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A new moving state marine initial alignment method of strap-down inertial navigation system (SINS) is proposed based on high-
degree cubature Kalman filter (CKF), which can capture higher order Taylor expansion terms of nonlinear alignment model than
the existing third-degree CKF, unscented Kalman filter and central difference Kalman filter, and improve the accuracy of initial
alignment under large headingmisalignment angle condition. Simulation results show the efficiency and advantage of the proposed
initial alignmentmethod as comparedwith existing initial alignmentmethods for themoving state SINS initial alignmentwith large
heading misalignment angle.

1. Introduction

It is well known that the attitude update of strap-down inertial
navigation system (SINS) is achieved based on numerical
integration [1]. Therefore, it is necessary to know initial nav-
igation parameters including position, velocity, and attitude
for navigation calculation.The procedure of estimating initial
navigation parameters is initial alignment, and the accuracy
of estimation of these initial navigation parameters, especially
the estimation accuracy of attitude, is very important to
subsequent navigation operation, since the initial attitude
errors (or misalignment angles) will seriously degrade the
performance of SINS and cause positioning and attitude
errors [2]. Thus, it is important to estimate initial attitude
and reduce misalignment angles. Initial alignment of SINS
is usually accomplished in stationary mode [3]. However,
a moving state initial alignment is necessary to maintain
high navigation accuracy. Generally, after initial alignment,
the resulting navigation state errors grow up because of the
initialization errors and cumulative sensor inaccuracies [4].
Consequently, in large navigation errors, due to the growing
sensor error and the poor orientation, SINS often requires to
be realigned, and the initialization needs the ship to stop at
the initial position for at least 5 to 10 minutes [4, 5]. However,

it is inconvenient and impractical that there is not enough
time to stop at the initial position. Therefore, a moving state
initial alignment of SINS is necessary to enable the ship
to start instantly [5]. Besides, in some applications, such as
carrier-launched aircraft, it is necessary to achieve an accurate
moving state (or in-motion) initial alignment of host SINS
[6]. As the host carrier may be sailing while aligning the SINS
of a carrier-launched aircraft, aiding information from host
SINSwill be used to accomplish the alignment, then amoving
state alignment should be implemented to realign SINS for
vessel in sail [6].

In moving state initial alignment of SINS, heading mis-
alignment angle may be large since there is no reference to
indicate current heading, especially for integrated alignment,
and error model of SINS with large heading misalignment
angle is nonlinear, which means linear estimation methods
are not suitable for SINS initial alignment with large heading
misalignment angle [7]. In order to solve the problem of
moving state initial alignment with large heading misalign-
ment angle, Kong et al. proposed an initial alignmentmethod
based on extended Kalman filter (EKF) [8]. However, it
has low alignment accuracy and slow alignment speed. In
order to improve the alignment accuracy and alignment
speed, Zhou et al. proposed an initial alignment method
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based on unscented Kalman filter (UKF), which can at least
capture the posterior mean and covariance to the second
order of the Taylor series of any nonlinearity [9]. To improve
the computational efficiency of UKF method, Chang et al.
proposed an initial alignmentmethod based onmarginalized
UKF [10]. To further improve the accuracy of UKF method,
Long et al. proposed an initial alignment method based on
central difference Kalman filter (CDKF), which can provide
better covariance estimation than UKF [11]. To improve the
numerical stability of UKF method, Sun proposed an initial
alignment method based on cubature Kalman filter (CKF)
[12], which is a special case of UKF with better numerical
stability [13].

However, all moving state initial alignment methods
mentioned above have limited alignment accuracy and align-
ment speed because they cannot capture the fifth order
Taylor expansion terms of nonlinear alignment model. In
order to improve alignment accuracy and alignment speed,
a new moving state initial alignment method based on the
fifth-degree CKF (5th-CKF) is proposed in this paper. For
moving state initial alignment of SINS with large heading
misalignment angle, the 5th-CKF addresses the strong non-
linearity problem better than existing methods because it can
capture the fifth order Taylor expansion terms of nonlinear
alignment model. As will be seen in our simulation results,
the proposed initial alignment method outperforms existing
initial alignmentmethods in terms of alignment accuracy and
alignment speed.

The remainder of this paper is organized as follows. The
nonlinear error model of moving state marine SINS initial
alignment is presented in Section 2. The 5th-CKF method is
formulated in Section 3. Section 4 focuses on the application
of the 5th-CKF to the nonlinear estimation problem of
moving state initial alignment of SINS and compares the
proposed initial alignmentmethodwith existing initial align-
ment methods for the moving state SINS initial alignment
with large heading misalignment angle. Concluding remarks
are drawn in Section 5.

2. Marine SINS Initial Alignment
Nonlinear Error Model

Initial alignment is a process to precisely determine initial
values of strap-downmatrix between the vehicle’s body frame
and the reference frame so that the navigation computer can
start with exact initial conditions. Initial alignment is a key
technique in SINS. The alignment accuracy and alignment
speed will influence the performance of SINS navigation.
Next we will firstly introduce nomenclature used in inertial
technology and then formulate marine SINS nonlinear error
model in moving state initial alignment.

2.1. SINS Nonlinear Error Model for Moving State
Marine Initial Alignment. In this paper, we choose
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where 𝑅
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is the meridian radius of curvature and 𝑅
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transverse radius of curvature, 𝜑 is the computed geographic
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where C𝑛
𝑏
is the computed attitude matrix, ̂f𝑏sf is the specific

force measured by accelerometers in the body frame, and 𝛿f𝑏sf
is the specific force error vector in the body frame, which can
be formulated as
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We choose the velocity and position differences between
SINS and external sensors, such as GPS or other higher
accuracy SINSs as measurement vector z, which can be
formulated as

z =
[
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where 𝜑ref, 𝜆ref, Vref,𝑥, and Vref,𝑦 are measured latitude, longi-
tude, velocity in east, and north directions, respectively.

Note that the process model of moving state initial
alignment introduced in (1) is a continuous model and we
must transform it into discrete form. Given the sample time
𝑇, the propagations of position error, velocity error, and mis-
alignment angles are discretized by using the fourth-degree
Runge-Kutta method, and all the parts related to noise are
discretized by using first-degree Runge-Kutta method. Based
on (1) and (9), the discrete state equation and observation
equation for state estimation can be formulated as

x
𝑘
= f (x

𝑘−1
) +W

𝑘−1
,

z
𝑘
= h (x

𝑘
) + V
𝑘
,

(10)

where h(x
𝑘
) = [I

4×4
0
4×8

] x
𝑘
, W
𝑘−1

is the Gaussian random
process noise with mean 0 and covariance Q
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the Gaussian random measurement noise with mean 0 and
covariance R

𝑘
. Equation (10) formulates the nonlinear error

model for moving state marine SINS initial alignment.
It is clear to see from (1) that the state equation of the

error model of moving state marine SINS initial alignment is
typically nonlinear. Thus, nonlinear filtering algorithms are
necessary to estimate the state vector from which misalign-
ment angles can be obtained to finish initial alignment. Next
we will introduce high degree CKF method.

3. High Degree CKF

3.1. Brief Introduction of CKF. The heart of Gaussian filter
is to compute multidimensional Gaussian-weighted inte-
gral [13, 14]. Different Gaussian approximate filters can be
obtained when different integral rules are used. The third-
degree CKF (3rd-CKF) is obtained when the third-degree
spherical-radial cubature rule is used, and the third-degree
spherical-radial cubature rule can be formulated as [13]
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where x is an 𝑛-dimensional Gaussian random vector with
mean x̂ and covariance P
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𝑇

denotes a unit vector to the direction of coordinate axis 𝑗.
The heart of the 3rd-CKF is the third-degree spherical-

radial cubature rule in (11), whichmakes it possible to numer-
ically computemultivariatemoment integrals encountered in
nonlinear Bayesian filter. The 3rd-CKF provides a systematic
solution for high-dimensional nonlinear filtering problems.
In addition, the 3rd-CKF is more stable and more principled
in mathematics than sigma point approaches [13]. However,
the accuracy of the 3rd-CKF is limit. To improve the accuracy
of the 3rd-CKF, the 5th-CKF is proposed, which can capture
higher order Taylor expansion terms of nonlinear function
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than the 3rd-CKF, thus higher accuracy can be obtained [14].
Next we will introduce the 5th-CKF method.

3.2. 5th-CKF Method. CKF is a recursive filtering
method. We assume the posterior probability density
of x
𝑘−1

has been already known in the previous update
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The third class cubature-points and their weights are

calculated as follows:
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is then obtained as weighted
linear combination of sample points

x̂
𝑘|𝑘−1

= 𝑤
0
X∗
0𝑖,𝑘|𝑘−1

+ 𝑤
1

𝑛

∑

𝑗=1

(X∗
1𝑖,𝑘|𝑘−1

+ X∗
2𝑖,𝑘|𝑘−1

)

+ 𝑤
2

𝑛(𝑛−1)/2

∑

𝑗=1

(X∗
3𝑖,𝑘|𝑘−1

+ X∗
4𝑖,𝑘|𝑘−1

+ X∗
5𝑖,𝑘|𝑘−1

+ X∗
6𝑖,𝑘|𝑘−1

) .

(18)

One-step state prediction error covariance P
𝑘|𝑘−1

is updated
as follows:
P
𝑘|𝑘−1

= 𝑤
0
X∗
0𝑖,𝑘|𝑘−1

X∗𝑇
0𝑖,𝑘|𝑘−1

+ 𝑤
1

𝑛

∑

𝑗=1

(X∗
1𝑖,𝑘|𝑘−1

X∗𝑇
1𝑖,𝑘|𝑘−1

+ X∗
2𝑖,𝑘|𝑘−1

X∗𝑇
2𝑖,𝑘|𝑘−1

)

+ 𝑤
2

𝑛(𝑛−1)/2

∑

𝑗=1

(X∗
3𝑖,𝑘|𝑘−1

X∗𝑇
3𝑖,𝑘|𝑘−1

+ X∗
4𝑖,𝑘|𝑘−1

X∗𝑇
4𝑖,𝑘|𝑘−1

+X∗
5𝑖,𝑘|𝑘−1

X∗𝑇
5𝑖,𝑘|𝑘−1

+ X∗
6𝑖,𝑘|𝑘−1

X∗𝑇
6𝑖,𝑘|𝑘−1

)

− x̂
𝑘|𝑘−1

x̂𝑇
𝑘|𝑘−1

+Q
𝑘−1

.

(19)

Next the measurement update is performed. Cholesky
decomposition of P

𝑘|𝑘−1
is performed firstly:

P
𝑘|𝑘−1

= S
𝑘|𝑘−1

S𝑇
𝑘|𝑘−1

. (20)

The first class cubature-point and its weight are calculated as
follows:

X
0𝑖,𝑘|𝑘−1

= x̂
𝑘|𝑘−1

, 𝑤
0
=

2

𝑛 + 2

. (21)

Then the second class cubature-points and their weights are
calculated as follows:

X
1𝑖,𝑘|𝑘−1

= √
(𝑛 + 2)S

𝑘|𝑘−1
e
𝑖
+ x̂
𝑘|𝑘−1

,

X
2𝑖,𝑘|𝑘−1

= −√(𝑛 + 2)S
𝑘|𝑘−1

e
𝑖
+ x̂
𝑘|𝑘−1

,

𝑤
1
=

4 − 𝑛

2(𝑛 + 2)

2
,

(𝑖 = 1, 2, . . . , 𝑛) .

(22)
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The third class cubature-points and their weights are calcu-
lated as follows:

X
3𝑖,𝑘|𝑘−1

= √
(𝑛 + 2)S

𝑘|𝑘−1
s+
𝑖
+ x̂
𝑘|𝑘−1

,

X
4𝑖,𝑘|𝑘−1

= −√(𝑛 + 2)S
𝑘|𝑘−1

s+
𝑖
+ x̂
𝑘|𝑘−1

,

X
3𝑖,𝑘|𝑘−1

= √
(𝑛 + 2)S

𝑘|𝑘−1
s−
𝑖
+ x̂
𝑘|𝑘−1

,

X
4𝑖,𝑘|𝑘−1

= −√(𝑛 + 2)S
𝑘|𝑘−1

s−
𝑖
+ x̂
𝑘|𝑘−1

,

𝑤
2
=

1

(𝑛 + 2)

2
,

(𝑖 = 1, 2, . . . ,

𝑛 (𝑛 − 1)

2

) .

(23)

Sample points are obtained by propagating the above
cubature-points through observation equation as follows:

Z
0𝑖,𝑘|𝑘−1

= h (X
0𝑖,𝑘|𝑘−1

) ,

Z
1𝑖,𝑘|𝑘−1

= h (X
1𝑖,𝑘|𝑘−1

) ,

Z
2𝑖,𝑘|𝑘−1

= h (X
2𝑖,𝑘|𝑘−1

)

Z
3𝑖,𝑘|𝑘−1

= h (X
3𝑖,𝑘|𝑘−1

) ,

Z
4𝑖,𝑘|𝑘−1

= h (X
4𝑖,𝑘|𝑘−1

) ,

Z
5𝑖,𝑘|𝑘−1

= h (X
5𝑖,𝑘|𝑘−1

) ,

Z
6𝑖,𝑘|𝑘−1

= h (X
6𝑖,𝑘|𝑘−1

) .

(24)

One-step measurement prediction ẑ
𝑘|𝑘−1

is then obtained as
weighted linear combination of sample points:

ẑ
𝑘|𝑘−1

= 𝑤
0
Z
0𝑖,𝑘|𝑘−1

+ 𝑤
1

𝑛

∑

𝑗=1

(Z
1𝑖,𝑘|𝑘−1

+ Z
2𝑖,𝑘|𝑘−1

)

+ 𝑤
2

𝑛(𝑛−1)/2

∑

𝑗=1

(Z
3𝑖,𝑘|𝑘−1

+Z
4𝑖,𝑘|𝑘−1

+Z
5𝑖,𝑘|𝑘−1

+Z
6𝑖,𝑘|𝑘−1

) .

(25)

Autocorrelation covariance matrix Pzz,𝑘|𝑘−1 is obtained as
follows:
Pzz,𝑘|𝑘−1 = 𝑤

0
Z
0𝑖,𝑘|𝑘−1

Z𝑇
0𝑖,𝑘|𝑘−1

+ 𝑤
1

𝑛

∑

𝑗=1

(Z
1𝑖,𝑘|𝑘−1

Z𝑇
1𝑖,𝑘|𝑘−1

+ Z
2𝑖,𝑘|𝑘−1

Z𝑇
2𝑖,𝑘|𝑘−1

)

+ 𝑤
2

𝑛(𝑛−1)/2

∑

𝑗=1

(Z
3𝑖,𝑘|𝑘−1

Z𝑇
3𝑖,𝑘|𝑘−1

+ Z
4𝑖,𝑘|𝑘−1

Z𝑇
4𝑖,𝑘|𝑘−1

+ Z
5𝑖,𝑘|𝑘−1

Z𝑇
5𝑖,𝑘|𝑘−1

+Z
6𝑖,𝑘|𝑘−1

Z𝑇
6𝑖,𝑘|𝑘−1

)

− ẑ
𝑘|𝑘−1

ẑ𝑇
𝑘|𝑘−1

+ R
𝑘
.

(26)

Cross-correlation covariance matrix Pxz,𝑘|𝑘−1 is calculated as
follows:

Pxz,𝑘|𝑘−1 = 𝑤
0
X
0𝑖,𝑘|𝑘−1

Z𝑇
0𝑖,𝑘|𝑘−1

+ 𝑤
1

𝑛

∑

𝑗=1

(X
1𝑖,𝑘|𝑘−1

Z𝑇
1𝑖,𝑘|𝑘−1

+ X
2𝑖,𝑘|𝑘−1

Z𝑇
2𝑖,𝑘|𝑘−1

)

+ 𝑤
2

𝑛(𝑛−1)/2

∑

𝑗=1

(X
3𝑖,𝑘|𝑘−1

Z𝑇
3𝑖,𝑘|𝑘−1

+ X
4𝑖,𝑘|𝑘−1

Z𝑇
4𝑖,𝑘|𝑘−1

+X
5𝑖,𝑘|𝑘−1

Z𝑇
5𝑖,𝑘|𝑘−1

+X
6𝑖,𝑘|𝑘−1

Z𝑇
6𝑖,𝑘|𝑘−1

)

− x̂
𝑘|𝑘−1

ẑ𝑇
𝑘|𝑘−1

.

(27)

The Kalman filter gain is calculated as follows:

K
𝑘
= Pxz,𝑘|𝑘−1P

−1

zz,𝑘|𝑘−1. (28)

State estimation x̂
𝑘|𝑘

is calculated as follows:

x̂
𝑘|𝑘

= x̂
𝑘|𝑘−1

+ K
𝑘
(z
𝑘
− ẑ
𝑘|𝑘−1

) . (29)

The state estimation error covariance P
𝑘|𝑘

is calculated as
follows:

P
𝑘|𝑘

= P
𝑘|𝑘−1

− K
𝑘
Pzz,𝑘|𝑘−1K

𝑇

𝑘
. (30)

x̂
𝑘|𝑘

and P
𝑘|𝑘

will be used in the next iteration. From
the estimated state vector x̂

𝑘|𝑘
we can obtain estimated

misalignment angles ̂𝜙 = [
̂
𝜙
𝑥

̂
𝜙
𝑦

̂
𝜙
𝑧
]

𝑇

, with which the
strap-down matrix between vehicle’s body frame and the
reference frame C𝑛

𝑏
can be determined, and the navigation

computer can start with exact initial conditions. P
𝑘|𝑘

can be
used to evaluate the accuracy of estimation. Next simulations
will be performed to show the advantage of the proposed
initial alignment method based on the 5th-CKF as compared
with existing methods in marine initial alignment.

4. Simulations

Three simulations are performed with different parameter
sets under different moving states of ship. In the first
simulation, the ship is on the mooring. In the second
simulation, the ship sails with constant speed V

𝑥
= 2m/s

and V
𝑦
= 2m/s. In the third simulation, the ship accelerates

with 𝑎
𝑥
= 0.02m/s2 and 𝑎

𝑦
= 0.02m/s2 and initial velocity

of V
𝑥
= 2m/s and V

𝑦
= 2m/s. In addition, initial values of

process noise covariance matrix and state and measurement
noise covariance matrix in simulations are set as
diag{0

2×1
(0.001

∘

/h)2(0.001∘/h)2(1 𝜇g)2(1 𝜇g)2(1 𝜇g)20
5×1

},
0
12×1

, diag{(0.1m/s)2(0.1m/s)2(10/Re)2(10/Re)2}, respec-
tively. Other parameters used in simulations are shown in
Table 1.

To compare the performance of existing initial align-
ment methods based on the 3rd-CKF, UKF, CDKF, and the
proposed initial alignment method based on the 5th-CKF,
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Table 1: Parameters used for simulations.

Swing
amplitude (deg)

Swing period (s) Initial error
values of pitch
and roll (deg)

Initial error
values of

heading (deg)

White noise bias
stability of gyro

(deg/h)

Bias of gyro
(deg/h)

White noise error
of accelerometer

(𝜇g)

Bias error of
accelerometer

(𝜇g)Roll Pitch Yaw

10 8 10 6 1 30 0.003 0.01 3.16 10

Table 2: Absolute value of steady state estimation error of mis-
alignment angles when the ship is on the mooring with heading
misalignment angle of 30∘.

Initial alignment methods 3rd-CKF UKF CDKF 5th-CKF
Absolute value of steady state
estimation error of rolling
misalignment (arc mins)

0.75 0.45 0.36 0.15

Absolute value of steady state
estimation error of pitching
misalignment (arc mins)

0.58 0.37 0.32 0.16

Absolute value of steady state
estimation error of heading
misalignment (arc mins)

16 5 3.5 2.45

Table 3: Absolute value of steady state estimation error of misalign-
ment angles when the ship sails with constant speed V

𝑥
= 2m/s and

V
𝑦
= 2m/s and heading misalignment angle of 30∘.

Initial alignment methods 3rd-CKF UKF CDKF 5th-CKF
Absolute value of steady state
estimation error of rolling
misalignment (arc mins)

0.78 0.47 0.4 0.16

Absolute value of steady state
estimation error of pitching
misalignment (arc mins)

0.6 0.4 0.34 0.18

Absolute value of steady state
estimation error of heading
misalignment (arc mins)

16 5.3 4.1 2.5

Table 4: Absolute value of steady state estimation error of misalign-
ment angles when the ship accelerates with heading misalignment
angle of 30∘.

Initial alignment methods 3rd-CKF UKF CDKF 5th-CKF
Absolute value of steady state
estimation error of rolling
misalignment (arc mins)

0.64 0.33 0.25 0.09

Absolute value of steady state
estimation error of pitching
misalignment (arc mins)

0.63 0.4 0.35 0.15

Absolute value of steady state
estimation error of heading
misalignment (arc mins)

14 4.0 3.0 2.2

we choose the absolute value of estimation error of misalign-
ment angles as performancemetric. For a fair comparison, we
make 500 independent Monte Carlo runs. Simulation results
of existing methods and the proposed method are shown in
Figures 1, 2, and 3 and Tables 2, 3, and 4, which corresponds
to simulation 1, simulation 2, and simulation 3, respectively.
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Figure 1: Absolute value of estimation error of misalignment angles
based on existing methods and the proposed method when the ship
is on the mooring with heading misalignment angle of 30∘.

Besides, a comparison of computational complexity between
the proposed method and existing methods is shown in
Table 5.

It is seen from Figures 1–3 that the proposed initial
alignment method has faster alignment speed than existing
initial alignment methods under large headingmisalignment
angle conditions. From Tables 2–4, we also can see that
the proposed initial alignment method outperforms existing
initial alignment methods in terms of alignment accuracy
under large heading misalignment angle conditions. As
shown in Table 5, although the proposed initial alignment
method has higher computational complexity than existing
initial alignment methods, its computation requirement is
acceptable for practical marine navigation application.

Theoretically, as discussed in Section 2, the initial align-
ment model is nonlinear for the case of large heading mis-
alignment angle, and all nonlinear filtering algorithms only
can achieve suboptimal estimation of initial misalignment
angles. However, the 5th-CKF can capture higher order
Taylor expansion terms of nonlinear initial alignment model
than the 3rd-CKF, UKF, and CDKF. Thus, the proposed
initial alignment method based on the 5th-CKF is superior
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Table 5: Comparison of computational complexity.

Initial alignment methods 3rd-CKF UKF CDKF 5th-CKF
Computational complexity 𝑂(𝑛3) (𝑛 = 12) 𝑂(𝑛3) (𝑛 = 12) 𝑂(𝑛3) (𝑛 = 12) 𝑂(𝑛4) (𝑛 = 12)

Absolute value of estimation error of rolling misalignment

Absolute value of estimation error of pitching misalignment

Absolute value of estimation error of heading misalignment
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Figure 2: Absolute value of estimation error of misalignment angles
based on existing methods and the proposed method when the ship
sails with constant speed V

𝑥
= 2m/s and V

𝑦
= 2m/s and heading

misalignment angle of 30∘.
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Figure 3: Absolute value of estimation error of misalignment angles
based on existing methods and the proposed method when the ship
accelerates with heading misalignment angle of 30∘.

to existing methods based on the 3rd-CKF, UKF, and CDKF
in terms of alignment accuracy and alignment speed under
large headingmisalignment angle.Theoretical analysis agrees
with simulation results.

5. Conclusion

In this paper, a new moving state initial alignment method
is proposed based on the 5th-CKF. Three simulations are
performed for marine SINS initial alignment under differ-
ent conditions, including mooring, moving with constant
speed, and moving with constant acceleration. Simulation
results show that the proposedmarine SINS initial alignment
method is superior to existingmethods in terms of alignment
accuracy and alignment speed for the moving state SINS
initial alignment with large heading misalignment angle. It
is more suitable for applications where fast and accurate
alignment is necessary.

Nomenclatures

𝑖 Frame: Inertial frame
𝑒 Frame: Earth frame
𝑛 Frame: True navigation frame

(“east-north-up” local
geographic frame)

𝑏 Frame: Frame fixed to the vehicle
(right-front-up)

𝑛

 Frame: Erroneously computed
navigation frame

Misalignment angle vector 𝜙: Euler angles between 𝑛
frame and 𝑛 frame

C𝑛
𝑚
: Direction cosine matrix

from𝑚 frame to 𝑛 frame.
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