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A recursive subspace identification algorithm for autonomous underwater vehicles (AUVs) is proposed in this paper. Due to
the advantages at handling nonlinearities and couplings, the AUV model investigated here is for the first time constructed as a
Hammersteinmodelwith nonlinear feedback in the linear part. To better take the environment and sensor noises into consideration,
the identification problem is concerned as an errors-in-variables (EIV) one which means that the identification procedure is
under general noise assumption. In order to make the algorithm recursively, propagator method (PM) based subspace approach
is extended into EIV framework to form the recursive identification method called PM-EIV algorithm. With several identification
experiments carried out by the AUV simulation platform, the proposed algorithm demonstrates its effectiveness and feasibility.

1. Introduction

In recent years, autonomous underwater vehicles (AUVs)
have attracted increasing attentions due to their remarkable
features such as high agility, excellent convenience and low
cost in applications of underwater explorations and develop-
ments. However, contradictions lay between more and more
complicated missions for AUV and the control and naviga-
tion systems that are not accurate enough. System identifi-
cation methods have provided an alternative way other than
traditional expensive instruments dependent approaches to
improve the abilities of autonomous systems in various
aspects [1–5]. As a result, a variety of researches have been put
forward to identify the ordinary differential model of AUVs
for model based control and navigation. Rentschler and
coworkers [1] have demonstrated an iterative procedure to
revise the model and controller of Odyssey III AUV to
obtain better flight performances. Nonlinear observers based
identification algorithmwith slidingmode observer and EKF
is also proposed for designation of nonlinear controller in [2].
For a more robust navigation system in case of sensor fault,
Hegrenaes and Hallingstad [3] have used least squares algo-
rithm to estimate both sea current disturbances and model

parameters of the HUGIN 4500 AUV. However, due to the
complexity of AUV system, many nonlinearities and coupled
terms exist in ordinary differential equations that make the
identification of whole pack of hydrodynamic coefficients
quite complicated and time consuming. As a consequence,
AUVdifferential model usually need to be simplified through
eliminations of nonlinear and coupled terms before identifi-
cation process. For example, in the research of Tiano et al. [6],
a set of decoupled AUV models concerning different degree
of freedom were set up and the yaw dynamics of the Ham-
merhead AUV was identified according to observer Kalman
filter identification (OKID) method. However, nonlinearities
and couplings are two significant features being researched in
the area of AUV, so as it is said in [6], construction of MIMO
coupled AUV model is a rather important and challenging
modeling issue.

In this paper, compared with the traditional differential
equation used in AUV modeling, a Hammerstein model
which consists of a static nonlinear part and a dynamic linear
one is adopted in order to deal with nonlinear and linear
property of AUV system separately. Due to the particular
characteristics of AUV system, the Hammerstein model has
to be modified with a static nonlinear feedback part added
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on the linear part. As illustrated in Figure 1, one remarkable
benefit of Hammerstein system is that it possesses advantages
of linear MIMO system and can approximate nonlinear and
coupled terms of AUV to a large extent at the same time.
To the best of the authors’ acknowledge, this is the first
time that Hammerstein model is applied in the area of AUV
modeling. Because of the conveniences brought by Hammer-
stein system, extensive attentions has been paid to obtain
system parameters from input/output data. Cai and Bai [7]
proposed a method to make the identification of parametric
Hammerstein system a linear problem through regarding
the average squared error cost function as the inner prod-
uct between the true but unknown parameter vector and
its estimations. But this method was discussed under the
assumption that Hammerstein system only consists of single
input and single output. As to MIMO Hammerstein system
identification, a nonparametric algorithmbased on stochastic
approximation approach is proposed in [8]. However, nonlin-
ear MIMO Hammerstein identification problem concerned
in this paper is still challenging.

One group of widely studiedMIMO system identification
algorithms for Hammerstein system is subspace identifi-
cation methods [9], which mainly include three different
branches: numerical algorithms for state-space subspace sys-
tem identification (N4SID), MIMO output-error state-space
model identification (MOESP) and canonical variate analy-
sis (CVA). Compared with other identification algorithms,
subspace identification methods are more attractive due to
several advantages [10]. For example, subspace identification
methods can circumvent the complicated parameterization
procedure forMIMOsystemof prediction errormethods [11].
What ismore, subspace identificationmethods do not require
nonlinear searches in the parameter space based on com-
putational tools such as QR factorization and singular value
decomposition (SVD) [12]. Since the Hammerstein AUV
model is a parametric onewithmultiinputs andmultioutputs,
MIMO MOESP algorithm is adopted as the theoretical basis
for further investigation in this paper.

In addition, instead of regarding the identification proce-
dure in ideal situations, practical engineering circumstances
need to be taken into consideration. A widely studied one
is that the general noise assumption has to be made which
means “the measured input is corrupted by a white measure-
ment noise while the measured output is corrupted by the
sum of a white measurement noise and a term due to a white
process noise” [13]. Another practical situation which need to
be considered is that different oceanic environment may lead
to different hydrodynamic coefficients in which case off-line
identification results of Hammerstein AUV model will bring
errors to control and navigation systems [14]. Besides, it
is often the case that the structure of AUV usually has
to be modified mildly in order to fulfill various tasks in
practice. Therefore, recursive identification methods which
can adjustmodel parameters online become rather significant
and attractive in applications of such as adaptive control,
model-aided navigation and so on.

As a result, in order to fulfill the situations concerned
above, the identification of Hammerstein AUV model is
regarded as an errors-in-variables (EIV) problem in this
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Figure 1: Hammerstein AUVModel.

paper and we are going to make the MOESP method recur-
sively under EIV framework so, as to carry out recursive iden-
tification algorithm for the Hammerstein AUV model. One
major obstacle in recursive subspace identification is the
increasing computational complexity of SVD [15, 16]. In
previous studies, projection approximation subspace tracking
(PAST) algorithm designed by Yang [17] was widely used to
update the SVD. However, approximation in the algorithm
will bring slight difference between identified model and the
original one. In addition, IV-PAST algorithm [18] and gradi-
ent type subspace tracking method [19] are also developed to
estimate the signal subspace. In [20], an instrumental variable
propagator method (IVPM) based recursive identification
algorithmwas proposed.Nevertheless, the paper only studied
the method within past input (PI)/past output (PO) MOESP
framework. So in this paper, combining with Hammerstein
AUV identification problem described above, IVPMmethod
is extended into EIV framework and the PM-EIV algorithm
for recursive subspace identification of errors-in-variables
problem is derived. Compared with previous algorithms
mentioned, the PM-EIV algorithm is more suitable to handle
the MIMO AUV Hammerstein model identification prob-
lems under errors-in-variables framework recursively. As a
matter of fact, since the Hammerstein model constructed can
be viewed as a generalized one for mechanical systems, the
proposed PM-EIV can be extended to identification of other
systems as well.

The remainder of this paper is organized as follows. In
Section 2, a Hammerstein AUV model with nonlinear feed-
back is formed with proper transformation from an ordinary
differential one. Then the linearization process of nonlinear
part is presented. In Section 3, the MOESP identification
method is described with no consideration about the system
noise. After that, a recursive subspacemethod called PM-EIV
is derived under the general noise assumption. Identification
and validation of theHammersteinAUVmodel are presented
in Section 4. At last, conclusions are made in Section 5.

Some notations used in this paper are followed. The
superscript (⋅)𝑇 denotes the transposition operator. 𝐸(⋅) is the
expectation operator. R𝑚×𝑛 represents the set of 𝑚 × 𝑛 real
matrices.𝑀⊥ is the orthogonal complement of𝑀.

2. AUV Modeling

In this section, a Hammerstein AUV model is formed after
introducing the ordinary differential one. Then in order to
make the Hammerstein AUV model suitable for subspace
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identification method, linearization of the nonlinear part is
brought out.

2.1. Hammerstein AUV Model. According to [21], a coupled
nonlinear ordinary differential model for AUV based on
Newtonian mechanics can be described as the following
equation:

𝑀]̇ + 𝐶 (]) ] + 𝐷 (]) ] = 𝜏, (1)

where ] ∈ R6 represents the state vector of AUV,𝑀 ∈ R6 × 6
consists of inertia matrix and add mass matrix,𝐷(]) ∈ R6 × 6
is the linear and quadratic damping matrix, 𝐶(]) ∈ R6 × 6
is the coriolis and centripetal matrix, 𝜏 ∈ R6 represents the
forces and moments acted on the vehicle.

The coupled and nonlinear terms inmatrix𝐷(]) and𝐶(])
make the identification process quite complicated and time
consuming. To obtain Hammerstein model of AUV, simpli-
fications and transformations have to be made. First, some
coupled terms with little influences are eliminated. Second,
the nonlinear terms are separated from the system and
the system is divided into static nonlinear input part and
nonlinear feedback part. Then, remaining nonlinear and
coupled terms constitute the nonlinear feedback part. At last,
the remaining part of the model can be described as a linear
MIMO state-space model. After those steps, a Hammerstein
AUV model with nonlinear feedback part can be formed as
in Figure 1. 𝑑(𝑘), 𝜐(𝑘), and 𝜔(𝑘) are process noise, input mea-
surement noise, and output measurement noise respectively.

According to the system structure above, define the
nonlinear input function as 𝑓(⋅), nonlinear feedback as
𝑔(⋅), so discrete time MIMO state-space equations can be
constructed as below.

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵1𝑓 (𝑢 (𝑘)) + 𝐵2𝑔 (𝑦 (𝑘)) + 𝑑 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷1𝑓 (𝑢 (𝑘)) + 𝐷2𝑔 (𝑦 (𝑘)) ,

𝑦 (𝑘) = 𝑦 (𝑘) + 𝜔 (𝑘) ,

�̃� (𝑘) = 𝑢 (𝑘) + 𝜐 (𝑘) ,

(2)

where 𝑥(𝑘) ∈ 𝑅6 represent the system states, 𝑢(𝑘) ∈ 𝑅3 are the
system inputs including thruster revolution, rudder deflec-
tion, and elevator deflection, 𝑦(𝑘) ∈ 𝑅6 is output vector, con-
sists of 𝑢, V, 𝑤, 𝑝, 𝑞, 𝑟 that represents the surge velocity, sway
velocity, heave velocity, roll rate, pitch rate, yaw rate respec-
tively. 𝐴, 𝐵

1
, 𝐵
2
, 𝐶, 𝐷

1
, and 𝐷

2
are the corresponding linear

subsystem matrices with appropriate dimensions. �̃�(𝑘), 𝑦(𝑘)
are corrupted system inputs and outputs.

Many identification methods have focused on handling
output measurement noise and process noise. In fact, input
measurement noise is inevitable in any engineering processes
including practical identification experiments. So in this
paper, 𝑑(𝑘), 𝜐(𝑘), and 𝜔(𝑘) are considered under the general
noise assumption.

2.2. Linearization of AUV Model. According to the
Section 2.1, AUV model can be described as Hammerstein
one with nonlinear feedback. In order to identify the

parameters of corresponding matrices, nonlinearity in
the equations needs to be linearly parameterized so that
recursive subspace identification methods can be applied.
One traditional approach to approximate nonlinearity of
the system is linear combination of basic functions. In
Lovera [12], Tchebiceff polynomials are chosen to linearize
nonlinearities. However, as the system studied in this paper
contains nonlinear feedback part, Tchebiceff polynomials
approximation of 𝑔(⋅) will influence the identifiability
of system matrix. So in this paper, truncated Fourier
series described in Luo and Leonessa [22], also known as
trigonometric polynomials are adopted to linearize the
nonlinear functions 𝑓(⋅) and 𝑔(⋅). Define the basic function
as follows:

𝜑
𝑘 (𝑥) = 1, 𝑘 = 0,

𝜑
𝑘 (𝑥) = [cos(

𝑘𝜋 (𝑥 − 𝑥
𝑚
)

𝑥
𝑑

) sin(
𝑘𝜋 (𝑥 − 𝑥

𝑚
)

𝑥
𝑑

)]

𝑇

,

𝑘 ≥ 1.

(3)

Then nonlinear function can be approximated by follow-
ing equation:

𝐹 (𝑥) = 𝑤
𝑜
+

𝑁

∑
𝑖=1

𝑤
𝑖
𝜑
𝑖 (𝑥) , (4)

where 𝑥
𝑚

= (𝑥max + 𝑥min)/2, 𝑥𝑑 = (𝑥max − 𝑥min)/2, and
𝑤
𝑖
= [𝑤𝑖 cos 𝑤

𝑖 sin]. Since the Hammerstein AUV model is
MIMO, define Φ(𝑥) = [𝜑𝑇

0
(𝑥) 𝜑𝑇

1
(𝑥) ⋅ ⋅ ⋅ 𝜑𝑇

𝑁
(𝑥)]
𝑇

, 𝑊 =

[𝑤0 𝑤1 ⋅ ⋅ ⋅ 𝑤𝑁]; then 𝑓(⋅), 𝑔(⋅) can be expressed as:

𝑓 (𝑢) = [𝑊𝑇
𝑢1

𝑊𝑇
𝑢2

⋅ ⋅ ⋅ 𝑊𝑇
𝑢𝑟
]
𝑇

⋅ [Φ
𝑇 (𝑢
1
) Φ
𝑇 (𝑢
2
) ⋅ ⋅ ⋅ Φ

𝑇 (𝑢
𝑚
)]
𝑇

,

𝑔 (𝑦) = [𝑊
𝑇

𝑦1
𝑊𝑇
𝑦2

⋅ ⋅ ⋅ 𝑊𝑇
𝑦𝑠
]
𝑇

⋅ [Φ𝑇 (𝑦
1
) Φ𝑇 (𝑦

2
) ⋅ ⋅ ⋅ Φ𝑇 (𝑦

𝑙
)]
𝑇

,

(5)

where 𝑚 = 3, 𝑙 = 6, and corresponding coefficient vector
𝑊
𝑢𝑖

∈ 𝑅1 × 3(2𝑁+1) and 𝑊
𝑦𝑖

∈ 𝑅1 × 6(2𝑁+1). A simplified
expression for nonlinear part can be presented as follows:

𝑓 (𝑢) = 𝐾𝜉 (𝑢) ,

𝑔 (𝑦) = 𝑃𝜁 (𝑦) ,
(6)

with definitions that
𝜉(𝑢)

Δ

= [Φ𝑇(𝑢
1
) Φ𝑇(𝑢

2
) ⋅ ⋅ ⋅ Φ𝑇(𝑢

𝑚
)]
𝑇

, 𝐾
Δ

=

[𝑊𝑇
𝑢1

𝑊𝑇
𝑢2

⋅ ⋅ ⋅ 𝑊𝑇
𝑢𝑟
]
𝑇

. The equation for 𝑔(𝑦) can also
be formed in a similar principle. Then a new state-space
model with no nonlinearity can be described as follow:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) +𝑀1𝜉 (𝑢 (𝑘)) + 𝑀2𝜁 (𝑦 (𝑘)) + 𝑑 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝑁1𝜉 (𝑢 (𝑘)) + 𝑁2𝜁 (𝑦 (𝑘)) ,

(7)
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where 𝑀
1

= 𝐵
1
𝐾 ∈ 𝑅𝑛×3(2𝑁+1), 𝑀

2
= 𝐵

2
𝑃 ∈

𝑅𝑛×6(2𝑁+1), 𝑁
1
= 𝐷
1
𝐾 ∈ 𝑅𝑙×3(2𝑁+1), and 𝑁

2
= 𝐷
2
𝑃 ∈

𝑅𝑙×6(2𝑁+1) represent new coefficients matrices, 𝜉(𝑢(𝑘)) ∈

𝑅3(2𝑁+1)×1, 𝜁(𝑦(𝑘)) ∈ 𝑅6(2𝑁+1)×1, respectively represent the
input vector and the feedback vector. Further, define 𝑀 =

[𝑀1 𝑀2], 𝑁 = [𝑁1 𝑁2], 𝑒(𝑘) = [𝜉𝑇(𝑢(𝑘)) 𝜁𝑇(𝑦(𝑘))]
𝑇

as
the system matrix and input vector and the Hammerstein
AUV model can be presented in classical form:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝑀𝑒 (𝑘) + 𝑑 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝑁𝑒 (𝑘) .
(8)

By now, a Hammerstein AUV model is established and
has been linearized based on trigonometric polynomials with
a description as in (8) being obtained. In the following
section, a recursive subspace method to identify the system
under EIV frame will be derived.

3. Recursive Subspace Identification Method

In this section, the PM-EIV subspace identification method
for the Hammerstein AUVmodel will be proposed. To better
illustrate themethod, theMOESP algorithm have to be intro-
duced first to lay the foundation so that the PM-EIV method
can be derived. Before that, several assumptions have to be
made.

Assumption 1. The difference between the nonlinear func-
tions 𝑓(⋅), 𝑔(⋅) and their linear approximations respectively,
can be neglected.

Assumption 2. Persistent exciting condition is satisfied
according to the definition from Ljung [23].

Assumption 3. The system noise sequences 𝑑(𝑘), 𝜐(𝑘), and
𝜔(𝑘) are white noises independent from each other.

3.1. MOESP Identification Method. The fundamental feature
of MOESP method is to estimate the extended observer
matrix of the system based on input/output data.Then system
matrices can be obtained through applying least-squares
algorithms. To give a brief introduction of MOESP method,
system noises are assumed to be zero in this section, that is
𝑑(𝑘) ≡ 0, 𝜐(𝑘) ≡ 0 and 𝜔(𝑘) ≡ 0. According to Verhaegen
[24], The following equations need to be formed firstly.

𝑌
𝑗,𝑖,𝑁

= Γ
𝑖
𝑋
𝑗,𝑁

+ 𝐻
𝑖
𝐸
𝑗,𝑖,𝑁 (9)

with definitions of 𝑌
𝑗,𝑖,𝑁

, 𝑋
𝑗,𝑁

, and 𝐸
𝑗,𝑖,𝑁

as follows:

𝑌
𝑗,𝑖,𝑁

=
[
[

[

𝑦
𝑗

⋅ ⋅ ⋅ 𝑦
𝑗+𝑁−1

... d
...

𝑦
𝑗+𝑖−1

⋅ ⋅ ⋅ 𝑦
𝑗+𝑁+𝑖−2

]
]

]

,

𝐸
𝑗,𝑖,𝑁

=
[
[

[

𝑒
𝑗

⋅ ⋅ ⋅ 𝑒
𝑗+𝑁−1

... d
...

𝑒
𝑗+𝑖−1

⋅ ⋅ ⋅ 𝑒
𝑗+𝑁+𝑖−2

]
]

]

,

𝑋
𝑗,𝑁

= [𝑥𝑗 𝑥𝑗+1 ⋅ ⋅ ⋅ 𝑥𝑗+𝑁−1] .

(10)

Therefore, extended observermatrix Γ
𝑖
and low triangular

block Toeplitz matrix𝐻
𝑖
have the following structures:

Γ
𝑖
= [𝐶𝑇 (𝐶𝐴)

𝑇
⋅ ⋅ ⋅ (𝐶𝐴𝑖−1)

𝑇]
𝑇

,

𝐻
𝑖
=

[
[
[
[

[

𝑁 0 ⋅ ⋅ ⋅ 0

𝐶𝑀 𝑁 ⋅ ⋅ ⋅ 0
...

... d
...

𝐶𝐴
𝑖−2𝑀 𝐶𝐴𝑖−3𝑀 ⋅ ⋅ ⋅ 𝑁

]
]
]
]

]

.

(11)

Input/output data matrix is formed and factorized by RQ
factorization. The following equation can be acquired:

[
𝐸
𝑗,𝑖,𝑁

𝑌
𝑗,𝑖,𝑁

] = [
𝑅
11

0

𝑅
21

𝑅
22

] [
𝑄
1

𝑄
2

] . (12)

Combining (12) with (9), we can obtain that:

Γ
𝑖
𝑋
𝑗,𝑁

= [𝑅21 − 𝐻𝑖𝑅11 𝑅22] [
𝑄
1

𝑄
2

] . (13)

It can be derived that the column space of Γ
𝑖
and the

column space of 𝑅
22
are equal. After carrying out SVD of 𝑅

22

as in (14), columns of 𝑈
𝑛
can be regarded as a basis for Γ

𝑖
:

𝑅
22
= [𝑈𝑛 𝑈

⊥

𝑛
] [
𝑆
1

0

𝑜 𝑆
2

] [
𝑉𝑇
𝑛

(𝑉⊥
𝑛
)
𝑇] . (14)

Based on the definition of extended observer matrix Γ
𝑖
,

transformed system matrices 𝐴
𝑇
, 𝐶
𝑇
can be easily calculated

with 𝑈
𝑛
:

𝑈
(1)

𝑛
𝐴
𝑇
= 𝑈
(2)

𝑛
,

𝐶
𝑇
= 𝑈
𝑛 (1 : 𝑙, :) .

(15)

And𝑀
𝑇
,𝑁 can be acquired by least-squares solutions for.

(𝑈
⊥

𝑛
)
𝑇

𝐻
𝑖
− (𝑈
⊥

𝑛
)
𝑇

𝑅
21
𝑅
−1

11
= 0. (16)

3.2. Errors-in-Variables Problem. Because the identification
problem of the Hammerstein AUV model is an EIV one,
a more practical subspace identification method handling
EIV problem is introduced in this section which takes
disturbances 𝑑(𝑘), 𝜐(𝑘), 𝜔(𝑘) into consideration based on the
basic MOESP algorithm above. In this case, (9) needs to be
modified as:

�̃�
𝑗,𝑖,𝑁

= Γ
𝑖
𝑋
𝑗,𝑁

+ 𝐻
𝑖
𝐸
𝑗,𝑖,𝑁

− 𝐻
𝑖
𝑉


𝑗,𝑖,𝑁
+ 𝐺
𝑖
𝑃
𝑗,𝑖,𝑁

+𝑊
𝑗,𝑖,𝑁

,

(17)
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where 𝑃
𝑗,𝑖,𝑁

, 𝑊
𝑗,𝑖,𝑁

are block Hankel matrices of noises 𝑑(𝑘)
and 𝜔(𝑘). 𝐺

𝑖
is defined as:

𝐺
𝑖
=

[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0

𝐶 0 ⋅ ⋅ ⋅ 0
...

... d
...

𝐶𝐴
𝑖−2 𝐶𝐴𝑖−3 ⋅ ⋅ ⋅ 0

]
]
]
]

]

. (18)

Notice that 𝑉
𝑗,𝑖,𝑁

is not only made of 𝜐(𝑘), output mea-
surement noise 𝜔(𝑘) is also involved due to the linearization
of nonlinear feedback part.This brings the closed-loop prob-
lem into the identification process. One significant obsta-
cle resulting from closed-loop situation is the interference
between input signals and output measurement noise which
violates the following equation.

𝐸 [𝑢
𝑘
𝑤
𝑇

𝑗
] = 0 for (𝑗 < 𝑘) . (19)

It means that input signals are no longer unrelated to the
past noises. However, problems studied in this paper only
need the condition that future noise is unrelated to past input.
That is:

𝐸 [𝑢
𝑘
𝑤
𝑇

𝑗
] = 0 for (𝑗 ≥ 𝑘) . (20)

So, in order to eliminate the influence from the noises,
instrumental variables can still be formed as past input and
output signals. Then following relation can be obtained:

�̃�
𝑖+1,𝑖,𝑁

[𝐸𝑇
1,𝑖,𝑁

�̃�𝑇
1,𝑖,𝑁

]

= Γ
𝑖
𝑋
𝑖+1,𝑁

[𝐸𝑇
1,𝑖,𝑁

�̃�𝑇
1,𝑖,𝑁

]

+ 𝐻
𝑖
𝐸
𝑖+1,𝑖,𝑁

[𝐸𝑇
1,𝑖,𝑁

�̃�𝑇
1,𝑖,𝑁

] ,

(21)

[
𝐸
𝑖+1,𝑖,𝑁

𝐸𝑇
1,𝑖,𝑁

𝐸
𝑖+1,𝑖,𝑁

�̃�𝑇
1,𝑖,𝑁

�̃�
𝑖+1,𝑖,𝑁

𝐸𝑇
1,𝑖,𝑁

�̃�
𝑖+1,𝑖,𝑁

�̃�𝑇
1,𝑖,𝑁

]

= [
𝑅
11 (𝑡) 0

𝑅
21 (𝑡) 𝑅

22 (𝑡)
] [

𝑄
1 (𝑡)

𝑄
2 (𝑡)

] .

(22)

According to Theorem 3 of Chou and Verhaegen [13],
the column space of Γ

𝑖
can be consistently estimated from

𝑅
22
. 𝐴
𝑇
, 𝑀
𝑇
, 𝐶
𝑇
, and 𝑁 can be acquired based on OE PIV

algorithm. To save the space, more details can be found in
[13].

3.3. PM-EIV Subspace Identification. In the above sections,
subspace identification method for AUV Hammerstein sys-
tem has been developed under general noise assumption. As
mentioned in Section 1, recursive method for AUV identifi-
cation can be much more suitable due to the properties of
oceanic environment and tasks. So in this section, identifi-
cation method will be modified recursively. One of the key
problems handled in recursive identification is the recursive
update of SVD process in order to reduce the computational
burden which comes with increasing input/output data. In
[20], propagator method used in array signal processing
area is introduced for recursive subspace identification under

PI/POMOESP schemes. Considering about the EIV problem
in the identification of AUV model, propagator method will
be extended into EIV framework in this paper for the first
time and the resulting algorithm will be called PM-EIV
subspace identification method. An important step in PM
subspacemethod is the calculation of observer vector, defined
as.

𝑧
𝑖 (𝑡 + 1) = 𝑦

𝑖 (𝑡 + 1) − 𝐻𝑖 (𝑡 + 1) 𝑒𝑖 (𝑡 + 1) , (23)

where 𝑡 = 𝑗 + 𝑁 − 1; 𝑦
𝑖
(𝑡 + 1), 𝑒

𝑖
(𝑡 + 1) are new updated

output/input data vectors respectively.

3.3.1. Update of Observer Vector 𝑧
𝑖
in EIV Framework. In this

section, RQ factorization method is adopted for updating of
observe vector. Based on (22) in Section 3.2, update of the
data matrix can be expressed as follows:

[
𝐸
𝑖+1,𝑖,𝑁+1

𝐸𝑇
1,𝑖,𝑁+1

𝐸
𝑖+1,𝑖,𝑁+1

�̃�𝑇
1,𝑖,𝑁+1

�̃�
𝑖+1,𝑖,𝑁+1

𝐸𝑇
1,𝑖,𝑁+1

�̃�
𝑖+1,𝑖,𝑁+1

�̃�𝑇
1,𝑖,𝑁+1

]

= [
𝑅
11 (𝑡 + 1) 0

𝑅
21 (𝑡 + 1) 𝑅

22 (𝑡 + 1)
] [

𝑄
1 (𝑡 + 1)

𝑄
2 (𝑡 + 1)

] ,

(24)

where 𝐸
𝑖+1,𝑖,𝑁+1

= [𝐸
𝑖+1,𝑖,𝑁

𝑒
𝑖
(𝑡 + 1)], 𝐸1,𝑖,𝑁+1, and �̃�𝑖+1,𝑖,𝑁+1,

�̃�
1,𝑖,𝑁+1

are formed in similar manner. A transformation of
(24) is as follows:

[
𝐸
𝑖+1,𝑖,𝑁

𝑒
𝑖 (𝑡 + 1)

�̃�
𝑖+1,𝑖,𝑁

𝑦
𝑖 (𝑡 + 1)

] [
𝐸𝑇
1,𝑖,𝑁

�̃�𝑇
1,𝑖,𝑁

𝑒
𝑖(𝑁 + 1)

𝑇
𝑦
𝑖(𝑁 + 1)

𝑇]

= [
𝑅
11 (𝑡) 0 𝑒

𝑖 (𝑡 + 1) 𝜙 (𝑁 + 1)

𝑅
21 (𝑡) 𝑅

22 (𝑡) 𝑦
𝑖 (𝑡 + 1) 𝜙 (𝑁 + 1)

][

[

𝑄
1 (𝑡)

𝑄
2 (𝑡)

𝐼

]

]

,

(25)

where 𝜙(𝑁 + 1) = [𝑒
𝑖
(𝑁 + 1)

𝑇
𝑦
𝑖
(𝑁 + 1)

𝑇] denotes the
update instrumental variables.

Then, given rotation can be implemented to eliminate the
𝑒
𝑖
(𝑡 + 1)𝜙(𝑁 + 1) in the above equation in order to make a

lower triangle form.

[
𝑅
11 (𝑡) 0 𝑒

𝑖 (𝑡 + 1) 𝜙 (𝑁 + 1)

𝑅
21 (𝑡) 𝑅

22 (𝑡) 𝑦
𝑖 (𝑡 + 1) 𝜙 (𝑁 + 1)

]Giv (𝑡 + 1)

= [
𝑅
11 (𝑡 + 1) 0 0

𝑅
21 (𝑡 + 1) 𝑅

22 (𝑡) �̂�
𝑖 (𝑡 + 1)

] .

(26)

So, the following relation can be obtained:

𝑅
22 (𝑡 + 1) 𝑅22(𝑡 + 1)

𝑇
= 𝑅
22 (𝑡) 𝑅22(𝑡)

𝑇
+ �̂�
𝑖 (𝑡 + 1) �̂�

𝑇

𝑖
(𝑡 + 1) .

(27)

In addition, the following equation holds:

𝑅
22 (𝑡 + 1)𝑄2 (𝑡 + 1)

= (�̃�
𝑖+1,𝑖,𝑁+1

− �̂�
𝑖
𝐸
𝑖+1,𝑖,𝑁+1

) [𝐸𝑇
1,𝑖,𝑁+1

�̃�𝑇
1,𝑖,𝑁+1

]

= 𝑅
22 (𝑡) 𝑄2 (𝑡) + 𝑧𝑖 (𝑡 + 1) [𝑒𝑖(𝑁 + 1)

𝑇
𝑦
𝑖(𝑁 + 1)

𝑇] .

(28)
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Combining (27) and (28), relation between 𝑧
𝑖
(𝑡 + 1) and

�̂�
𝑖
(𝑡 + 1) can be found:

�̂�
𝑖 (𝑡 + 1) �̂�𝑖(𝑡 + 1)

𝑇

= 𝑅
22 (𝑡) 𝑄2 (𝑡) 𝜙(𝑁 + 1)

𝑇
𝑧
𝑖(𝑡 + 1)

𝑇

+ 𝑧
𝑖 (𝑡 + 1) 𝜙 (𝑁 + 1) (𝑅22 (𝑡) 𝑄2 (𝑡))

𝑇

+ 𝑧
𝑖 (𝑡 + 1) 𝜙 (𝑁 + 1) 𝜙(𝑁 + 1)

𝑇
𝑧
𝑖(𝑡 + 1)

𝑇
.

(29)

Assuming there is a matrix𝐾(𝑡+1) satisfies the following
equation:

𝐾 (𝑡 + 1)𝐾(𝑡 + 1)
𝑇
= �̂�
𝑖 (𝑡 + 1) �̂�𝑖(𝑡 + 1)

𝑇
+ 𝑅
22 (𝑡) 𝑅22(𝑡)

𝑇
.

(30)

Then observer vector 𝑧
𝑖
can be updated according to (31):

𝑧
𝑖 (𝑡 + 1) [𝑒

𝑇

𝑖
(𝑁 + 1) 𝑦𝑇

𝑖
(𝑁 + 1)]

= (𝐾 (𝑡 + 1) − 𝑅22 (𝑡) 𝑄2 (𝑡)) ,

𝑧
𝑖 (𝑡 + 1) = 𝐾

−1

𝜙
(𝐾 (𝑡 + 1) − 𝑅22 (𝑡) 𝑄2 (𝑡)) 𝜙

𝑇

𝑁
,

(31)

where 𝐾
𝜙
= 𝜙
𝑁
𝜙𝑇
𝑁
is the coefficient related to instrumental

variables, andnotice that𝐾(𝑡+1) is not necessary to be square.

3.3.2. Estimation of Observer Matrix Γ
𝑖
. Since the observer

vector 𝑧
𝑖
can be obtained in EIV scheme. Then, extended

observer matrix Γ
𝑖
can be found through propagator method.

Observer matrix Γ
𝑖
can be expressed in the following form.

Γ
𝑖
= [

Γ
𝑖1

Γ
𝑖2

] = [
𝐼

𝑃𝑇
𝑚

] Γ
𝑖1
= 𝑄
𝑠
Γ
𝑖1
. (32)

Since the matrix Γ
𝑖1
∈ R𝑛×𝑛 has full rank, column space of

Γ
𝑖
equals that of 𝑄

𝑠
. Combining with (23), observer vector 𝑧

𝑖

can be divided as:

𝑧
𝑖 (𝑡 + 1) = 𝑄

𝑠
Γ
𝑖1
𝑥 (𝑡 + 1) + 𝑏𝑖 (𝑡 + 1) = [

𝑧
𝑖1 (𝑡 + 1)

𝑧
𝑖2 (𝑡 + 1)

] . (33)

Without consideration of noise term 𝑏
𝑖
(𝑡 + 1), it can

be easily established that 𝑧
𝑖2

= 𝑃𝑇
𝑚
𝑧
𝑖1
. Then the 𝑃𝑇

𝑚
can

be solved with least-squares methods. However, existence of
noise termwill lead to a biased estimation of𝑃𝑇

𝑚
. So the IVPM

algorithm proposed by Mercere [20] is adopted to estimate
𝑃𝑇
𝑚
. A suitable variable 𝛾 ∈ 𝑅𝑛×1 needs to be found with no

correlation with system noises. According to Section 3.2, past
system input date may satisfy the condition.
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Figure 2: Information flow of AUV simulation platform.

Finally, recursive estimation of 𝑃𝑇
𝑚
can be acquired in the

following RLS form:

𝐾
𝑝 (𝑡 + 1)

= 𝛾
𝑇
(𝑡 + 1) 𝑅 (𝑡) (1 + 𝛾

𝑇
(𝑡 + 1) 𝑅 (𝑡) 𝑧𝑖1 (𝑡 + 1))

−1

,

𝑃
𝑇

𝑚
(𝑡 + 1)

= 𝑃
𝑇

𝑚
(𝑡) + [𝑧𝑖2 (𝑡 + 1) − 𝑃

𝑇

𝑚
(𝑡) 𝑧𝑖1 (𝑡 + 1)]𝐾𝑝 (𝑡 + 1) ,

𝑅 (𝑡 + 1) = 𝑅 (𝑡) − 𝑅 (𝑡) 𝑧𝑖1 (𝑡 + 1)𝐾𝑝 (𝑡 + 1) ,

(34)

where 𝑅(𝑡) = 𝐸[𝑧
𝑖1
(𝑡)𝛾𝑇(𝑡)]

−1.
With the estimation of observer matrix Γ

𝑖
, algorithms

mentioned in Section 3.2 can be applied here to estimate the
system matrices 𝐴

𝑇
, 𝑀
𝑇
, 𝐶
𝑇
, and 𝑁. Therefore, propagator

based subspace identification method in errors-in-variables
scheme (PM-EIV) is derived. Based on the IVPM method,
the algorithm is more suitable for the identification of
Hammerstein AUV model proposed in Section 2. In the fol-
lowing, the identification algorithm will be verified through
experiments carried out by the AUV simulation platform.

4. Simulations and Results

In this section, simulation experiments are carried out to
evaluate the performance of the PM-EIV algorithm proposed
in this paper through identifying the Hammerstein AUV
model based on data from the AUV simulation platform
shown as in Figures 2-3. After a brief introduction of theAUV
simulation platform, two typical identification cases are
investigated. One is the identification of AUV model based
on the MOESP method without consideration of noise. The
other one is the verification of PM-EIV algorithm under
general noise assumption. Finally, to be more practical,
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Surface interface computer Motion control computer Mission control computer

Ethernet

AUV model Control surface model Thruster model

3D simulation computerModel computer

Figure 3: AUV simulation platform.

model identification based on data from a closed-loop path
following simulation experiment is performed.

4.1. AUV Simulation Platform. The basic structure of AUV
simulation platform is depicted as in Figure 3.The whole sys-
tem is connected through Ethernet and responsibilities of five
main components are introduced here.

(C1) Surface Interface Computer (SIC). Surface interface soft-
ware is running on SIC which is in charge of deploying mis-
sions for AUV and monitoring the states of the system. The
software also allows for manual intervention in case of
emergency.

(C2) Mission Control Computer (MiC). Mission Management
software developed in QNX real-time system is the core of
MiC. MiC is mainly responsible for path plan according to
missions from SIC and fault diagnosis of the system.

(C3) Motion Control Computer (MoC). Motion control soft-
ware running on MoC aims at controlling the states such as
heading, speed and depth of AUV based on the preplanned
paths from MiC. In field experiments, MoC is also in charge
of navigation of the system.

(C4) Model Computer (MC). MC is the host for mathematic
models of AUV, thruster and control surface.Themathematic
AUV model is a validated model with full coefficients
obtained from water-tank experiments.

(C5) 3D Simulation Computer (3DC). 3DC provides an
approach for visual simulation relied on vir-tual reality tech-
nology. Vega Prime is used to construct the virtual oceanic
environment and AUV model is developed in Multigen
Creator.

A more detailed process flow is described in Figure 2.

4.2. Case 1: Identification without Consideration of Noise. In
an ideal situation, process noise and measurement noises can
be ignored, so that the ordinary MOESP algorithm can be
applied to identify theHammersteinAUVmodel described as
in Figure 1.This case aims at testifying the reasonability of the
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Figure 4: Prediction of surge speed.

Hammersteinmodel for anAUVsystem.All system input sig-
nals are chosen as sinusoid curves with different amplitudes
and periods and the value of 𝑁 in (4) is set to be 4. System
identification results based on O-MOESP algorithm can be
obtained. Figures 4, 5, and 6 shows the prediction errors
between the outputs of the identified model and the original
outputs.Three main system outputs surge velocity, pitch rate,
and yaw rate, that play important roles in control and naviga-
tion of underactuated AUV which are considered here. From
Figures 4–6, it can be concluded that even though iden-
tification errors exist, Hammerstein model constructed in
Section 2 can act as a suitable structure for AUV dynamics.

4.3. Case 2: Identification under EIV Framework. In this case,
general noises are added on the model computer in the AUV
simulation platform. So the identification problem becomes
an EIV one which can be solved recursively by the PM-EIV
algorithm proposed in this paper. System inputs of the simu-
lation platform are still sinusoid curves and the value of𝑁 is
chosen to be 6. Since the PM-EIValgorithm is a recursive one,
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Figure 6: Prediction of pitch rate.

a relative small amount of data is used to acquire an initial
value of the model at the beginning. Identification results are
shown in Figures 7, 8, and 9. Based on the Figures 7–9, it is
reliable to conclude that the PM-EIV algorithm is effective
and feasible in identifying the Hammerstein AUV model
under general noise assumption.

Remark. Through the above two different identification cases
under different situations, it has been approved that Ham-
mersteinmodel proposed in Section 2 is capable of represent-
ing the AUVdynamic system and the PM-EIVmethod is able
to identify theHammersteinmodel recursively under general
noise assumption. It is also interesting to notice that steady
state prediction errors in Case 2 are decreased comparison
with those in Case 1, it is also interesting to notice that steady
state prediction errors in Case 2 are decreased comparing
with those in Case 1 due to the increase of𝑁 adopted.
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Figure 7: Prediction of surge speed.
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Figure 10: Simulation results: (a) horizontal projection of the trajectory; (b) 3D trajectory of AUV.
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4.4. Identification from Closed-Loop Simulation. In the above
simulations, AUV model is identified using data from open
loop control of surge speed, heading and yaw. However, in
practical applications, data for model identification is usually
collected from field experiments with close loop control for
specific preplanned paths. So in this section, AUV identifica-
tion process is carried out based on data from a closed-loop
simulation experiment. To be more pellucid, the feasibility
of PM-EIV algorithm is not illustrated by predicting the
surge speed, pitch rate and yaw rate, but shown by predicting
the trajectory of AUV in the test. Figures 10 and 11 are the
simulation results from the AUV simulation platform. The
preplanned path is a circle with an origin at (500, 500)m
and radius of 300m.The depth command is 10m. Simulation
results have shown that AUV can follow the preplanned circle
very well and the diving process is stable and fast.

Then identification of the Hammerstein AUV model is
based on the inputs/outputs of this experiment. Noises are
also considered. Figure 11 has shown the identification result

in a different point of view. It can be seen that prediction
error between the identified model of AUV and the actual
trajectory of AUV is large at the beginning because the
recursive identification procedure needs time to converge.
Therefore, a position calibration operation is carried out
when the identification results have converged at simulation
time 350 s.TheCali-Point in Figure 11 is where the calibration
is implemented.The green line indicates the distance between
Cali-Point and expected point. After the calibration, the
trajectory of the identified Hammerstein AUV model can
follow the trajectory of AUV with satisfying accuracy.

5. Conclusions

In this paper, a recursive subspace identification algorithm
PM-EIV is derived under general noise assumption. subspace
identification algorithm based on propagator method is
extended into EIV framework is extended into EIV frame-
work. In order to implement the method on identification
of AUV model with consideration about nonlinearities and
couplings at the same time, a Hammerstein AUV model is
constructed for the first time. Three simulation experiments
under different conditions are carried out to verify the
feasibility of the model and the effectiveness of the proposed
algorithm.

In the future study, system noises will not be restricted to
white noise and noise models related with oceanic environ-
ment and sensors will be introduced to make the algorithm
more practical.
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