝑆𝑥 (𝑘 − 1)

=

𝑁

∑

𝜎=1

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝑟

∑

𝑛=1

𝑟

∑

𝑚=1

V
𝜎
𝜇

𝑖
𝜇

𝑗
𝜇

𝑛
𝜇

𝑚
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

𝑇

Θ[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

≤

𝑁

∑

𝜎=1

V
𝜎

{

{

{

1

4

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇

𝑖
𝜇

𝑗
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

𝑇

[

𝛼

𝑇

𝜎𝑖𝑗
𝑃𝛼

𝜎𝑖𝑗
− 4𝑃 + 4𝑆 𝛼

𝑇

𝜎𝑖𝑗
𝑃𝛽

𝜎𝑖𝑗

𝛽

𝑇

𝜎𝑖𝑗
𝑃𝛼

𝜎𝑖𝑗
𝛽

𝑇

𝜎𝑖𝑗
𝑃𝛽

𝜎𝑖𝑗
− 4𝑆

] [

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

}

}

}

=

𝑁

∑

𝜎=1

V
𝜎

{

{

{

{

{

{

{

{

{

𝑟

∑

𝑖=1

𝜇

2

𝑖
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

𝑇

[

𝐺

𝑇

𝜎𝑖𝑖
𝑃𝐺

𝜎𝑖𝑖
− 𝑃 + 𝑆 𝐺

𝑇

𝜎𝑖𝑖
𝑃𝐻

𝜎𝑖𝑖

𝐻

𝑇

𝜎𝑖𝑖
𝑃𝐺

𝜎𝑖𝑖
𝐻

𝑇

𝜎𝑖𝑖
𝑃𝐻

𝜎𝑖𝑖
− 𝑆

] [

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

+2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇

𝑖
𝜇

𝑗
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

𝑇[

[

[

[

[

[

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼

𝜎𝑖𝑗

2

− 𝑃 + 𝑆 [

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽

𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

}

}

}

}

}

}

}

}

}

.

(24)
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Thus

Δ𝑉 (𝑥 (𝑘)) + 𝑥

𝑇

(𝑘) 𝑄𝑥 (𝑘) + 𝑢

𝑇

𝜎
(𝑘) 𝑅𝑢

𝜎
(𝑘)

≤

𝑁

∑

𝜎=1

V
𝜎

{

{

{

𝑟

∑

𝑖=1

𝜇

2

𝑖
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

𝑇

× [

𝐺

𝑇

𝜎𝑖𝑖
𝑃𝐺

𝜎𝑖𝑖
− 𝑃 + 𝑆 𝐺

𝑇

𝜎𝑖𝑖
𝑃𝐻

𝜎𝑖𝑖

𝐻

𝑇

𝜎𝑖𝑖
𝑃𝐺

𝜎𝑖𝑖
𝐻

𝑇

𝜎𝑖𝑖
𝑃𝐻

𝜎𝑖𝑖
− 𝑆

] [

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇

𝑖
𝜇

𝑗
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

𝑇 [

[

[

[

[

[

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼

𝜎𝑖𝑗

2

− 𝑃 + 𝑆 [

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽

𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

+

𝑟

∑

𝑖=1

𝜇

2

𝑖
𝑥

𝑇

(𝑘) (𝑄 + 𝐾

𝑇

𝜎𝑖
𝑅𝐾

𝜎𝑖
) 𝑥 (𝑘)

+2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇

𝑖
𝜇

𝑗
𝑥

𝑇

(𝑘)(𝑄 +

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

𝑇

2

𝑅

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

2

)𝑥 (𝑘)

}

}

}

=

𝑁

∑

𝜎=1

V
𝜎
{

𝑟

∑

𝑖=1

𝜇

2

𝑖
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

𝑇

× [

𝐺

𝑇

𝜎𝑖𝑖
𝑃𝐺

𝜎𝑖𝑖
− 𝑃 + 𝑆 + 𝑄 + 𝐾

𝑇

𝜎𝑖
𝑅𝐾

𝜎𝑖
𝐺

𝑇

𝜎𝑖𝑖
𝑃𝐻

𝜎𝑖𝑖

𝐻

𝑇

𝜎𝑖𝑖
𝑃𝐺

𝜎𝑖𝑖
𝐻

𝑇

𝜎𝑖𝑖
𝑃𝐻

𝜎𝑖𝑖
− 𝑆

] [

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇

𝑖
𝜇

𝑗
[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

𝑇

×

[

[

[

[

[

[

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼

𝜎𝑖𝑗

2

− 𝑃 + 𝑆 + 𝑄 +

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

𝑇

2

𝑅

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

2

[

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽

𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

×[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]} .

(25)

Thus, if the matrix inequalities (26) and (27) hold

[

𝐺

𝑇

𝜎𝑖𝑖
𝑃𝐺

𝜎𝑖𝑖
− 𝑃 + 𝑆 + 𝑄 + 𝐾

𝑇

𝜎𝑖
𝑅𝐾

𝜎𝑖
𝐺

𝑇

𝜎𝑖𝑖
𝑃𝐻

𝜎𝑖𝑖

𝐻

𝑇

𝜎𝑖𝑖
𝑃𝐺

𝜎𝑖𝑖
𝐻

𝑇

𝜎𝑖𝑖
𝑃𝐻

𝜎𝑖𝑖
− 𝑆

] < 0, 1 ≤ 𝑖 ≤ 𝑟, (26)

[

[

[

[

[

[

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼

𝜎𝑖𝑗

2

− 𝑃 + 𝑆 + 𝑄 +

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

𝑇

2

𝑅

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

2

[

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽

𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

< 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟, (27)
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then, the following inequality can hold:

Δ𝑉 (𝑥 (𝑘)) + 𝑥

𝑇

(𝑘) 𝑄𝑥 (𝑘) + 𝑢

𝑇

𝜎
(𝑘) 𝑅𝑢

𝜎
(𝑘) < 0, (28)

and (26) is the special case of (27) when 𝑖 = 𝑗. Thus, when
(27) holds, the inequality (28) can hold. Consider

𝜃

𝜎𝑖𝑗
=

[

[

[

[

[

[

[

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼

𝜎𝑖𝑗

2

− 𝑃 + 𝑆 + 𝑄 +

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

𝑇

2

𝑅

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

2

[

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛼

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝛽

𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

]

< 0,

1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟.

(29)

Let

Ω

𝜎𝑖𝑗
= −4𝑃 + 4𝑆 + 4𝑄 + (𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

𝑇

𝑅 (𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
) ,

𝜃

𝜎𝑖𝑗
= [

Ω

𝜎𝑖𝑗
+ 𝛼

𝑇

𝜎𝑖𝑖
𝑃𝛼

𝜎𝑖𝑗
𝛼

𝑇

𝜎𝑖𝑖
𝑃𝛽

𝜎𝑖𝑗

𝛽

𝑇

𝜎𝑖𝑖
𝑃𝛼

𝜎𝑖𝑗
𝛽

𝑇

𝜎𝑖𝑖
𝑃𝛽

𝜎𝑖𝑗
− 4𝑆

] < 0,

1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟.

(30)

Therefore, according to the fact of 𝜇
𝑖
(𝜃(𝑘)) ≥ 0 in (8), the

inequality (30) and the equality (24), we can obtain Δ𝑉 < 0.

Define sets Ω
𝜎

= {𝑦 ∈ 𝑅

2𝑛

: 𝑦

𝑇

𝜃

𝜎𝑖𝑗
𝑦 < 0}; thus

∪Ω

𝑖
= 𝑅

2𝑛

\ {0}. Construct the sets ̃Ω
1
= Ω

1
, . . . ,

̃

Ω

𝜎
=

Ω

𝜎
− ⋃

𝜎−1

𝑖=1

̃

Ω

𝑖
, . . ..

Obviously, we have⋃𝑙
𝑖=1

̃

Ω

𝑖
= 𝑅

2𝑛

\ {0}, ̃Ω
𝑖
∩

̃

Ω

𝑗
= Φ, 𝑖 ̸= 𝑗.

Construct a switching law as follows:
𝜎 (𝑥 (𝑘)) = 𝑖, when 𝑥 (𝑘) ∈

̃

Ω

𝑖
, 𝜎 ∈ 𝑀. (31)

Thus, Δ𝑉(𝑥(𝑘)) + 𝑥𝑇(𝑘)𝑄𝑥(𝑘) + 𝑢𝑇
𝜎
(𝑘)𝑅𝑢

𝜎
(𝑘) ≤ 𝜉

𝑇

(𝑘)𝜃

𝜎𝑖𝑗
𝜉(𝑘)

< 0, ∀𝜉(𝑘) ̸= 0, where 𝜉(𝑘) = [𝑥

𝑇

(𝑘) 𝑥

𝑇

(𝑘 − 1)]

𝑇.
Notice that 𝐹𝑇𝐹 ≤ 𝐼. Applying Lemmas 6 and 7 to the

inequality (29), we have

[

[

[

[

[

[

[

[

[

[

[

Ψ Λ Π 0 0 0 0

∗ −2𝑃 + 2𝑆 0 2𝐼 (𝑘

𝜎𝑖
+ 𝑘

𝜎𝑗
)

𝑇

(𝐸

𝑖
𝑘

𝜎𝑗
)

𝑇

(𝐸

𝑗
𝑘

𝜎𝑖
)

𝑇

∗ ∗ −2𝑆 0 0 −(𝐸

𝑖
𝑘

𝜎𝑗
)

𝑇

(𝐸

𝑗
𝑘

𝜎𝑖
)

𝑇

∗ ∗ ∗ −2𝑄

−1

0 0 0

∗ ∗ ∗ ∗ −2𝑅

−1

0 0

∗ ∗ ∗ ∗ ∗ −𝜀

𝜎
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀

𝜎
𝐼

]

]

]

]

]

]

]

]

]

]

]

< 0, (32)

where
Ψ = −2𝑃

−1

+ 𝜀

𝜎
(𝐷

𝑖
𝐷

𝑇

𝑖
+ 𝐷

𝑗
𝐷

𝑇

𝑗
) ,

Λ = Φ

𝑖
+ Φ

𝑗
+ Γ

𝑖0
𝑘

𝜎𝑗
+ Γ

𝑗0
𝑘

𝜎𝑖
,

Π = Γ

𝑖1
𝑘

𝜎𝑗
+ Γ

𝑗1
𝑘

𝜎𝑖
.

(33)

By inequality (32) left-multiplied and right-multiplied by
diag(𝐼 𝑃

−1

𝑃

−1

𝐼 𝐼 𝐼 𝐼) and defining new variables 𝑋 =

𝑃

−1, 𝑌
𝜎𝑖
= 𝑘

𝜎𝑖
𝑋, and 𝑍 = 𝑋𝑆𝑋, we have

[

[

[

[

[

[

[

[

[

[

[

𝐿 𝑈 𝑉 0 0 0 0

∗ −2𝑋 + 2𝑍 0 2𝑋 (𝑌

𝜎𝑖
+ 𝑌

𝜎𝑗
)

𝑇

(𝐸

𝑖
𝑌

𝜎𝑗
)

𝑇

(𝐸

𝑗
𝑌

𝜎𝑖
)

𝑇

∗ ∗ −2𝑍 0 0 −(𝐸

𝑖
𝑌

𝜎𝑗
)

𝑇

(𝐸

𝑗
𝑌

𝜎𝑖
)

𝑇

∗ ∗ ∗ −2𝑄

−1

0 0 0

∗ ∗ ∗ ∗ −2𝑅

−1

0 0

∗ ∗ ∗ ∗ ∗ −𝜀

𝜎
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀

𝜎
𝐼

]

]

]

]

]

]

]

]

]

]

]

< 0, (34)
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where

𝐿 = −2𝑋 + 𝜀

𝜎
(𝐷

𝑖
𝐷

𝑇

𝑖
+ 𝐷

𝑗
𝐷

𝑇

𝑗
) ,

𝑈 = Φ

𝑖
+ Φ

𝑗
+ Γ

𝑖0
𝑌

𝜎𝑗
+ Γ

𝑗0
𝑌

𝜎𝑖
,

𝑉 = Γ

𝑖1
𝑌

𝜎𝑗
+ Γ

𝑗1
𝑌

𝜎𝑖
.

(35)

Taking (28) into account, for all admissible uncertainties, we
can infer that as follows:

Δ𝑉 (𝑥 (𝑘)) ≤ −𝑥

𝑇

(𝑘) 𝑄𝑥 (𝑘) − 𝑢

𝑇

𝜎
(𝑘) 𝑅𝑢

𝜎
(𝑘) .

(36)

According to (18), we can infer that there exists at least one
𝜎 such that (29) is established. Therefore, the closed-loop
system (14) is asymptotically stable under the controller (11)
and the switching law (31). Moreover, we have

Δ𝑉 <

𝑟

∑

𝑖=1

𝜇

2

𝑖
𝑥

𝑇

(𝑘) (𝑄 + 𝐾

𝑇

𝜎𝑖
𝑅𝐾

𝜎𝑖
) 𝑥 (𝑘)

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇

𝑖
𝜇

𝑗
𝑥

𝑇

(𝑘)

× (𝑄 +

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

𝑇

2

𝑅

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

2

)𝑥 (𝑘) ,

(37)

thus
𝑟

∑

𝑖=1

𝜇

2

𝑖
𝑥

𝑇

(𝑘) (𝑄 + 𝐾

𝑇

𝜎𝑖
𝑅𝐾

𝜎𝑖
) 𝑥 (𝑘)

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇

𝑖
𝜇

𝑗
𝑥

𝑇

(𝑘)

× (𝑄 +

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

𝑇

2

𝑅

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

2

)𝑥 (𝑘) < −Δ𝑉.

(38)

The inequalities (38) are added up together in the case that 𝑘
is 0, 1, 2, . . . ,∞; we have

𝐽 =

∞

∑

𝑘=0

[

[

𝑟

∑

𝑖=1

𝜇

2

𝑖
𝑥

𝑇

(𝑘) (𝑄 + 𝐾

𝑇

𝜎𝑖
𝑅𝐾

𝜎𝑖
) 𝑥 (𝑘)

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇

𝑖
𝜇

𝑗
𝑥

𝑇

(𝑘)

×(𝑄 +

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

𝑇

2

𝑅

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

2

)𝑥 (𝑘)

]

]

≤ 𝑥

𝑇

(0) 𝑃𝑥 (0) + 𝑥

𝑇

(−1) 𝑆𝑥 (−1) .

(39)

Therefore, Theorem 8 is proved.
Theorem 9. Consider the uncertain nonlinear networked
control systems (3) and the cost function (9). If there exist some
nonpositive or nonnegative constants 𝛿

𝜎𝜆
(𝜎, 𝜆 = 1, 2, . . . , 𝑙),

a group of positive constants 𝜀
𝜎

> 0, and positive-definite
matrices 𝑋

𝜎
, 𝑍
𝜎
, matrix 𝑌

𝜎𝑖
, 𝜎 = 1, . . . , 𝑙, 𝑖 = 1, . . . , 𝑟, such

that the following matrix inequalities:

[

[

[

[

[

[

[

[

[

[

[

[

[

𝐿 𝑈 𝑉 0 0 0 0

∗ Ξ +

𝑙

∑

𝜆=1, 𝜆 ̸= 𝜎

𝛿

𝜎𝜆
(𝑋

𝜆
− 𝑋

𝜎
) 0 2𝑋 (𝑌

𝜎𝑖
+ 𝑌

𝜎𝑗
)

𝑇

(𝐸

𝑖
𝑌

𝜎𝑗
)

𝑇

(𝐸

𝑗
𝑌

𝜎𝑖
)

𝑇

∗ ∗ −2𝑍 0 0 −(𝐸

𝑖
𝑌

𝜎𝑗
)

𝑇

−(𝐸

𝑗
𝑌

𝜎𝑖
)

𝑇

∗ ∗ ∗ −2𝑄

−1

0 0 0

∗ ∗ ∗ ∗ −2𝑅

−1

0 0

∗ ∗ ∗ ∗ ∗ −𝜀

𝜎
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀

𝜎
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟, (40)

hold, where

Ξ = −2𝑋

𝜎
+ 2𝑍

𝜎
, 𝑋

𝜎
= 𝑃

−1

𝜎
,

𝑌

𝜎𝑖
= 𝑘

𝜎𝑖
𝑋

𝜎
, 𝑍

𝜎
= 𝑋

𝜎
𝑆

𝜎
𝑋

𝜎
,

𝐿 = −2𝑋

𝜎
+ 𝜀

𝜎
(𝐷

𝑖
𝐷

𝑇

𝑖
+ 𝐷

𝑗
𝐷

𝑇

𝑗
) ,

𝑈 = Φ

𝑖
+ Φ

𝑗
+ Γ

𝑖0
𝑌

𝜎𝑗
+ Γ

𝑗0
𝑌

𝜎𝑖
,

𝑉 = Γ

𝑖1
𝑌

𝜎𝑗
+ Γ

𝑗1
𝑌

𝜎𝑖
,

(41)

then system (14) with the guaranteed cost controller (11) and
the switching law 𝜎 = 𝜎(𝑥(𝑘)) is globally asymptotically stable.
The guaranteed cost function (9) satisfies the following bound:

𝐽 ≤ 𝑥

𝑇

(0) 𝑃

𝜎
𝑥 (0) + 𝑥

𝑇

(−1) 𝑆

𝜎
𝑥 (−1) .

(42)

Proof. By the Lemmas 6 and 7, and 𝑋
𝜎
= 𝑃

𝜎

−1, 𝑌
𝜎𝑖
= 𝑘

𝜎𝑖
𝑋

𝜎
,

𝑍

𝜎
= 𝑋

𝜎
𝑆

𝜎
𝑋

𝜎
, from (40), we have
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[

[

[

[

[

[

[

[

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝜎

𝛼

𝜎𝑖𝑗

2

− 𝑃

𝜎
+ 𝑆

𝜎
+ 𝑄 +

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

𝑇

2

𝑅

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

2

+

𝑙

∑

𝜆=1,𝜆 ̸= 𝜎

𝛿

𝜎𝜆
(𝑃

𝜆
− 𝑃

𝜎
) [

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝜎

𝛽

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝜎

𝛼

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝜎

𝛽

𝜎𝑖𝑗

2

− 𝑆

𝜎

]

]

]

]

]

]

]

< 0.

(43)

Without loss of generality, we assume that 𝛿
𝜎𝜆
≥ 0.

Obviously, there exists at least one 𝜎 ∈ 𝑀 when 𝑥(𝑘) ∈

𝑅

𝑛

\ {0}, such that 𝑥𝑇(𝑘)(𝑃
𝜆
− 𝑃

𝜎
)𝑥(𝑘) ≥ 0, ∀𝜆 ∈ 𝑀.

Let Ω
𝜎
= {𝑥(𝑘) ∈ 𝑅

𝑛

| 𝑥

𝑇

(𝑘)(𝑃

𝜆
− 𝑃

𝜎
)𝑥(𝑘) ≥ 0, ∀𝜆 ∈

𝑀, 𝜆 ̸= 𝜎, 𝑥(𝑘) ̸= 0}; thus ∪Ω
𝑖
= 𝑅

𝑛

\ {0}.
Construct the sets ̃Ω

1
= Ω

1
, . . . ,

̃

Ω

𝜎
= Ω

𝜎
− ⋃

𝜎−1

𝑖=1

̃

Ω

𝑖
, . . ..

Obviously, we have⋃𝑙
𝑖=1

̃

Ω

𝑖
= 𝑅

𝑛

\ {0}, ̃Ω
𝑖
∩

̃

Ω

𝑗
= Φ, 𝑖 ̸= 𝑗.

Construct a switched law by

𝜎 (𝑥 (𝑘)) = 𝑖, when 𝑥 (𝑘) ∈

̃

Ω

𝑖
, 𝜎 ∈ 𝑀. (44)

Thus, from (43), we have

[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

]

𝑇
[

[

[

[

[

[

[

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝜎

𝛼

𝜎𝑖𝑗

2

− 𝑃

𝜎
+ 𝑆

𝜎
+ 𝑄 +

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

𝑇

2

𝑅

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

2

[

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝜎

𝛽

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝜎

𝛼

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝜎

𝛽

𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

]

[

𝑥 (𝑘)

𝑥 (𝑘 − 1)

] < 0, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟.

(45)

Following the similar lines as in the proof of Theorem 8, we
have

𝜃

𝜎𝑖𝑗
=

[

[

[

[

[

[

[

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝜎

𝛼

𝜎𝑖𝑗

2

− 𝑃

𝜎
+ 𝑆

𝜎
+ 𝑄 +

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

𝑇

2

𝑅

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

2

[

𝛼

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝜎

𝛽

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝜎

𝛼

𝜎𝑖𝑗

2

[

𝛽

𝜎𝑖𝑗

2

]

𝑇

𝑃

𝜎

𝛽

𝜎𝑖𝑗

2

− 𝑆

]

]

]

]

]

]

< 0,

1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟,

(46)

then, Δ𝑉
𝜎
(𝑥(𝑘)) + 𝑥

𝑇

(𝑘)𝑄𝑥(𝑘) + 𝑢

𝑇

𝜎
(𝑘)𝑅𝑢

𝜎
(𝑘) < 0. Thus,

𝑟

∑

𝑖=1

𝜇

2

𝑖
𝑥

𝑇

(𝑘) (𝑄 + 𝐾

𝑇

𝜎𝑖
𝑅𝐾

𝜎𝑖
) 𝑥 (𝑘)

+ 2

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜇

𝑖
𝜇

𝑗
𝑥

𝑇

(𝑘)(𝑄 +

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

𝑇

2

𝑅

(𝐾

𝜎𝑖
+ 𝐾

𝜎𝑗
)

2

)𝑥 (𝑘)

< −Δ𝑉

𝜎
.

(47)
The above inequality (47) is added up together in the case that
𝑘 is 0, 1, 2, . . . ,∞, according to the stability of the system,
then

𝐽 ≤ 𝑥

𝑇

(0) 𝑃

𝜎
𝑥 (0) + 𝑥

𝑇

(−1) 𝑆

𝜎
𝑥 (−1) .

(48)

Theorem 9 is proved.

5. Simulation Example

Consider the nonlinear system with the following differential
equation [24]:

̈𝑠 (𝑡) + 𝑓 (𝑠 (𝑡) , ̇𝑠 (𝑡)) − 0.1𝑠 (𝑡) = 𝐹 (𝑡) , (49)

where 𝑓(𝑠(𝑡), ̇𝑠(𝑡)) = 0.5𝑠(𝑡) + 0.75 sin( ̇𝑠(𝑡)/0.5).
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Choose the state variable and the input variable as 𝑥(𝑡) =
[𝑠(𝑡), ̇𝑠(𝑡)]

𝑇, 𝑢(𝑡) = 𝐹(𝑡), respectively. It can be represented by
the following fuzzy model consisting of two rules:

𝑅

1: IF 𝑥

2
(𝑡) is 𝑀

1
,

THEN 𝑥̇ (𝑡) = 𝐴

1
𝑥 (𝑡) + 𝐵

1
𝑢 (𝑡) ,

𝑅

2: IF 𝑥

2
(𝑡) is 𝑀

2
,

THEN 𝑥̇ (𝑡) = 𝐴

2
𝑥 (𝑡) + 𝐵

2
𝑢 (𝑡) ,

(50)

where 𝑥(𝑡) = [𝑥

1
(𝑡), 𝑥

2
(𝑡)]

𝑇

𝐴

1
= [

0 1

0.1 −2

] , 𝐴

2
= [

0 1

0.1 −0.5 − 1.5𝛽

] ,

𝐵

1
= 𝐵

2
= [−0.1 − 0.2]

𝑇

, 𝛽 =

0.01

𝜋

,

(51)

and 𝛽 is used to avoid system matrices being singular.
The sampling period 𝑇 = 0.3 s, then the discrete model of

the system is as follows:

𝑅

1: IF 𝑥2 (𝑡)
0.5

is about 0,

THEN 𝑥 (𝑘 + 1) = Φ

1
𝑥 (𝑘) + (Γ

10
+ 𝐷

1
𝐹

1
(𝜏

𝑘
) 𝐸

1
) 𝑢 (𝑘)

+ (Γ

11
− 𝐷

1
𝐹

1
(𝜏

𝑘
) 𝐸

1
) 𝑢 (𝑘 − 1) ,

𝑅

2: IF 𝑥2 (𝑡)
0.5

is about 𝜋 or − 𝜋,

THEN 𝑥 (𝑘 + 1) = Φ

2
𝑥 (𝑘) + (Γ

20
+ 𝐷

2
𝐹

2
(𝜏

𝑘
) 𝐸

2
) 𝑢 (𝑘)

+ (Γ

21
− 𝐷

2
𝐹

2
(𝜏

𝑘
) 𝐸

2
) 𝑢 (𝑘 − 1) ,

(52)

where

Φ

1
= [

1.0037 0.2259

0.0226 0.5519

] , Φ

2
= [

1.0043 0.2788

0.0279 0.8635

] ,

Γ

10
= [

−10.0018

−0.0001

] , Γ

11
= [

−10.0390

−0.2260

] ,

Γ

20
= [

−10

0

] , Γ

21
= [

−10.0432

−0.2788

] ,

𝐷

1
= [

20.7693 0.2141

1.0137 −0.4386

] ,

𝐷

2
= [

6.8691 0.6676

0.3353 −1.3678

] ,

𝐸

1
= [

0.4773

1.0869

] , 𝐸

2
= [

1.2500

1.4786

] ,

𝐹

1
(𝜏

𝑘
) = [

𝑒

−0.0488𝜏𝑘
0

0 𝑒

−2.0488(0.3−𝜏𝑘)
] ,

𝐹

2
(𝜏

𝑘
) = [

𝑒

−0.1522𝜏𝑘
0

0 𝑒

−0.6570(0.3−𝜏𝑘)
] .

(53)
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Figure 2: The membership function of input 𝑥
2
.

Obviously, 𝐹
1
(𝜏

𝑘
) and 𝐹

2
(𝜏

𝑘
) satisfy the uncertain matching

conditions:

𝐹

𝑇

1
(𝜏

𝑘
) 𝐹

1
(𝜏

𝑘
) ≤ 𝐼, 𝐹

𝑇

2
(𝜏

𝑘
) 𝐹

2
(𝜏

𝑘
) ≤ 𝐼. (54)

The membership functions of “about 0” and “about 𝜋 or −𝜋”
are selected as in Figure 2.

Suppose the switched fuzzy feed-back controllers are the
following fuzzy controllers:

𝑢

1
(𝑘) =

2

∑

𝑖=1

𝜇

𝑖
(𝑥

2
(𝑘)) 𝑘

1𝑖
𝑥

𝑖
(𝑘) ,

𝑢

2
(𝑘) =

2

∑

𝑖=1

𝜇

𝑖
(𝑥

2
(𝑘)) 𝑘

2𝑖
𝑥

𝑖
(𝑘) .

(55)

Choose 𝑄 = 0.1𝐼

2 × 2
, 𝑅 = 1. Carrying out computations

for matrices inequality (40), we obtain

𝑃

1
= [

8.0177 5.2362

5.2362 8.5369

] ,

𝑃

2
= [

7.8926 5.4026

5.4026 9.1487

] .

(56)

The controller gain:

𝑘

11
= [−0.6138 −0.4204] ,

𝑘

12
= [−0.2936, −0.3036] ,

𝑘

21
= [−0.4156 −0.3852] ,

𝑘

22
= [−0.0893, −0.1025] .

(57)

Let

Ω

1
= {𝑥 (𝑘) ∈ 𝑅

2

| 𝑥

𝑇

(𝑘) (𝑃

2
− 𝑃

1
) 𝑥 (𝑘) ≥ 0, 𝑥 (𝑘) ̸= 0} ,

Ω

2
= {𝑥 (𝑘) ∈ 𝑅

2

| 𝑥

𝑇

(𝑘) (𝑃

1
− 𝑃

2
) 𝑥 (𝑘) ≥ 0, 𝑥 (𝑘) ̸= 0} .

(58)
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Figure 3: The state trajectory using fuzzy controller 1.

ThenΩ
1
∪Ω

2
= 𝑅

2

\ {0}. We design a switched law as follows:

𝜎 (𝑥 (𝑘)) = {

1, 𝑥 (𝑘) ∈ Ω

1
,

2, 𝑥 (𝑘) ∈ Ω

2
\ Ω

1
.

(59)

The initial condition is [1.8 0.5]

𝑇, guaranteed cost bound
𝐽

∗

= 36.53.
Figures 3 and 4 show the system state trajectories that use

fuzzy controller 1 and fuzzy controller 2, respectively. Figure 5
shows the simulating results for the proposed switched fuzzy
controller method. In Figure 5, the system state trajecto-
ries indicate that nonlinear networked control system is
asymptotically stable and satisfies the performance index via
the designed guaranteed cost controller and the switching
law. From the simulating results, we can confirm that the
guaranteed cost controller in the switched fuzzy model is
able to stabilize the nonlinear delay system via switching T-
S fuzzy method. In addition, the performance of switching
fuzzy controller is better than that of the fuzzy controllers.

6. Conclusions

In this paper, we have presented a novel controller design
methodology for a class of nonlinearNCSs based on switched
T-S fuzzy model. By introducing the switching mechanism
into the fuzzy T-S systems, the proposed methods can deal
with the uncertainties of nonlinear NCSs with time delays
and furthermore avoid the inherent drawback of a fuzzy T-S
model in controller design and implementation of nonlinear
systems. In addition, considering QoS of nonlinear NCSs,
some sufficient conditions for the existence of the robust
guaranteed cost control law have been built via Lyapunov
functional approach. Simulation results have verified and
confirmed the effectiveness of the guaranteed cost controller
based on the switched T-S fuzzy model for nonlinear NCSs.

At present, this paper only presents a numerical example
to show the validity of our control scheme on the nonlinear
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Figure 4: The state trajectory using fuzzy controller 2.
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Figure 5: The state trajectory using switched fuzzy controller.

NCS with time delays. In next step, we plan to further verify
this control scheme via practical NCSs and investigate the
stability analysis and controller design with multiple-packet
transmission in nonlinear NCSs. Moreover, the boundedness
of the parameter constraints for NCSs will be studied. The
switched dynamics of nonlinear NCSs will also be considered
in future investigation.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



12 Mathematical Problems in Engineering

Acknowledgments

This work is supported by National Natural Science Foun-
dation of China (Grant no. 50804061) and Scientific and
Technological Research Program of Chongqing Municipal
Education Commission (Grant no. KJ130522).

References

[1] D. Yue, Q.-L. Han, and C. Peng, “State feedback controller
design of networked control systems,” IEEE Transactions on
Circuits and Systems II, vol. 51, no. 11, pp. 640–644, 2004.

[2] H. Zhang, D. Yang, and T. Chai, “Guaranteed cost networked
control for T-S fuzzy systems with time delays,” IEEE Systems,
Man, and Cybernetics Society, vol. 37, no. 2, pp. 160–172, 2007.

[3] X. Luan, P. Shi, and F. Liu, “Stabilization of networked control
systems with random delays,” IEEE Transactions on Industrial
Electronics, vol. 58, no. 9, pp. 4323–4330, 2011.

[4] B. Rahmani and A. H. D. Markazi, “Variable selective control
method for networked control systems,” IEEE Transactions on
Control Systems Technology, vol. 21, no. 3, pp. 975–982, 2012.
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