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In radar servo system, the load is usually subject to movement and gust, which may cause instability of the system. In this paper,
the online identification methods of load rotary inertia and torque in radar servo system are proposed, respectively. The radar
servo system is based on synchronous motor. The load rotary inertia of the system is identified online by a disturbance observer.
Moreover, a reduced order Luenberger observer is designed to observe the variation of the load torque and velocity online. The
simulation models are established to verify the proposed disturbance observer for the load rotary inertia and the reduced order
Luenberger observer for the load torque and velocity.

1. Introduction

In radar servo system, the revolution of the load is usually
subject to movement and gust, which may cause instability
of the load rotary inertia and torque. Therefore, the stability
of the servo controller is facing higher requirements. If the
parameters of the controller in the speed loop do not match
the load rotary inertia, the dynamic response of the system
may become slow and even cause oscillation [1]. Further-
more, the load torque is also subject to the disturbance of gust
torque. In some cases, the value of the gust torque is very big
and uncertain. As a result, the descent of the revolution speed
at the transient state in the radar system is big and thus the
target tracking is adversely affected [2]. In order to enhance
the dynamic and static characteristics and the disturbance
rejection ability of radar servo system, online identification
of the load rotary inertia and torque is a premise [3].

As for the research on the online identification of load
rotary inertia, a speed response method for AC servo system
was proposed in [4]. By modifying the output current
limitation value of the speed controller, the speed response
value and response time under different current limitation
values are obtained, and then the rotary inertia is calculated.

This method may affect the normal operation of the motor
in practice and is not applicable to identify the rotary inertia
online. In addition, a model reference adaptive method
for permanent magnet synchronous motor (PMSM) was
presented in [5] to estimate the rotary inertia. However,
both the speed response method and the model reference
adaptive method neglect the effect of the viscous friction of
the rotor. Comparatively, the online identification method
of the rotary inertia based on disturbance observer (DOB)
considers the external disturbance and friction, respectively
[6, 7]. More methods on load torque and speed are extended
Kalman filters for PM synchronous motors [8], recursive
input estimation for PMSM [9], and robust estimation based
on singular perturbation theory [10]. Besides, disturbance
is regarded as a constant or function in some papers [10,
11]. Nevertheless, the load torque in radar servo system is
usually subject to the effects of gust and environment that are
difficult to be defined as some noise in analysis. Therefore,
it is necessary to propose an effective algorithm to directly
identify the load torque and speed online. In this paper,
according to the characteristics of radar servo system, a more
practical online identification algorithm of rotary inertia
based on DOB is proposed. The external disturbance and
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the friction of the model are estimated by the designed
DOB and then the rotary inertia is identified. As far as the
research on load torque and speed is concerned, Luenberger
state observer can be employed to estimate the disturbance
torque and a reduced order Luenberger load torque observer
is designed to overcome the randomness of the disturbance
torque.

This paper is organized as follows. In Section 2, motion
equations of servo system are built. In Section 3, the load
rotary inertia is identified online by a DOB. Then, a reduced
order Luenberger observer is designed to observe the vari-
ation of the load torque in Section 4. In Section 5, the
simulation models are established, and the DOB for the load
rotary inertia and the reduced order Luenberger observer for
the load torque are verified by simulations, respectively, in
Section 6. Finally, this paper is concluded in Section 7.

2. Motion Equations of Servo System

In 𝑑𝑞-frame, the mathematical model of PMSM can be ex-
pressed as follows [1]:

𝑢𝑑 = 𝑅𝑖𝑑 + 𝐿𝑑𝑝𝑖𝑑 − 𝜔𝑚𝐿𝑞𝑖𝑞,

𝑢𝑞 = 𝑅𝑖𝑞 + 𝐿𝑞𝑃𝑖𝑞 + 𝜔𝑚𝐿𝑑𝑖𝑑 + 𝜔𝑚𝜓𝑓.

(1)

The electromagnetic torque is given as

𝑇𝑒 =
3

2
𝑝𝑚 [𝜓𝑓𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞) 𝑖𝑑𝑖𝑞] , (2)

where 𝑢𝑑, 𝑢𝑞 are the armature voltage of the 𝑑-axis and 𝑞-axis,
𝑖𝑑, 𝑖𝑞 are the armature current of the 𝑑-axis and 𝑞-axis, 𝐿𝑑, 𝐿𝑞
are the winding inductance of stator in 𝑑-axis and 𝑞-axis, 𝑅
is the winding resistance of stator, 𝜓𝑓 is the PM (permanent
magnet) flux linkage; 𝑝 is the differential operator 𝑑/𝑑𝑡; 𝑝𝑚
is the number of pole pairs of the rotor, and 𝜔𝑚 is the rotor
electrical angular speed.

Motion equations of servo system are as follows [5]:

𝐽
𝑑𝜔𝑚

𝑑𝑡
= 𝑇𝑒 − 𝑉𝜔𝑚 + 𝑇𝐿,

𝜔𝑚 =
𝑑𝜃𝑚

𝑑𝑡
,

(3)

where 𝐽 is the rotary inertia of the system, 𝑇𝑒 is the elec-
tromagnetism torque (i.e., driving torque), 𝑉 is the viscous
friction coefficient of the rotor, and 𝑇𝐿 is the load torque.

Let 𝑇𝑑 be the disturbance torque which is an unknown
value estimated by the disturbance observer. Then 𝑇𝑑 can be
expressed as

𝑇𝑑 = −𝑉𝜔𝑚 + 𝑇𝐿. (4)

In one sampling period,𝑇𝑑may be regarded as a constant,
because the sampling frequency is much quicker than the
variation of the disturbance torque in radar servo system.
Hence, we have

𝑑𝑇𝑑

𝑑𝑡
= 0. (5)

From (3)–(5) the state equations can be got as

ẋ = Ax + B𝑢,

y = Cx,
(6)

where x = [ 𝜔𝑚𝑇
𝑑

],A = [
0 1/𝐽

0 0
], B = [ 1/𝐽

0
],C = [ 1

0
], and 𝑢 = 𝑇𝑒.

For a PMSM with nonsalient pole structure, the 𝑑𝑞-axis
inductances are equal; that is, 𝐿𝑑 = 𝐿𝑞 = 𝐿. The load rotary
inertia and torque are identified online based on the field
orientation control (FOC) system, where 𝑖𝑑 is controlled to
be zero. The identification methods run in parallel with the
vector control system.The block diagram of the whole system
is shown in Figure 1.

3. Identification of Radar Load Rotary Inertia
Based on DOB

3.1. Design of the DOB. Based on the state equations (6), the
state observer with minimum order can be designed, where
_
𝑇𝑑 is the estimated value of the disturbance torque 𝑇𝑑 [6]:

𝑑𝑧

𝑑𝑡
= −𝜆𝑧 + 𝜆𝐽𝑛𝜔𝑚 + 𝑢, (7)

_
𝑇𝑑 = −𝜆𝑧 + 𝜆𝐽𝑛𝜔𝑚,

(8)

where 𝐽𝑛 is the rotary inertia which is a constant, 𝑧 is the
intermediate variable, and −𝜆 is the pole of the observer (𝜆 >
0).

Applying Laplace transformation to both sides of (7) and
(8), respectively, we can get

𝑠𝑧 (𝑠) = −𝜆𝑧 (𝑠) + 𝜆𝐽𝑛𝜔𝑚 (𝑠) + 𝑢 (𝑠)

󳨐⇒ 𝑧 (𝑠) =
𝜆𝐽𝑛𝜔𝑚 (𝑠) + 𝑢 (𝑠)

𝑠 + 𝜆

(9)

_
𝑇𝑑 (𝑠) = −𝜆𝑧 (𝑠) + 𝜆𝐽𝑛𝜔𝑚 (𝑠)

=
−𝜆
2
𝐽𝑛𝜔𝑚 (𝑠) − 𝜆𝑢 (𝑠)

𝑠 + 𝜆
+ 𝜆𝐽𝑛𝜔𝑚 (𝑠)

=
𝑠𝜆

𝑠 + 𝜆
𝐽𝑛𝜔𝑚 (𝑠) −

−𝜆

𝑠 + 𝜆
𝑢 (𝑠) .

(10)

In order to simplify (10), introducing two intermediate
variables 𝑝1(𝑠) = 𝜆𝜔(𝑠)/(𝑠 + 𝜆) and 𝑝2(𝑠) = 𝜆𝑢(𝑠)/(𝑠 + 𝜆)

into (10), we have
_
𝑇𝑑 (𝑠) = 𝐽𝑛𝑠𝑝1 (𝑠) − 𝑝2 (𝑠) .

(11)

Applying inverse Laplace transformation, we get

𝑑𝑝1

𝑑𝑡
= −𝜆𝑝1 + 𝜆𝑢, 𝑝1 (0) = 0, (12)

𝑑𝑝2

𝑑𝑡
= −𝜆𝑝2 + 𝜆𝜔𝑚, 𝑝2 (0) = 0, (13)

_
𝑇𝑑 (𝑡) = 𝐽𝑛

_
𝑝
2 − 𝑝1,

_
𝑇𝑑 (0) = 0.

(14)
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Figure 1: Block diagram of the load rotary inertia and torque identification.

3.2. Identification of Rotary Inertia Based on DOB. The rotary
inertia can be expressed as

𝛿𝐽 = 𝐽 − 𝐽𝑛, (15)

where 𝐽 is the real rotary inertia, 𝐽𝑛 is the rotary inertia, and
𝛿𝐽 is the rotary inertia caused by load variation or error.

From (3), (7), (8), and (15), we can get the following
differential equation:

𝑑
_
𝑇𝑑

𝑑𝑡
= −𝜆

_
𝑇𝑑 − 𝜆 (𝛿𝐽𝜔̇𝑚 + 𝑉𝜔𝑚 − 𝑇𝐿) .

(16)

Applying Laplace transformation to (16), we get

𝑠
_
𝑇𝑑 (𝑠) = −𝜆

_
𝑇𝑑 (𝑠) − 𝜆𝛿𝐽𝑠𝜔𝑚 (𝑠) − 𝜆𝑉𝜔𝑚 (𝑠) + 𝜆𝑇𝐿 (𝑠)

󳨐⇒
_
𝑇𝑑 (𝑠) = −𝛿𝐽

𝜆𝜔𝑚 (𝑠)

𝑠 + 𝜆
𝑠 − 𝑉

𝜆𝜔𝑚 (𝑠)

𝑠 + 𝜆
+

𝜆

𝑠 + 𝜆
𝑇𝐿 (𝑠) .

(17)

In order to simplify (17), introducing two intermediate
variables 𝑝2(𝑠) and 𝑝3(𝑠) = 𝜆/(𝑠 + 𝜆) into (17) and applying
inverse Laplace transformation, we have

𝑑𝑝3

𝑑𝑡
= −𝜆𝑝3 + 𝜆, 𝑝3 (0) = 0, (18)

_
𝑇𝑑 (𝑡) = −𝛿𝐽𝑝̇2 (𝑡) − 𝑉𝑝2 (𝑡) + 𝑇𝐿𝑝3 (𝑡) ,

(19)

where 𝛿𝐽 ̇𝑞1(𝑡) is the torque fluctuation caused by the variation
of the rotary inertia,𝑉𝑞1(𝑡) is the torque generated by friction,
and 𝑇𝐿𝑞2(𝑡) is the constant torque.

Multiplying both sides of (15) by ̇𝑞1(𝑡), we can obtain

𝑝̇2 (𝑡)
_
𝑇𝑑 (𝑡) = −𝛿𝐽𝑝̇

2

2
(𝑡) − 𝑉𝑝̇2 (𝑡) 𝑝2 (𝑡) + 𝑇𝐿𝑝̇2 (𝑡) 𝑝3 (𝑡) .

(20)

Therefore, it is not difficult to prove that 𝑝2(𝑡) is orthogo-
nal to 𝑝̇2(𝑡) and that 𝑝3(𝑡) is orthogonal to 𝑝̇2(𝑡).

Proof. When radar servo system is in steady state, the angular
velocity 𝜔(𝑡) is the periodic signal, and so lim𝑡→+∞[𝜔(𝑡) −
𝜔(𝑡 − 𝑇)] = 0. From (13), because 𝜔(𝑡) is the input of 𝑝2(𝑡),
𝑝2(𝑡) is also the periodic signal, and so lim𝑡→+∞[𝑝2(𝑡)−𝑝2(𝑡−
𝑇)] = 0:

lim
𝑘→+∞

∫

𝑘𝑇

(𝑘−1)𝑇

𝑝2 (𝑡) 𝑝̇2 (𝑡) 𝑑𝑡 = 0,

lim
𝑘→+∞

∫

𝑘𝑇

(𝑘−1)𝑇

𝑝2 (𝑡) 𝑝̇2 (𝑡) 𝑑𝑡

= lim
𝑘→+∞

𝑝
2

2
(𝑘𝑇) − 𝑝

2

2
((𝑘 − 1) 𝑇)

2

= lim
𝑘→+∞

( ([𝑝2 (𝑘𝑇) − 𝑝2 ((𝑘 − 1) 𝑇)]

× [𝑝2 (𝑘𝑇) + 𝑝2 ((𝑘 − 1) 𝑇)]) × 2
−1
)

From (13): lim
𝑘→+∞
𝑝
2
(𝑘𝑇) −𝑝

2
((𝑘 − 1)𝑇) = 0

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→

= 0,

lim
𝑘→+∞

∫

𝑘𝑇

(𝑘−1)𝑇

𝑝3 (𝑡) 𝑝̇2 (𝑡) 𝑑𝑡 = 0,

lim
𝑘→+∞

∫

𝑘𝑇

(𝑘−1)𝑇

𝑝3 (𝑡) 𝑝̇2 (𝑡) 𝑑𝑡

= lim
𝑘→+∞

{[𝑝3(𝑡)𝑝2(𝑡)]
󵄨󵄨󵄨󵄨
𝑘𝑇

(𝑘−1)𝑇
− ∫

𝑘𝑇

(𝑘−1)𝑇

𝑝̇3 (𝑡) 𝑝2 (𝑡) 𝑑𝑡}

From (18): lim
𝑡→+∞
𝑝
3
(𝑡) = 1; lim

𝑡→+∞
𝑝̇
3
(𝑡) = 0

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→

= 0.

(21)
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Figure 2: Block diagram of identification of the rotary inertia based
on DOB.

Thus, the rotary inertia method based on DOB can be
obtained. The two specific calculation steps are as follows.

(1) Use the orthogonality to estimate the variation value
of the rotary inertia:

𝛿𝐽 (𝑘) =

∫
𝑘𝑇

(𝑘−1)𝑇

_
𝑇𝑑 (𝑡) 𝑝̇2 (𝑡) 𝑑𝑡

∫
𝑘𝑇

(𝑘−1)𝑇
𝑝̇2
2
(𝑡) 𝑑𝑡

, (𝑘 = 1, 2, . . .) . (22)

(2) Add the present variation value of the estimated
rotary inertia to the previous value of the rotary
inertia and then get the new value of the estimated
rotary inertia:

_
𝐽 (𝑘) = 𝐽𝑛 + 𝛿𝐽 (𝑘) .

(23)

The overall identification process is shown in Figure 2.

4. Observation of Load Torque
and Speed Based on Reduced Order
Luenberger Observer

Transform the motion equations (3) into state-space equa-
tions:

[

̇𝜃𝑚

𝜔̇𝑚

] = [

[

0 1

0 −
𝑉

𝐽

]

]

[
𝜃𝑚
𝜔𝑚
] + [

[

0

1

𝐽

]

]

(𝑇𝑒 − 𝑇𝐿) . (24)

Discretize the continuous system equation (3); then, we
can get the discretized differential equation [12]:

[
𝜃𝑟 (𝑘 + 1)

𝜔𝑟 (𝑘 + 1)
] = 𝐹 [

𝜃𝑟 (𝑘)

𝜔𝑟 (𝑘)
] + 𝐻 [𝑇𝑒 (𝑘) − 𝑇𝐿 (𝑘)] , (25)

where

𝐹 = 𝑒
𝐴𝑇
𝑠 = [

[

1
𝐽

𝑓
(1 − 𝜆)

0 𝜆

]

]

= [
1 𝐹12
0 𝐹22

] ,

𝐻 = ∫

𝑇
𝑠

0

𝑒
𝐴𝑡
𝐵𝑑𝑡 =

[
[
[
[

[

1

𝑓
[𝑇𝑠 −

𝐽

𝑓
(1 − 𝜆)]

1

𝑓
(1 − 𝜆)

]
]
]
]

]

= [
𝐻1
𝐻2
] ,

(26)

where𝜆 = 𝑒(−(𝑓/𝐽)𝑇𝑠) and𝑇𝑠 is the sampling time of the system.
Since the variation of the load torque is much slower

compared to that of the sampling time, the load torque can
be regarded as a constant in the sampling time interval; that
is,

𝑇𝐿 (𝑘 + 1) = 𝑇𝐿 (𝑘) . (27)

From (26)-(27), we can get

[

[

𝜃𝑟 (𝑘 + 1)

𝜔𝑟 (𝑘 + 1)

𝑇𝐿 (𝑘 + 1)

]

]

= 𝑀[

[

𝜃𝑟 (𝑘)

𝜔𝑟 (𝑘)

𝑇𝐿 (𝑘)

]

]

+ 𝑁𝑢, (28)

where

𝑀 = [

[

1 𝐹12 −𝐻1
0 𝐹22 −𝐻2
0 0 1

]

]

, 𝑁 = [

[

𝐻1
𝐻2
0

]

]

, 𝑢 = 𝑇𝑒. (29)

Because radar servo system is a position control, the
position can be obtained by position encoder and is known,
while the speed and load torque are estimated and are
unknown. Thus, the terms regarding position can be deleted
in (28) and then the reduced order load torque observer can
be obtained:

[
𝑥1 (𝑘 + 1)

𝑥2 (𝑘 + 1)
] = [

𝑀11 𝑀12
𝑀21 𝑀22

] [
𝑥1 (𝑘)

𝑥2 (𝑘)
] + [

𝑁1
𝑁2
] 𝑢

𝑦 (𝑘) = [𝐼 0] [
𝑥1 (𝑘)

𝑥2 (𝑘)
] .

(30)

In (30),

𝑥1 (𝑘) = 𝜃𝑚 (𝑘) , 𝑥2 (𝑘) = [
𝜔𝑚 (𝑘)

𝑇𝐿 (𝑘)
] , 𝑀11 = 1,

𝑀12 = [𝐹12 −𝐻1] , 𝑀21 = [
0

0
] ,

𝑀22 = [
𝐹22 −𝐻2
0 1

] , 𝑁1 = 𝐻1, 𝑁2 = [
𝐻2
0
] .

(31)
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Also, 𝑥1 is the observable state variable and 𝑥2 is the unob-
servable state variable.

From (30) we can further get

𝑦 (𝑘 + 1) = 𝑥1 (𝑘 + 1) = 𝑀11𝑥1 (𝑘) + 𝑀12𝑥2 (𝑘) + 𝑁1𝑢

𝑥2 (𝑘 + 1) = 𝑀21𝑦 (𝑘) +𝑀22𝑥2 (𝑘) + 𝑁2𝑢.

(32)

Now, let 𝑢 = 𝑀21𝑦(𝑘)+𝑁2𝑢 and let 𝑤(𝑘) = 𝑀12𝑥2(𝑘) = 𝑦(𝑘+
1) − 𝑀11𝑥1(𝑘) − 𝑁1𝑢, and the state equation of the reduced
order system can be obtained:

𝑥2 (𝑘 + 1) = 𝑀22𝑥2 (𝑘) + 𝑢,

𝑤 (𝑘) = 𝑀12𝑥2 (𝑘) .

(33)

According to (33), the reduced order observer of the load
torque can be constructed:

𝑥2 (𝑘 + 1) = 𝑀22𝑥2 (𝑘) + 𝑢 + 𝑙 [𝑤 (𝑘) −𝑀12𝑥2 (𝑘)]

= (𝑀22 − 𝑙𝑀12) 𝑥2 (𝑘) + 𝑀21𝑦 (𝑘) + 𝑁2𝑢

+ 𝑙 (𝑦 (𝑘 + 1) −𝑀11𝑥1 (𝑘) − 𝑁1𝑢) .

(34)

Equation (34) includes the term 𝑦(𝑘+1)which cannot be
obtaineddirectly.Moreover,𝑦(𝑘+1) and𝑦(𝑘) can play the role
of differential which can amplify the position measurement
error. Hence, an intermediate variable 𝑧 is introduced:

𝑧 (𝑘) = 𝑥2 (𝑘) − 𝑙𝑦 (𝑘) . (35)

Substituting (35) into (36), the term 𝑦(𝑘+1) can be cancelled:

𝑧 (𝑘 + 1) = (𝑀22 − 𝑙𝑀12) 𝑧 (𝑘)

+ [(𝑀22 − 𝑙𝑀12) 𝑙 + 𝑀21] 𝑦 (𝑘)

+ 𝑁2𝑢 + 𝑙 (−𝑀11𝑥1 (𝑘) − 𝑁1𝑢) .

(36)

Then, the estimated state variable can be restored by (35)
as

𝑥2 (𝑘) = 𝑧 (𝑘) + 𝑙𝑦 (𝑘) , (37)

where 𝑙 = [ 𝑙1
𝑙
2

]. In order to get the feedback gain coefficients 𝑙1
and 𝑙2, the poles of the desired observer are supposed to be 𝑝1
and 𝑝2, where the two poles are equal (i.e., 𝑝1 = 𝑝2 = 𝑃) and
the characteristic polynomial of the observer is |𝑧𝐼 − (𝑀22 −
𝑙𝑀12)|. Then, we have

󵄨󵄨󵄨󵄨𝑧𝐼 − (𝑀22 − 𝑙𝑀12)
󵄨󵄨󵄨󵄨 = (𝑧 − 𝑝)

2
. (38)

Let the two sides of (38) be identically equal; then, the
feedback gain coefficients 𝑙1 and 𝑙2 can be got:

𝑙1 =
𝐻2 (−2𝑝 + 1 + 𝐹22)

𝐻1 − 𝐹22𝐻1 + 𝐹12𝐻2

+
𝐻1 (𝐹22 − 𝑝)

2

𝐹12 (𝐻1 − 𝐹22𝐻1 + 𝐹12𝐻2)
,

𝑙2 =
− (𝑝 − 1)

2

𝐻1 − 𝐹22𝐻1 + 𝐹12𝐻2

.

(39)

Table 1: PMSM parameters and 𝑃𝐼.

Rated power 1.5 kW
Rated torque 7.5N⋅m
Rated speed 3000 r/min
Rated current 6A
Winding resistance of stator 𝑅 = 2.23Ω
𝑑, 𝑞-axis inductance 𝐿𝑑 = 𝐿𝑞 = 22.5mH
PM flux linkage Ψ𝑓 = 0.2865Wb
Combined inertia 𝐽 = 0.01087 kg⋅m2

Rotor viscous friction coefficient 𝑉 = 0.004N⋅m⋅(rad⋅s−1)−1

Number of pole pairs 𝑝𝑚 = 3
𝑃𝐼 controller 1 𝑃 = 150 𝐼 = 20
𝑃𝐼 controller 2 𝑃 = 1.8 𝐼 = 0.015
𝑃𝐼 controller 3 𝑃 = 2.0 𝐼 = 0.018

In order to guarantee the stability of the system [13], the
pole 𝑝 of the load torque observer should be within 0∼1 of
the unit circle in the 𝑧-plane. When the pole 𝑝 is adjacent
to 0, the response of the load torque observer is faster but
it is more sensitive to the input noise. Therefore, in order to
reasonably choose the pole of the load torque observer, both
the response speed of the load torque observer and the noise
rejection ability should be taken into consideration.

5. Simulation Model of the Parameter
Identification System

The PMSM parameters adopted in the simulation are listed
in Table 1. The parameters 𝑃 and 𝐼 of three 𝑃𝐼 controllers are
shown in Table 1.

5.1. SimulationModel of the Identification of Load Rotary Iner-
tia. The simulationmodel of the disturbance torque observer
can be established according to (12)–(14). In MatLab/s-func-
tion, the program of online identification of rotary inertia can
be written.The overall simulation model of online identifica-
tion of rotary inertia is shown in Figure 3.

5.2. Simulation Model of Load Torque Observer. The reduced
order Luenberger load torque observer consists of differential
equations. The iteration algorithm can be programmed in
MatLab/s-function according to (35). In the iteration algo-
rithm, the sampling time is set to be 1ms and the pole of
the observer is set to be 0.65. The overall simulation model
is shown in Figure 4.

6. Simulation Results and Analysis

6.1. Simulation Results of the Identification of Rotary Inertia.
In the simulation model of the online identification of rotary
inertia based on DOB, the test signal of the speed command
is set to be a sine signal with the magnitude 50 rpm and
the period 100 hz. Overlapping the command test signal
onto the speed command signal and identifying the rotary
inertia online, the identification results are shown in Figure 5.
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Here, the real value of the rotary inertia of the system is
0.01087 kg⋅m2 and the identified value is 0.01077 kg⋅m2. From
the simulation results, it can be seen that the precision of the
identification method of load rotary inertia is high and the
speed is fast.

6.2. Simulation Results of Load Torque Observer. During the
simulation of the load torque observer, the sampling fre-
quency of the reduced order load torque observer is set to be
5000HZ, the pole of the observer is configured to be 0.8, and
the speed command is set to be 50 rpm. In order to study the
tracking ability of the reduced order load torque observer to
the variation of the load torque, the load torque disturbance

is set to be a step signal variation and a sine signal variation,
respectively. The tracking curves of the load torque observer
to the load torque are shown in Figures 6 and 7.

In Figure 6, when 𝑡 = 0.1 s, the given load torque is 1 Nm,
when 𝑡 = 0.3 s, the given load torque is 2Nm, when 𝑡 = 0.5 s,
the given load torque reduces to 1Nm, andwhen 𝑡 = 0.7 s, the
given load torque reduces to 1Nm once again.

FromFigure 7, the frequency of the given sine load torque
is 100 rad/s and the magnitude is 3Nm. From the tracking
curves of the step signal and the sine signal it can be seen that
the designed reduced order load torque observer can quickly
and accurately track the variation of the load torque, which
provides accurate compensation information to the load



Mathematical Problems in Engineering 7

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Identification value
Real value

kg
∗

m
2
)

Ro
ta

ry
 in

er
tia

 (

Figure 5: Curves of the identification of rotary inertia.
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Figure 6: Tracking cures of the load torque (step signal variation).

compensation controller and makes the system have better
disturbance rejection ability.

6.3. Simulation Results of Load Speed Observer. In order to
study the observation ability of the designed load torque
observer on speed, we add some white noise to the collected
position signal in the simulation model and compare the
speed curve obtained by the traditional differential with that
estimated by the load torque observer. The speed is set to
be 50 rpm and the load is still given by sine signal. The
simulation results are shown in Figure 8. Figure 8(a) shows
the speed calculated by the direct differential and Figure 8(b)
is the speed estimated by load torque observer. From Figure 7
it can be seen that under the same noise disturbance the
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Figure 7: Tracking cures of the load torque (sine signal variation).
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Figure 8: Speed tracking curves: (a) speed calculated by the direct
differential and (b) speed estimated by the load torque observer.

speed curve estimated by the load torque observer is much
smoother than that calculated by the direct differential. Since
the load torque observer can suppress position noise signal,
it can obtain more accurate speed values.

7. Conclusions

This paper presents online identification methods of load
rotary inertia, load torque, and speed in radar servo system,
respectively. First, the identification algorithm of load rotary
inertia based on DOB is described. This algorithm can fast
and accurately identify the load rotary inertia, which provides
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accurate and reliable rotary inertia values to parameter self-
adjusting algorithm and other advanced control algorithms.
Then, a reduced order Luenberger load torque observer is
designed to accurately observe the variation of the load
torque online. The designed torque observer provides accu-
rate estimated torque to compensate for the load disturbance
and thus enhances the disturbance rejection ability of the
system. In addition, the designed torque observer can also
estimate the speed value and overcome the amplification of
the position noise error generated by the direct differential
algorithm. Finally, the simulation models are established to
verify the proposed online identification method of PMSM
parameters.The simulation results illustrate the practicability
and feasibility of the proposed identification method of
rotary inertia and the proposed reduced order load torque
observer.The proposedmethods in this paper provide a solid
theoretical basis for the experiments and practical application
in the future.
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