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Combined with the electric power market dynamic model put forward by Alvarado, an interval model of electricity markets is
established and investigated in this paper pertaining to the range of demand elasticity with suppliers and consumers. The stability
of an electricity market framework with demand elasticity interval is analyzed. The conclusions characterizing the interval model
provided are derived by constructing a suitable Lyapunov function and using the theory of interval dynamical system in differential
equations and matrix inequality theory and so forth. Applying the corollary obtained can judge the system stability by available
data about demand elasticity. The obtained results are validated and illustrated by a case example.

1. Introduction

Power system is the physical basis for electricity market and
electricity market is the operating mode of power system.
The economic stability of electricity market and the physical
stability of power system are linked and affect each other.
In 1990, Beavis and Dobbs began to study the economic
system stability [1]. For twenty years now, the research on
the dynamic evolution and stable behavior of economy and
management system has been arousing increasing attention
in many fields such as mathematical economics and system
science. Particularly, the stability analysis of economic system
branch is emphasized in economic area, which is of difficulty
and great significance as well.

While the study of electricity market stability begins to
perk up in recent years [2–10], power resources are allocated
reasonably by market mechanism in electricity market, and
the research on the electricity market stability is of very vital
significance for regulating the market supply and demand.
Based on the electricity market dynamic model proposed by
Alvarado [2], a new electricity market model was provided
within the dynamic market framework on the consideration
of factors such as electrical energy unbalance and dynamic
power system properties after cooperation with Meng and
others [3–5]. The numerical eigenvalue method was adopted
to study the electricity market stability in all of the dynamic
models above.

In [11], a kind of promotion for the model of Alvarado
was made in respect of market clearing time and price signal
delay, and the stability effect pertaining to system control
and communicationwas discussed.With the dynamicmarket
model, the role that futures markets may play on the clearing
prices and on altering the volatility and potential instability of
real-time prices and generator output was examined byWatts
and Alvarado [12]. Reference [13] adopted a novel approach
for system controllers characterizing Nordic power market,
and it was concluded that electricity prices most of the time
have increased in stability and decreased in volatility when
the market has expanded and the competition degree has
added. In [14], an appropriate modeling of system controllers
is presented to account for the effects of power system con-
trollers on the stability of power dispatch and electricity
market prices better. For the market dynamic model put
forward by Alvarado, a series of sufficient conditions are pro-
vided theoretically to determine the stability of powermarket
in [15]. With all the above, the involved discussion about
stability is derived from the Lyapunov asymptotic stability of
equilibrium in the deterministic differential equation theory.

If the parameters are estimated using confidence intervals
within a system, then the system is an interval dynamic sys-
tem. In fact, due to the influence of the related factors such as
measurement error, technical level, and other external inter-
ference, the accurate values of some parameters cannot be
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obtained. Therefore, interval theory should be introduced to
describe problemsmore appropriately in ecology, economics,
and other fields. So far, there have existed somediscussions on
power system research by using the interval method [16–18].
Due to the influence of dynamic factors in electricity market
such as economic growth, electricity consumption, electricity
price, supply, and demand, the demand elasticity of suppliers
and consumers continues to change within a certain range
instead of constants. So it is necessary to describe demand
elasticity by interval. Alternatively, the theory of interval
dynamical system is rarely applied to study the stability of the
electric power market.

Adopting the method of interval dynamical system, this
paper presents a novel interval model for the electricity mar-
ket based on the deterministic dynamic model put forward
by Alvarado. Embarking from the stability theory, this paper
analyzes the influence of demand elasticity change on the sys-
tem stability. By means of constructing a suitable Lyapunov
function and using the theory of interval dynamical system
in differential equations and matrix inequality theory, the
stability of this intervalmodel is investigated theoretically and
some sufficient conditions of interval stability are given in our
theorem and corollary. It is shown in the results that we can
provide the stability scopes of demand elasticity for suppliers
and consumers and judge the system stability by available
data. Finally, an electricity market specific example is given
and analyzed to illustrate the obtained results.

2. The Establishment of the Electricity Market
Interval Model

2.1. Electricity Market Model Proposed by Alvarado. Let cost
functions for generators and utility functions for consumers
be quadratic functions. With 𝑚-supplier and 𝑛-consumer,
when the market price 𝜆 is greater than the marginal pro-
duction cost 𝜆𝑔𝑖 in electricity market, suppliers will expand
production until the marginal cost of production equals the
price. The rate of expansion is proportional to the difference
between the price observed and the actual production cost.
The speed with which the generation power output 𝑃𝑔𝑖 of
supplier 𝑖 can respond is supplier dependent [2]. The above
yields the following differential equation to describe the
dynamic behavior of electricity market for supplier 𝑖:

𝜏𝑔𝑖𝑃̇𝑔𝑖 = 𝜆 − 𝑏𝑔𝑖 − 𝑐𝑔𝑖𝑃𝑔𝑖 (𝑖 = 1, 2, . . . , 𝑚) , (1)

where 𝑃𝑔𝑖 is the generation power output, the speed of which
is denoted by a time constant 𝜏𝑔𝑖, 𝜆 is the market price at any
given time, 𝑏𝑔𝑖 + 𝑐𝑔𝑖𝑃𝑔𝑖 is the marginal cost, 𝑐𝑔𝑖 is the demand
elasticity, and 𝑏𝑔𝑖 is the linear cost coefficient.

As for consumer 𝑗, the equation describing electricity
market behavior is

𝜏𝑑𝑗𝑃̇𝑑𝑗 = −𝜆 + 𝑏𝑑𝑗 + 𝑐𝑑𝑗𝑃𝑑𝑗 (𝑗 = 1, 2, . . . , 𝑛) , (2)

where 𝑃𝑑𝑗 is the consumption demand of electricity, 𝜏𝑑𝑗 is the
expansion speed of consumption demand, 𝑏𝑑𝑗 + 𝑐𝑑𝑗𝑃𝑑𝑗 is the
marginal benefit, 𝑐𝑑𝑗 is the demand elasticity, and 𝑏𝑑𝑗 is the
linear cost coefficient.

In addition, the following equation is considered:

𝑚

∑

𝑖=1

𝑃𝑔𝑖 =

𝑛

∑

𝑗=1

𝑃𝑑𝑗. (3)

Considering the transmission congestion of power mar-
ket, using flow distribution factors, a single congested con-
dition can be represented as a scalar additional equality
constraint:

𝑠𝑔1𝑃𝑔1 + 𝑠𝑔2𝑃𝑔2 + ⋅ ⋅ ⋅ + 𝑠𝑔𝑚𝑃𝑔𝑚

+ 𝑠𝑑1𝑃𝑑1 + 𝑠𝑑2𝑃𝑑2 + ⋅ ⋅ ⋅ + 𝑠𝑑𝑛𝑃𝑑𝑛 = ℎ1.

(4)

With 𝑛𝑆 congestion conditions, the complete model is

[
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1 ⋅ ⋅ ⋅ 1 −1 ⋅ ⋅ ⋅ −1
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.
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=

[

[

[

[

[
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[

0

ℎ1

ℎ2

.

.

.

ℎ𝑛𝑆

]

]

]

]

]

]

]

. (5)

Congestion equality constraints are algebraic. Thus, the
analysis of the equilibrium aswell as the stability properties of
the congestedmarket required the consideration of a DAE set
of equations with multiple algebraic constraints. Of necessity,
the congestion problem requires that higher-order nontrivial
systems be considered. The issue is resolved by introducing
shadow prices (Lagrange multipliers 𝜇) which play the role
of congestion prices. If this is done, the complete dynamic
equations for the congested𝑚-supplier and 𝑛-consumer with
𝑛𝑆 active algebraic congestion conditions can be written as

[

𝑇 0

0 0
][

̇
𝑃̃

̇
Λ̃

] = [
𝐶 𝑆
𝑇

𝑆 0

] [

𝑃̃

Λ̃

] + [

𝑏

ℎ
] , (6)

where 𝑇 = diag{𝜏𝑔1, 𝜏𝑔2, . . . , 𝜏𝑔𝑚, 𝜏𝑑1, 𝜏𝑑2, . . . , 𝜏𝑑𝑛}, 𝜏𝑔𝑖 > 0,
𝜏𝑑𝑗 > 0, 𝐶 = diag{−𝑐𝑔1, −𝑐𝑔2, . . . , −𝑐𝑔𝑚, 𝑐𝑑1, 𝑐𝑑2, . . . 𝑐𝑑𝑛}, Λ̃ =

[𝜆 𝜇1 ⋅ ⋅ ⋅ 𝜇𝑛𝑆
], 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑃̃ ∈ 𝑅

𝑚+𝑛,
Λ̃ ∈ 𝑅

𝑛𝑆+1, and 𝜇𝑘 is the Lagrange multiplier for 𝑘 = 1, 2, . . . ,
𝑛𝑆. The matrix 𝑆 corresponds to the sensitivities of the con-
straints:

[

[

[

[

[

1 ⋅ ⋅ ⋅ 1 −1 ⋅ ⋅ ⋅ −1

𝑠𝑔11 ⋅ ⋅ ⋅ 𝑠𝑔1𝑚 𝑠𝑑11 ⋅ ⋅ ⋅ 𝑠𝑑1𝑛
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.

.

.

.

.

.

.
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𝑠𝑔𝑛𝑆1
⋅ ⋅ ⋅ 𝑠𝑔𝑛𝑆𝑚

𝑠𝑑𝑛𝑆1
⋅ ⋅ ⋅ 𝑠𝑑𝑛𝑆𝑛

]

]

]

]

]

, (7)

where the first row represents the power balance condition;
𝑏 = [−𝑏𝑔1 −𝑏𝑔2 ⋅ ⋅ ⋅ −𝑏𝑔𝑚 𝑏𝑑1 𝑏𝑑2 ⋅ ⋅ ⋅ 𝑏𝑑𝑛]

𝑇 is a cost vector
of linear coefficients; ℎ = [0 ℎ1 ℎ2 ⋅ ⋅ ⋅ ℎ𝑛𝑆

]

𝑇 is a vector with
the value of the fixed demand in its first position and the
values of the right hand sides in the constraint equations in
the remaining positions.
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Because there is at least an equilibrium point in this sys-
tem, through the translation transformation, it can be de-
noted as follows:

[

𝑇 0

0 0
] [

𝑃̇

Λ̇

] = [
𝐶 𝑆
𝑇

𝑆 0

] [

𝑃

Λ
] . (8)

2.2. The Electricity Market Interval Model. In power market,
due to the influence of the related factors such as measure-
ment error, technical level, and other external interference,
the accurate values of some parameters cannot be obtained.
Therefore, interval theory should be introduced to describe
problems more appropriately.

There is the definition of interval matrix in the theory of
differential equations. If 𝐴 = (𝑢𝑖𝑗)𝑚×𝑛 and 𝐴 = (V𝑖𝑗)𝑚×𝑛 are
two matrices with property in which 𝑢𝑖𝑗 ≤ V𝑖𝑗 for any 1 ≤ 𝑖 ≤
𝑚 and 1 ≤ 𝑗 ≤ 𝑛, the 𝑚 × 𝑛 interval matrix [𝐴, 𝐴] is defined
by

[𝐴, 𝐴]

= {𝐴 = (𝑎𝑖𝑗)𝑚×𝑛
: 𝑢𝑖𝑗 ≤ 𝑎𝑖𝑗 ≤ V𝑖𝑗, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} .

(9)

Due to the influence of dynamic factors in electric-
ity market like economic growth, electricity consumption,
electricity price, supply, and demand, the demand elasticity
of suppliers and consumers continues to change within a
certain range instead of constants. In order to describe the
power market operation more accurately, it is necessary to
set up a power market model with demand elasticity interval
for suppliers and consumers, corresponding to the diagonal
elements of diagonal matrix𝐶within a certain interval in (6).
For coefficient matrix 𝐶, the range of each element is defined
by 𝑐
𝑔𝑖
< 𝑐𝑔𝑖 < 𝑐𝑔𝑖 and 𝑐𝑑𝑗 < 𝑐𝑑𝑗 < 𝑐𝑑𝑗. It is signified that

𝐶𝐼 = [𝐶, 𝐶], where

𝐶 = diag {−𝑐𝑔1, −𝑐𝑔2, . . . , −𝑐𝑔𝑚, 𝑐𝑑1, 𝑐𝑑2, . . . , 𝑐𝑑𝑛} ,

𝐶 = diag {−𝑐
𝑔1
, −𝑐
𝑔2
, . . . , −𝑐

𝑔𝑚
, 𝑐𝑑1, 𝑐𝑑2, . . . , 𝑐𝑑𝑛} .

(10)

Usually, there exists𝑚 + 𝑛 > 𝑛𝑆 + 1. Let rank(𝑆) = 𝑛𝑆 + 1
and 𝑆 = (𝑆1, 𝑆2), where 𝑆1 corresponds to a (𝑛𝑆 + 1) × (𝑛𝑆 + 1)
nonsingular submatrix of 𝑆. The matrices 𝑇 and 𝐶𝐼 can be
divided into the following form:

𝑇 = [

𝑇1 0

0 𝑇2

] , 𝐶𝐼 = [
𝐶1𝐼 0

0 𝐶2𝐼

] , (11)

where 𝑇1 and 𝐶1𝐼 are (𝑛𝑆 + 1) × (𝑛𝑆 + 1) diagonal matrices; 𝑇2
and𝐶2𝐼 are 𝑞×𝑞diagonalmatrices, and 𝑞 = (𝑚+𝑛)−(𝑛𝑆+1). In
a similar definition to the matrix 𝐶𝐼, 𝐶1𝐼 and 𝐶2𝐼 are interval
matrices 𝐶1𝐼 = [𝐶

1
, 𝐶1] and 𝐶2𝐼 = [𝐶

2
, 𝐶2], respectively.

Obviously, 𝐶1 ∈ 𝐶1𝐼 and 𝐶2 ∈ 𝐶2𝐼.
Therefore, the electricity market dynamic model (8) can

be improved by the following interval dynamic systemmodel:

[

[

𝑇1 0 0

0 𝑇2 0

0 0 0

]

]

[

[

𝑃̇1

𝑃̇2

Λ̇

]

]

=
[

[

𝐶1𝐼 0 𝑆
𝑇

1

0 𝐶2𝐼 𝑆
𝑇

2

𝑆1 𝑆2 0

]

]

[

[

𝑃1

𝑃2

Λ

]

]

. (12)

Since the matrix 𝑆1 is nonsingular, reduction and elimi-
nation to 𝑃1 yield the purely reduced differential equation as
follows:

−𝑇1𝑆
−1

1
𝑆2𝑃̇2 = −𝐶1𝐼𝑆

−1

1
𝑆2𝑃2 + 𝑆

𝑇

1
Λ. (13)

Obtaining Λ from (13) and substituting it into the second
group equation of (12), we can rewrite (12) as follows:

(𝑇2 + 𝑆
𝑇

3
𝑇1𝑆3) 𝑃̇2 = (𝐶2𝐼 + 𝑆

𝑇

3
𝐶1𝐼𝑆3) 𝑃2, (14)

where 𝑆3 = 𝑆
−1

1
𝑆2.

Let 𝑇3 = 𝑇2 + 𝑆
𝑇

3
𝑇1𝑆3; system (14) could be written as the

following interval dynamical system in electric powermarket:

𝑇3𝑑𝑃2 (𝑡) = (𝐶2𝐼 + 𝑆
𝑇

3
𝐶1𝐼𝑆3) 𝑃2 (𝑡) 𝑑𝑡. (15)

3. The Interval Stability Theorems

In this section, we consider the stability of interval dynamical
system (15) in electric power market. Let | ⋅ | denote the
Euclidean norm of a column vector in 𝑅

𝑛. If 𝐴 is a vector
or matrix, its transpose is denoted by 𝐴𝑇. If 𝐴 is a matrix,
its operator norm is denoted by ‖𝐴‖. If 𝐴 is a symmetric
matrix,𝜆max(𝐴) and𝜆min(𝐴) are used to signify its largest and
smallest eigenvalue, respectively.

According to the interval dynamical system theory of
differential equations, let us consider the following system:

𝑑𝑋 (𝑡) = 𝐴𝐼𝑋 (𝑡) 𝑑𝑡. (16)

Definition 1 (see [19]). If the equilibrium solution of system
(16) is asymptotically stable for any 𝐴𝐼 ∈ [𝐴, 𝐴], then the
system (16) is interval stable.

In [20], the differential operator 𝐿 is

𝐿 =

𝜕

𝜕𝑡

+

𝑛

∑

𝑖=1

𝑓𝑖 (𝑋, 𝑡)

𝜕

𝜕𝑥𝑖

, (17)

where 𝑓(𝑋, 𝑡) = 𝐴𝐼𝑋(𝑡).

Next, we give some preliminary lemmas, which play an
important role in the proof of our stability theorem.

Lemma 2 (see [15]). Let 𝐴𝑛×𝑛 be a real positive semidefinite
matrix and 𝑆𝑛×𝑟 a certain real matrix; then 𝐵 = 𝑆

𝑇
𝐴𝑆 is a

positive semidefinite matrix.

Lemma 3 (see [15]). The sum of positive definite matrix and
positive semidefinite matrix will be positive definite matrix;
the sum of negative definite matrix and negative semidefinite
matrix will be negative definite matrix; the sum of two positive
definite matrices will be positive definite matrix; the sum of two
negative definite matrices will be negative definite matrix.

Lemma 4 (see [21]). If 𝐴 is a 𝑛 × 𝑛 real symmetric positive
define matrix, then there must exist an invertible symmetric
matrix 𝐵 satisfying 𝐴 = 𝐵

2.
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Lemma 5 (see [21]). If 𝐴 is a 𝑛 × 𝑛 real symmetric matrix and
𝑥 is a 𝑛-dimensional column vector, then

𝜆min (𝐴) 𝑥
𝑇
𝑥 ≤ 𝑥

𝑇
𝐴𝑥 ≤ 𝜆max (𝐴) 𝑥

𝑇
𝑥. (18)

Lemma 6 (see [22]). If there is a continuous positive definite
function 𝑉(𝑡, 𝑥) on 𝐼 × 𝑅

𝑛 such that 𝐿𝑉 is negative definite
and there exist infinitesimally upper bound and infinitely great
lower bound for 𝑉(𝑡, 𝑥), then the system 𝑑𝑋(𝑡) = 𝐴𝑋(𝑡)𝑑𝑡 is
asymptotically stable.

Since 𝑇 = diag(𝜏𝑔1, . . . , 𝜏𝑔𝑚, 𝜏𝑑1, . . . , 𝜏𝑑𝑛) = diag(𝑇1, 𝑇2),
𝜏𝑔𝑖 > 0, 𝜏𝑑𝑗 > 0, the matrices 𝑇, 𝑇1, 𝑇2 are positive definite. By
Lemma 2, thematrix 𝑆𝑇

3
𝑇3𝑆3 is positive semidefinite.Then, by

Lemma 3, the matrix 𝑇3 = 𝑇2 + 𝑆
𝑇

3
𝑇1𝑆3 is symmetric positive

definite and reversible.
Equation (15) can be represented as a common interval

linear system:

𝑑𝑃2 (𝑡) = 𝑇
−1

3
(𝐶2𝐼 + 𝑆

𝑇

3
𝐶1𝐼𝑆3) 𝑃2 (𝑡) 𝑑𝑡. (19)

Let 𝐶1 = (1/2)(𝐶1 − 𝐶1) and 𝐶2 = (1/2)(𝐶2 − 𝐶2), which
indicates that all the elements of 𝐶1 and 𝐶2 are nonnegative.
Taking𝐶3 = 𝐶2+𝑆

𝑇

3
𝐶1𝑆3,𝐶1𝐼 = 𝐶1+Δ𝐶1, and𝐶2𝐼 = 𝐶2+Δ𝐶2,

then we have Δ𝐶1 ∈ [−𝐶1, 𝐶1] and Δ𝐶2 ∈ [−𝐶2, 𝐶2].
Alternatively, due to Lemma 4, there exists an invertible

matrix 𝑇33 such that 𝑇3 = (𝑇
−1

33
)
𝑇
𝑇
−1

33
. Substituting this into

(15) yields that

(𝑇
−1

33
)

𝑇

𝑇
−1

33
𝑑𝑃2 (𝑡) = [𝐶3 + (Δ𝐶2 + 𝑆

𝑇

3
Δ𝐶1𝑆3)] 𝑃2 (𝑡) 𝑑𝑡.

(20)

By (𝑇−1
33
)
𝑇
= (𝑇
𝑇

33
)
−1, we have

𝑇
−1

33
𝑑𝑃2 (𝑡) = 𝑇

𝑇

33
[𝐶3 + (Δ𝐶2 + 𝑆

𝑇

3
Δ𝐶1𝑆3)] 𝑇33𝑇

−1

33
𝑃2 (𝑡) 𝑑𝑡.

(21)

Put 𝑋(𝑡) = 𝑇
−1

33
𝑃2(𝑡); then 𝑑𝑋(𝑡) = 𝑇

−1

33
𝑑𝑃2(𝑡). Equation

(21) can be transformed into

𝑑𝑋 (𝑡) = 𝑇
𝑇

33
[𝐶3 + (Δ𝐶2 + 𝑆

𝑇

3
Δ𝐶1𝑆3)] 𝑇33𝑋(𝑡) 𝑑𝑡. (22)

Theorem 7. Assume that there exists a real symmetric positive
definite matrix 𝑄 such that

ℎ1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇
−1

33
𝑃2

󵄨
󵄨
󵄨
󵄨
󵄨

2

≤ (𝑇
−1

33
𝑃2)

𝑇

𝑄𝑇
−1

33
𝑃2 ≤ ℎ2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇
−1

33
𝑃2

󵄨
󵄨
󵄨
󵄨
󵄨

2

,

𝜆max (𝑄
1/2
𝑇
𝑇

33
𝐶3𝑇33𝑄

−1/2
+ 𝑄
−1/2

𝑇
𝑇

33
𝐶3𝑇33𝑄

1/2
)

+ 2
󵄩
󵄩
󵄩
󵄩
𝑇33

󵄩
󵄩
󵄩
󵄩

2
⋅ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶2

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶1

󵄩
󵄩
󵄩
󵄩
󵄩
⋅
󵄩
󵄩
󵄩
󵄩
𝑆3

󵄩
󵄩
󵄩
󵄩

2
) ⋅ √

‖𝑄‖

ℎ1

< 0,

(23)

where ℎ1, ℎ2 are positive constants; then the interval dynamical
system (15) is interval stable.

Proof. Considering the interval linear system (22), we choose
the following Lyapunov function:𝑉(𝑡, 𝑋) =𝑋𝑇𝑄𝑋. According
to the condition ℎ1|𝑇

−1

33
𝑃2|
2
≤ (𝑇
−1

33
𝑃2)
𝑇
𝑄𝑇
−1

33
𝑃2 ≤ ℎ2|𝑇

−1

33
𝑃2|
2,

we get ℎ1|𝑋|
2
≤ 𝑋
𝑇
𝑄𝑋 ≤ ℎ2|𝑋|

2. Therefore, there exist
infinitesimally upper bound and infinitely great lower bound
for 𝑉(𝑡, 𝑋).

Owing to (𝜕/𝜕𝑡)(𝑋𝑇𝑄𝑋) = 0, applying the 𝐿-operator to
(15), we obtain

𝐿𝑉 =

𝑘

∑

𝑖=1

𝑓𝑖 (𝑋, 𝑡)

𝜕

𝜕𝑥𝑖

(𝑋
𝑇
𝑄𝑋) = 2𝑋

𝑇
𝑄𝑓 (𝑋, 𝑡)

= 2𝑋
𝑇
𝑄𝑇
𝑇

33
𝐶3𝑇33𝑋 + 2𝑋

𝑇
𝑄𝑇
𝑇

33
(Δ𝐶2 + 𝑆

𝑇

3
Δ𝐶1𝑆3) 𝑇33𝑋.

(24)

By Lemma 5, the first items on the right are yielded as
follows:

2𝑋
𝑇
𝑄𝑇
𝑇

33
𝐶3𝑇33𝑋

= 𝑋
𝑇
[𝑄
1/2
(𝑄
1/2
𝑇
𝑇

33
𝐶3𝑇33𝑄

−1/2

+𝑄
−1/2

𝑇
𝑇

33
𝐶3𝑇33𝑄

1/2
)𝑄
1/2
]𝑋

= (𝑄
1/2
𝑋)

𝑇

(𝑄
1/2
𝑇
𝑇

33
𝐶3𝑇33𝑄

−1/2

+𝑄
−1/2

𝑇
𝑇

33
𝐶3𝑇33𝑄

1/2
)𝑄
1/2
𝑋

≤ 𝜆max (𝑄
1/2
𝑇
𝑇

33
𝐶3𝑇33𝑄

−1/2
+ 𝑄
−1/2

𝑇
𝑇

33
𝐶3𝑇33𝑄

1/2
)𝑋
𝑇
𝑄𝑋.

(25)

As is well known, there is 2𝑎𝑏 ≤ 𝜀𝑎2 + 𝑏2/𝜀 for any 𝜀 > 0.
Hence, the second item on the right becomes

2𝑋
𝑇
𝑄𝑇
𝑇

33
(Δ𝐶2 + 𝑆

𝑇

3
Δ𝐶1𝑆3) 𝑇33𝑋

≤ 2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑇
𝑄
1/2󵄨󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑄
1/2
𝑇
𝑇

33
(Δ𝐶2 + 𝑆

𝑇

3
Δ𝐶1𝑆3) 𝑇33𝑋

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑇
𝑄
1/2󵄨󵄨
󵄨
󵄨
󵄨

2

+

1

𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
𝑄
1/2
𝑇
𝑇

33
(Δ𝐶2 + 𝑆

𝑇

3
Δ𝐶1𝑆3) 𝑇33𝑋

󵄨
󵄨
󵄨
󵄨
󵄨

2

= 𝜀𝑋
𝑇
𝑄𝑋 +

1

𝜀

𝑋
𝑇
𝑇
𝑇

33
(Δ𝐶2 + 𝑆

𝑇

3
Δ𝐶1𝑆3) 𝑇33𝑄𝑇

𝑇

33

× (Δ𝐶2 + 𝑆
𝑇

3
Δ𝐶1𝑆3) 𝑇33𝑋

≤ 𝜀𝑋
𝑇
𝑄𝑋 +

1

𝜀

‖𝑄‖ ⋅
󵄩
󵄩
󵄩
󵄩
𝑇33

󵄩
󵄩
󵄩
󵄩

4
⋅

󵄩
󵄩
󵄩
󵄩
󵄩
(Δ𝐶2 + 𝑆

𝑇

3
Δ𝐶1𝑆3)

󵄩
󵄩
󵄩
󵄩
󵄩

2

⋅ |𝑋|
2
.

(26)

Using the properties of matrix norm, we can conclude

󵄩
󵄩
󵄩
󵄩
󵄩
(Δ𝐶2 + 𝑆

𝑇

3
Δ𝐶1𝑆3)

󵄩
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
Δ𝐶2

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
Δ𝐶1

󵄩
󵄩
󵄩
󵄩
⋅
󵄩
󵄩
󵄩
󵄩
𝑆3

󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶2

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶1

󵄩
󵄩
󵄩
󵄩
󵄩
⋅
󵄩
󵄩
󵄩
󵄩
𝑆3

󵄩
󵄩
󵄩
󵄩

2
.

(27)
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The condition ℎ1|𝑋|
2
≤ 𝑋
𝑇
𝑄𝑋 can be turned into |𝑋|2 ≤

𝑋
𝑇
𝑄𝑋/ℎ1, putting it into (26) to get

2𝑋
𝑇
𝑄𝑇
𝑇

33
(Δ𝐶2 + 𝑆

𝑇

3
Δ𝐶1𝑆3) 𝑇33𝑋

≤ (𝜀 +

‖𝑄‖ ⋅
󵄩
󵄩
󵄩
󵄩
𝑇33

󵄩
󵄩
󵄩
󵄩

4
⋅ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶2

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶1

󵄩
󵄩
󵄩
󵄩
󵄩
⋅
󵄩
󵄩
󵄩
󵄩
𝑆3

󵄩
󵄩
󵄩
󵄩

2
)

2

𝜀 ⋅ ℎ1

)𝑋
𝑇
𝑄𝑋.

(28)

Choosing 𝜀 = ‖𝑇33‖
2
⋅ (‖𝐶2‖ + ‖𝐶1‖ ⋅ ‖𝑆3‖

2
) ⋅ √‖𝑄‖/ℎ1,

hence,

2𝑋
𝑇
𝑄𝑇
𝑇

33
(Δ𝐶2 + 𝑆

𝑇

3
Δ𝐶1𝑆3) 𝑇33𝑋

≤ 2
󵄩
󵄩
󵄩
󵄩
𝑇33

󵄩
󵄩
󵄩
󵄩

2
⋅ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶2

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶1

󵄩
󵄩
󵄩
󵄩
󵄩
⋅
󵄩
󵄩
󵄩
󵄩
𝑆3

󵄩
󵄩
󵄩
󵄩

2
) ⋅ √

‖𝑄‖

ℎ1

⋅ 𝑋
𝑇
𝑄𝑋.

(29)

Substituting (25) and (29) into (24), it can be yielded as

𝐿𝑉 ≤ [𝜆max (𝑄
1/2
𝑇
𝑇

33
𝐶3𝑇33𝑄

−1/2
+ 𝑄
−1/2

𝑇
𝑇

33
𝐶3𝑇33𝑄

1/2
)

+ 2
󵄩
󵄩
󵄩
󵄩
𝑇33

󵄩
󵄩
󵄩
󵄩

2
⋅ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶2

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶1

󵄩
󵄩
󵄩
󵄩
󵄩
⋅
󵄩
󵄩
󵄩
󵄩
𝑆3

󵄩
󵄩
󵄩
󵄩

2
) ⋅ √

‖𝑄‖

ℎ1

]𝑋
𝑇
𝑄𝑋.

(30)

When

𝜆max (𝑄
1/2
𝑇
𝑇

33
𝐶3𝑇33𝑄

−1/2
+ 𝑄
−1/2

𝑇
𝑇

33
𝐶3𝑇33𝑄

1/2
)

+ 2
󵄩
󵄩
󵄩
󵄩
𝑇33

󵄩
󵄩
󵄩
󵄩

2
⋅ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶2

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶1

󵄩
󵄩
󵄩
󵄩
󵄩
⋅
󵄩
󵄩
󵄩
󵄩
𝑆3

󵄩
󵄩
󵄩
󵄩

2
) ⋅ √

‖𝑄‖

ℎ1

< 0

(31)

there exists ℎ3 > 0 such that 𝐿𝑉 < −ℎ3 ⋅ 𝑉, so 𝐿𝑉 is negative
definite. Summing up the above, the interval dynamical
system (15) is asymptotically stable for any𝐶1 ∈ 𝐶1𝐼 and𝐶2 ∈
𝐶2𝐼 by Lemma 6. According to the definition, the interval
dynamical system (15) is interval stable.

For the sake of simplicity, in particular, let 𝑄 = 𝐸; choos-
ing ℎ1 = ℎ2 = 1, then the following corollary can be con-
cluded.

Corollary 8. If 𝜆max(𝑇
𝑇

33
𝐶3𝑇33) + (‖𝐶2‖ + ‖𝐶1‖ ⋅ ‖𝑆3‖

2
)‖𝑇33‖

2

< 0, then the interval dynamical system (15) in electricity mar-
ket is interval stable.

Targeted to the interval dynamical system in electricity
market, the corollary puts forward a concise decision con-
dition for analyzing the stability of this power system. It is
indicated that we can judge the system stability by available
data and provide the stability scopes of demand elasticity for
suppliers and consumers. Next, we will illustrate it through a
specific example below.

4. The Numerical Example

In this section, we will use the theorem of interval stability
to analyze specific interval model (15) in electricity market,

verifying the validity of the theorem. Linear system (19) is the
equivalent deformation of interval dynamical system (15). In
order tomake the result more clear and facilitate data analysis
and numerical simulation for power market interval model,
the following will make a case analysis in power market
dynamic system (19).

The original data comes from Table 4 in literature [2].
Corresponding to the congestion condition 𝑛𝑆 = 2 of three
suppliers and two consumers, the demand elasticity of each
supplier is 0.3, 0.5, and 0.2 and response speeds of generation
power output are 0.1, 0.3, and 0.2, respectively; the demand
elasticity of each consumer is −0.5 and −0.6 and expansion
speeds of each consumer demand are 0.2 and 0.25, respec-
tively; the steady-state values of each electricity demand are
7.68 and 8.05, respectively. Consider

𝑆1 =
[

[

1 1 1

0.1 −0.1 0

0.2 0 0.3

]

]

, 𝑆2 =
[

[

−1 −1

0.1 −0.1

−0.1 −0.1

]

]

. (32)

Based on these data, there are

𝐶1 = diag {−0.3, −0.5, −0.2} , 𝐶2 = diag {−0.5, −0.6} ,

𝑇3 = [0.425, −0.025; −0.025, 0.475] ,

𝑆3 = [0.25, −1.25; −0.75, −0.25; −0.5, 0.5] ,

𝑃2 (𝑡) = [𝑃𝑑1 (𝑡) , 𝑃𝑑2 (𝑡)]
𝑇
.

(33)

Using the corollary above, we can calculate the detailed
range of demand elasticity for suppliers and consumers as
follows:

0.07 < 𝑐𝑔1 < 0.53; 0.29 < 𝑐𝑔2 < 0.71;

−0.03 < 𝑐𝑔3 < 0.43; −0.85 < 𝑐𝑑1 < −0.15;

−0.961 < 𝑐𝑑2 < −0.239.

(34)

Therefore,

𝐶1 = diag {0.23, 0.21, 0.23} , 𝐶2 = diag {0.35, 0.361} .
(35)

We compute

𝜆max (𝑇
𝑇

33
𝐶3𝑇33) + (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶2

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐶1

󵄩
󵄩
󵄩
󵄩
󵄩
⋅
󵄩
󵄩
󵄩
󵄩
𝑆3

󵄩
󵄩
󵄩
󵄩

2
)
󵄩
󵄩
󵄩
󵄩
𝑇33

󵄩
󵄩
󵄩
󵄩

2

= −0.0113 < 0,

(36)

fulfilling the conditions of the corollary, so this system is
interval stable, which means that the system is stable as long
as the demands elasticity range within the given interval.
So as to illustrate the validity of the theoretical analysis, we
select four different typical sets of data about the demand
elasticity of suppliers and consumers.The relevant coefficient
matrices and figures of each set in system (19) are computed
and simulated by MATLAB. The details about the results are
shown in Table 1 and Figures 1, 2, 3, and 4.
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Table 1: The eigenvalues of coefficient matrices with different parameters.

𝑐
𝑔1

𝑐
𝑔2

𝑐
𝑔3

𝑐
𝑑1

𝑐
𝑑2

Coefficient matrix 𝜆
1

𝜆
2

Figure

0.07 0.29 −0.03 −0.85 −0.961 [

−0.737 −0.139

−0.123 −0.763

] −0.881 −0.618 Figure 1

0.30 0.50 0.20 −0.50 −0.60 [

−0.200 −0.025

0.000 −2.422

] −2.422 −2.000 Figure 2

0.13 0.63 −0.01 −0.75 −0.32 [

−2.630 −0.258

−0.307 −1.193

] −2.683 −1.140 Figure 3

0.53 0.71 0.43 −0.15 −0.239 [

−3.263 −0.089

0.123 −4.082

] −4.095 −3.250 Figure 4

0 1 2 3 4 5 6 7 8 9
7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

×10
4

t (s)

Pd1(t) Pd2(t)
Steady state value of Pd1(t) Steady state value of Pd2(t)

Figure 1: Value change of 𝑃
𝑑1

and 𝑃
𝑑2

with Δ𝐶
1
= diag{0.23, 0.21,

0.23} and Δ𝐶
2
= diag{−0.35, −0.361}.
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Figure 2: Value change of 𝑃
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with Δ𝐶

1
= diag{0, 0, 0} and

Δ𝐶
2
= diag{0, 0}.
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Figure 3: Value change of 𝑃
𝑑1

and 𝑃
𝑑2

with Δ𝐶
1
= diag{0.17, 0.13,

0.21} and Δ𝐶
2
= diag{−0.25, 0.28}.
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−0.23} and Δ𝐶
2
= diag{0.35, 0.361}.
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The eigenvalues of the coefficient matrix with different
demand elasticity are provided in Table 1, including the
endpoints and interior points of demand elasticity interval.
The accurate change intervals are Δ𝐶1 = diag{0.23, 0.21,
0.23}, Δ𝐶2 = diag{−0.35, −0.361}; Δ𝐶1 = diag{0, 0, 0}, Δ𝐶2 =
diag{0, 0}; Δ𝐶1 = diag{0.17, 0.13, 0.21}, Δ𝐶2 = diag{−0.25,
0.28}; Δ𝐶1 = diag{−0.23, −0.21, −0.23}, Δ𝐶2 = diag{0.35,
0.361}, respectively.

It can be turned out that the eigenvalues of the coefficient
matrix are negative so long as the values of demand elasticity
are in the interval, which means that the system is always
stable in electricity market on this condition. It can be seen
that all the values of 𝑃2(𝑡) tend to be stable over time in
Figures 1 to 4, that is to say, the trends of electricity demand
toward steady-state values, accounting for the asymptotic
stability of system (19). The calculation results are consistent
with the theoretical analysis above, which explains and
verifies the effectiveness of the theorem and corollary.

5. Conclusions

Based on the electricity market dynamic model proposed
by Alvarado, an interval dynamical system model is set up
in power market under the consideration that the demand
elasticity of suppliers and consumers continues to change
within a certain range instead of constants. Targeted to the
interval model, the sufficient determined conditions of inter-
val stability are derived by constructing a suitable Lyapunov
function and using the theory of interval dynamical system
in differential equations and matrix inequality theory and so
forth. It is concluded that the conditions can judge the system
stability by available data about demand elasticity of suppliers
and demands. Finally, the results of numerical examples are
consistent with the stability analysis. The numerical simula-
tion illustrates that the determined conditions of stability are
effective, practical, and advantageous. The research method
of this paper is expected to analyze the stability of power
market with random disturbances in future.
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