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Different sensors or estimators may have different capability to provide data. Some sensors can provide a relatively higher
dimensional data, while other sensors can only provide part of them. Some estimators can estimate full dimensional quantity of
interest, while othersmay only estimate part of it due to some constraints. How is such kind of data with different dimensions fused?
How do the common part and the uncommon part affect each other during fusion? To answer these questions, a fusion algorithm
based on linear minimum mean-square error (LMMSE) estimation is provided in this paper. Then the fusion performance is
analyzed, which is themain contribution of this work.The conclusions are as follows. First, the fused common part is not affected by
the uncommon part. Second, the fused uncommon part will benefit from the common part through the cross-correlation. Finally,
under certain conditions, both the more accurate common part and the stronger correlation can result in more accurate fused
uncommon part. The conclusions are all supported by some tracking application examples.

1. Introduction

Estimation of the stochastic system state or parameters has
wide applications. For example, in target tracking applica-
tions, the evolution of the target state can often be represented
by a stochastic dynamic system, where the state transition
model is driven by some process noise. The observations
of the measurement model are also corrupted by some
measurement noise in general. Since the state model and
measurement model are both stochastic, the output of the
estimators, for example, a Kalman filter, is also stochastic.
When there aremultiple sensors or estimators, the data fusion
techniques are usually used for potential better estimation
purpose.

Data fusion is the problem of how to utilize useful
information contained inmultiple sets of data for the purpose
of estimation of an unknown quantity—a parameter or a
process [1]. The most common situation is that the data to be
fused are of the same dimensions. But, in some cases, the data
of different dimensions may need to be fused. The following

are some examples to show the different dimensional data
fusion in target tracking applications.

Measurement-to-Measurement Fusion. Suppose that we have
two radars, A and B. Radar A can sense target 1 and target 2
simultaneously, while radar B can only sense target 1. Then
the measurement-to-measurement fusion for such a scenario
is a fusion problem with different dimensionalities.

Track-to-Track Fusion. Constant velocity (CV) model based
estimator can only provide estimation of position and veloc-
ity, while constant acceleration (CA) model based estimator
can provide estimation of position, velocity, and acceleration.
The fusion of such two estimators is also a fusion problem
with different dimensionalities. This is very common in
maneuvering target tracking using the interacting multiple
model (IMM) algorithm.

Measurement-to-Track Fusion. A CV model based estimator
provides the target’s state estimation of position and velocity,
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while a sensor (a radar or GPS) provides the target’s position
measurement. This is a measurement-to-track fusion prob-
lem with different dimensional data.

The reason for such phenomenons is that some sensors
or estimators may be subject to some constraints compared
to the full dimensional data provider. In the above examples,
radar B may have narrower coverage than radar A; the CV
model based estimator cannot provide acceleration estima-
tion due to the model itself; the sensor cannot provide target
velocity measurement because of its sensing capability.

For such kind of fusion with different dimensional data,
how to deal with the uncommon part is a problem which
needed to be considered. A simple way is to abandon the
uncommon part when fusing. This is quite natural but some
useful information will be lost. To fully use all available
information, an LMMSE estimator is provided in this work.
In fact, if the uncommon part and the common part have
some kind of cross-correlation, the correlation will help in
fusion.

The relationship between the correlation and the estima-
tor’s performance has been discussed in some literatures. For
example, Doppler radar’s range and range rate measurement
errors are often correlated. Reference [2] concluded that
negative correlation has the best tracking performance. With
more detailed simulation and analysis, [3] concluded that,
for steady state estimation, negative correlation has the
best tracking performance, positive correlation is not always
worse than without correlation. Reference [3] also discussed
the coefficient selection strategy for one step state estima-
tion. Reference [4] proposed a fusion algorithm in which
local estimates have correlations. Reference [5] analyzed
the fusion performance with the correlation for the scalar
case. Reference [6–9] also disscussed the fusion algorithm
in the existence of correlation. Although these literatures
discussed the relationship between correlation and the fusion
performance, the fusion performance analysis of the different
dimensional data fusion is very rare. To reveal the factors
which affect the fusion performance, the performance is
analyzed in this paper.

The rest of the paper is organized as follows. Section 2 is
the problem formulation part. Fusion algorithm is proposed
in Section 3. Performance analysis is given in Section 4, which
is the main contribution of this work. Some examples are
given in Section 5 and Section 6 is the conclusion.

2. Problem Formulation

In general, filter ormodel’s output can be seen as an estimator.
In this work, for the unification of the problem formulation,
sensor’s measurement is also treated as an “estimator” in
which the filter’s output is the same as the input, the original
measurement.

The following problem is considered. There are two
estimators. One can provide the full dimensional estimate of
an estimand (the quantity to be estimated), and the other
can only provide partial estimate of the estimand. In this
paper, the estimators are stochastic, which means estimators
are affected by some noises.

Assume 𝑋 is the estimand, which can be written as 𝑋 =

[𝑥
𝑇
𝑦
𝑇
]
𝑇.

Estimator 1 is as follows:

𝑋
1
= [
𝑥
1

𝑦
1

] = [
𝑥

𝑦
] + [

V𝑥
1

V𝑦
1

] . (1)

Estimator 2 is as follows:

𝑋
2
= 𝑥
2
= 𝑥 + V𝑥

2
. (2)

It can be seen that 𝑥 is the common part and 𝑦 is the
uncommon part. The dimensions of those vectors are

𝑥
1
, 𝑥
2
, 𝑥, V𝑥
1
, V𝑥
2
, 𝑋
2
∈ 𝑅
𝑛×1
,

𝑦
1
, 𝑦, V𝑦
1
∈ 𝑅
𝑚×1
,

𝑋,𝑋
1
∈ 𝑅
(𝑛+𝑚)×1

.

(3)

The mean, covariance, and cross covariance of the noises are

𝐸 [V𝑥
1
] = 𝐸 [V𝑥

2
] = 0
𝑛
, 𝐸 [V𝑦

1
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𝑚
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𝑦𝑦

11

]

]

> 0,

cov (V𝑥
2
) = 𝑃
2
= 𝑃
𝑥𝑥

22
> 0,

cov([
V𝑥
1

V𝑦
1

] , V𝑥
2
) = 𝑃

12
= [

𝑃
𝑥𝑥

12

𝑃
𝑦𝑥

12

] ,

(4)

where 𝑃
1
, 𝑃
2
> 0means 𝑃

1
, 𝑃
2
are positive definite matrices.

3. Fusion Algorithm with Different
Dimensional Data

3.1. Introduction to the LMMSE Estimator. The minimum
mean-square error (MMSE) estimation is Bayesian estima-
tion where the expected value of a positive definite cost
function is to be minimized. It is a tool which estimates a
random variable 𝑋 in terms of another random variable 𝑍.
The solution is the conditional mean 𝐸[𝑋 | 𝑍].

Since the distributional information needed for the eval-
uation of the conditional mean is not always available, the
linear minimum mean-square error (LMMSE) estimator is
often used in practice. LMMSE estimator yields the estimate
as a linear function of the observation and requires only the
first two moments. It is a widely used estimation method.

Consider the vector-valued random variables 𝑋 and 𝑍,
where 𝑍 is a measurement of 𝑋. The best estimate of 𝑋 in
terms of 𝑍 in LMMSE sense [10] is

𝑋 = 𝑋 + 𝑃
𝑋𝑍
𝑃
−1

𝑍𝑍
(𝑍 − 𝑍) ,

𝑃
𝑋𝑋|𝑍

= MSE (𝑋) = 𝑃
𝑋𝑋
− 𝑃
𝑋𝑍
𝑃
−1

𝑍𝑍
𝑃
𝑍𝑋
,

(5)

where 𝑋 is the prior mean of 𝑋, 𝑃
𝑋𝑋

is the prior covariance
matrix of 𝑋, 𝑍 is the prior mean of 𝑍, and 𝑃

𝑍𝑍
is the prior
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covariance matrix of 𝑍. 𝑃
𝑋𝑍

is the cross covariance matrix
between𝑋 and 𝑍.

The LMMSE estimator of one random vector in terms of
another random vector (the measurement) is such that the
estimation error is

(1) zero-mean,
(2) uncorrelated from the measurements.

LMMSE estimator has the following properties.

(1) It is the best estimator (in the MMSE sense) for
Gaussian random variables.

(2) It is the best estimator within the class of linear
estimators.

LMMSE estimation is essentially known as best linear unbi-
ased estimation (BLUE) [1], which is proved to be identical to
the linear weighted least squares (WLS) estimation [11].

3.2. FusionAlgorithmUsing the LMMSEEstimation. Since𝑋
1

can provide the full estimate of 𝑋, 𝑋
1
can be regarded as the

prior information.
The prior information is as follows:

𝑋 = [
𝑥
1

𝑦
1

] ,

𝑃
𝑋𝑋
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.

(6)

Next,𝑋
2
is regarded as themeasurement. Since𝑋

1
is the prior

information,

𝑍 = 𝑋
2
= 𝑥
2
,
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2
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1
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,
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)
𝑇
.

(7)

The cross covariance between the prior information and the
measurement is then

𝑃
𝑋𝑍
= 𝐸 [(𝑋 − 𝑋) (𝑍 − 𝑍)

󸀠

]
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Here it is assumed that 𝑃
𝑍𝑍

> 0, which means 𝑍 or 𝑥
2
can

also provide some new information.
The LMMSE fuser for this problem is the following:
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(9)
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]

]

− [
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12
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.

(10)

It is the updated covariance 𝑃
𝑋𝑋|𝑍

which is used for perfor-
mance analysis. 𝑃

𝑋𝑋|𝑍
can be rearranged as

𝑃
𝑋𝑋|𝑍

= [
𝑃
𝑥𝑥

𝑃
𝑥𝑦

𝑃
𝑦𝑥

𝑃
𝑦𝑦] , (11)

where 𝑃𝑥𝑥 stands for the updated 𝑥 part’s (common data)
covariance matrix:

𝑃
𝑥𝑥
= 𝑃
𝑥𝑥

11
− (𝑃
𝑥𝑥

11
− 𝑃
𝑥𝑥

12
) (𝑃
𝑥𝑥
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+ 𝑃
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𝑇
)
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)
𝑇
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(12)

It is the same as the fusion algorithm in [4].
𝑃
𝑦𝑦 stands for the updated 𝑦 part’s (uncommon data)

covariance matrix:

𝑃
𝑦𝑦
= 𝑃
𝑦𝑦

11
− (𝑃
𝑦𝑥

11
− 𝑃
𝑦𝑥

12
) (𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥
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− 𝑃
𝑥𝑥
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𝑇
)
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− 𝑃
𝑦𝑥

12
)
𝑇

.

(13)

It is affected by the𝑥 part.The following performance analysis
is on the updated uncommon part (𝑦 part).

4. Performance Analysis of
the Uncommon Part

4.1. The Uncommon Part’s Impact on the Fused Common Part.
From (12), it is very clear that the fused common part will not
be affected by the uncommon part.
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4.2. The Cross-Correlation’s Impact on the Fused Uncommon
Part. From (13), it can be easily seen that the fused uncom-
mon part is affected by the common part.

First, some properties of the positive matrix are intro-
duced. If 𝐴, 𝐵 ∈ 𝑅𝑛×𝑛 are positive definite matrices, then they
have the following properties [12].

(I) For 𝑇 ∈ 𝑅
𝑚×𝑛, if rank(𝑇) = 𝑚, then 𝑇𝐴𝑇𝑇 > 0;

otherwise 𝑇𝐴𝑇𝑇 ≥ 0.
(II) 𝐴 > 0 ⇔ 𝐴

−1
> 0.

(III) 𝐴 − 𝐵 > 0 ⇔ 𝐵
−1
− 𝐴
−1
> 0.

Before fusion, the covariance matrix of 𝑦 part is 𝑃𝑦𝑦
11
. After

fusion, it becomes 𝑃𝑦𝑦. From (13), it can be seen that

𝑃
𝑦𝑦

11
− 𝑃
𝑦𝑦
= (𝑃
𝑦𝑥

11
− 𝑃
𝑦𝑥

12
) (𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22
− 𝑃
𝑥𝑥

12
− (𝑃
𝑥𝑥

12
)
𝑇
)
−1

× (𝑃
𝑦𝑥

11
− 𝑃
𝑦𝑥

12
)
𝑇

= 𝑃
𝑦𝑥
𝑃
−1

𝑍𝑍
(𝑃
𝑦𝑥
)
𝑇
,

(14)

where 𝑃𝑦𝑥 = 𝑃𝑦𝑥
11
−𝑃
𝑦𝑥

12
and 𝑃𝑦𝑥 can be regarded as the cross-

correlation matrix.

Theorem 1. If rank(𝑃𝑦𝑥) = 𝑚, then 𝑃𝑦𝑦
11
− 𝑃
𝑦𝑦
> 0; otherwise

𝑃
𝑦𝑦

11
− 𝑃
𝑦𝑦
≥ 0.

Proof. Because 𝑃
𝑍𝑍

> 0, from Property (II), it follows that
𝑃
−1

𝑍𝑍
> 0.
The conclusion can then be directly obtained from (14)

and Property (I).

It can be seen from (14) that if 𝑃𝑦𝑥 = 0, 𝑃𝑦𝑦
11
− 𝑃
𝑦𝑦
= 0

The following are the conclusions from the above.

(1) If 𝑃𝑦𝑥 = 0, which means there is no cross-correlation
between 𝑥 and 𝑦, the fused uncommon part will be
the same as the unfused one.

(2) If rank(𝑃𝑦𝑥) = 𝑚, which means the cross-correlation
is full row rank, the fused uncommonpart is definitely
better than the unfused one.

If 𝑃𝑦𝑥 ̸= 0 and rank(𝑃𝑦𝑥) < 𝑚, the following shows which
component of 𝑦 will benefit from the fusion. Assume that

𝑃
𝑦𝑥
= [(𝑝

𝑦𝑥

1
)
𝑇

(𝑝
𝑦𝑥

2
)
𝑇

⋅ ⋅ ⋅ (𝑝
𝑦𝑥

𝑚
)
𝑇
]
𝑇

, (15)

where 𝑝𝑦𝑥
𝑖
, 𝑖 = 1, . . . , 𝑚, are row vectors. If only the 𝑖th

component of 𝑦 is considered, the following corollaries can
be obtained.

Corollary 2. If 𝑝𝑦𝑥
𝑖

̸= 0, then 𝑃𝑦𝑦
11
(𝑖, 𝑖) − 𝑃

𝑦𝑦
(𝑖, 𝑖) > 0.

Proof. It can be seen from (14) that 𝑃𝑦𝑦
11
(𝑖, 𝑖) − 𝑃

𝑦𝑦
(𝑖, 𝑖) =

𝑝
𝑦𝑥

𝑖
𝑃
−1

𝑍𝑍
(𝑝
𝑦𝑥

𝑖
)
𝑇.

Thus if 𝑝𝑦𝑥
𝑖

̸= 0, then rank(𝑝𝑦𝑥
𝑖
) = 1.

Furthermore, since 𝑃−1
𝑍𝑍
> 0, from Property (I), it can be

seen that 𝑃𝑦𝑦
11
(𝑖, 𝑖) − 𝑃

𝑦𝑦
(𝑖, 𝑖) > 0.

It can be seen from Corollary 2 that if one certain com-
ponent of the uncommon part 𝑦 is cross-correlated with
the common part 𝑥, then its fused result is better than the
unfused one.

Corollary 3. If𝑚 = 1 and 𝑃𝑦𝑥 ̸= 0, 𝑃𝑦𝑦
11
− 𝑃
𝑦𝑦
> 0.

Proof. If𝑚 = 1, then 𝑃𝑦𝑥 is a row vector.
If 𝑃𝑦𝑥 ̸= 0, then rank(𝑃𝑦𝑥) = 𝑚 = 1.
From Corollary 2, Corollary 3 can be directly achieved.

It can be seen fromCorollary 3 that if the uncommon part
𝑦 is a scalar and the cross-correlation exists, the fused result
is better than the unfused one.

4.3. The Accuracy of the Independent Common Part’s Impact
on the Fused Uncommon Part. Assume that estimator𝑋

2
can

be obtainedwith different precision.The covariancematrix of
higher precision is 𝑃𝑥𝑥

22,𝐻
and the covariance matrix of lower

precision is 𝑃𝑥𝑥
22,𝐿

.The corresponding fused covariance matrix
of 𝑦 is 𝑃𝑦𝑦

𝐻
and 𝑃𝑦𝑦

𝐿
. Assume that 𝑃𝑥𝑥

22,𝐿
− 𝑃
𝑥𝑥

22,𝐻
> 0. If the two

estimators𝑋
1
and𝑋

2
are independent, whichmeans 𝑃𝑦𝑥

12
= 0

and 𝑃𝑥𝑥
12
= 0, the following theorem can be obtained.

Theorem 4. Under the condition that 𝑋
1
and 𝑋

2
are inde-

pendent, if rank(𝑃𝑦𝑥
11
) = 𝑚, then 𝑃𝑦𝑦

𝐿
− 𝑃
𝑦𝑦

𝐻
> 0; otherwise

𝑃
𝑦𝑦

𝐿
− 𝑃
𝑦𝑦

𝐻
≥ 0.

Proof. When 𝑋
1
and 𝑋

2
are independent, 𝑃𝑦𝑥 = 𝑃𝑦𝑥

11
. From

(14), the fusion covariance for 𝑦 is the following:

𝑃
𝑦𝑦

𝐻
= 𝑃
𝑦𝑦

11
− 𝑃
𝑦𝑥

11
(𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22,𝐻
)
−1

(𝑃
𝑦𝑥

11
)
𝑇

,

𝑃
𝑦𝑦

𝐿
= 𝑃
𝑦𝑦

11
− 𝑃
𝑦𝑥

11
(𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22,𝐿
)
−1

(𝑃
𝑦𝑥

11
)
𝑇

.

(16)

The difference between the two covariance matrices is

𝑃
𝑦𝑦

𝐿
−𝑃
𝑦𝑦

𝐻
=𝑃
𝑦𝑥

11
((𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22,𝐻
)
−1

− (𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22,𝐿
)
−1

) (𝑃
𝑦𝑥

11
)
𝑇

.

(17)

Since 𝑃𝑥𝑥
22,𝐿

−𝑃
𝑥𝑥

22,𝐻
> 0, it thus follows that 𝑃𝑥𝑥

11
+𝑃
𝑥𝑥

22,𝐿
− (𝑃
𝑥𝑥

11
+

𝑃
𝑥𝑥

22,𝐻
) > 0.

From Property (III),

(𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22,𝐻
)
−1

− (𝑃
𝑥𝑥

11
+ 𝑃
𝑥𝑥

22,𝐿
)
−1

> 0. (18)

According to (17) and Property (I), if rank(𝑃𝑦𝑥
11
) = 𝑚, then

𝑃
𝑦𝑦

𝐿
− 𝑃
𝑦𝑦

𝐻
> 0; otherwise 𝑃𝑦𝑦

𝐿
− 𝑃
𝑦𝑦

𝐻
≥ 0.

It can be seen from Theorem 4 that increasing the
independent common part’s accuracy can improve the fused
performance of uncommon part.

The following two corollaries can be easily obtained.

Corollary 5. Under the condition that 𝑋
1
and 𝑋

2
are inde-

pendent, if 𝑝𝑦𝑥
𝑖

̸= 0, then 𝑃𝑦𝑦
𝐿
(𝑖, 𝑖) − 𝑃

𝑦𝑦

𝐻
(𝑖, 𝑖) > 0.



Mathematical Problems in Engineering 5

Corollary 6. Under the condition that 𝑋
1
and 𝑋

2
are inde-

pendent, if 𝑃𝑦𝑥
11

̸= 0 and𝑚 = 1, then 𝑃𝑦𝑦
𝐿
− 𝑃
𝑦𝑦

𝐻
> 0.

The proof is similar to that of Corollaries 2 and 3 and will
be omitted here.

Corollaries 5 and 6 are the supplement of Theorem 4 for
the single component case and scalar case, which also mean
that increasing the independent common part accuracy can
improve the fused result of the uncommon part.

4.4. The Level of Correlation’s Impact on the Fused Uncommon
Part. Assume that 𝑝𝑦𝑥

𝑖
(𝑗) is the 𝑗th component of vector 𝑝𝑦𝑥

𝑖

and it is the only nonzero component of 𝑝𝑦𝑥
𝑖
:

𝑝
𝑦𝑥

𝑖
= [0 ⋅ ⋅ ⋅ 𝜌

𝑖,𝑗
𝜎
𝑥,𝑗
𝜎
𝑦,𝑖

⋅ ⋅ ⋅ 0]
𝑇

,

𝑝
𝑦𝑥

𝑖
(𝑗) = 𝜌

𝑖,𝑗
𝜎
𝑥,𝑗
𝜎
𝑦,𝑖
,

(19)

where 𝜌
𝑖,𝑗
is the correlation coefficient.

Theorem7. Under the condition that there is only one nonzero
component in 𝑝𝑦𝑥

𝑖
, if the absolute value of the correlation

coefficient |𝜌
𝑖,𝑗
| increases, the fused covariance 𝑃𝑦𝑦(𝑖, 𝑖) will

decrease.

Proof. If there is only one nonzero component in 𝑝𝑦𝑥
𝑖
,

𝑃
𝑦𝑦
(𝑖, 𝑖) = 𝑃

𝑦𝑦

11
(𝑖, 𝑖) − 𝑃

−1

𝑍𝑍
(𝑗, 𝑗) (𝑝

𝑦𝑥

𝑖
(𝑗))
2

= 𝑃
𝑦𝑦

11
(𝑖, 𝑖) − 𝜌

2

𝑖,𝑗
𝑃
−1

𝑍𝑍
(𝑗, 𝑗) 𝜎

2

𝑥,𝑗
𝜎
2

𝑦,𝑖
.

(20)

Thus when |𝜌
𝑖,𝑗
| increases, 𝑃𝑦𝑦(𝑖, 𝑖) will decrease.

It can be seen fromTheorem 7 that under some condition,
stronger cross-correlation can result in better fused result.

When 𝑛 = 1, 𝑝𝑦𝑥
𝑖

is a scalar, and the corresponding
correlation coefficient is 𝜌

𝑖
. The following corollary can be

obtained.

Corollary 8. If 𝑛 = 1, when |𝜌
𝑖
| increases, the fused results

𝑃
𝑦𝑦
(𝑖, 𝑖) will decrease.

The proof is the same as that of Theorem 7.
It can be seen from Corollary 8 that if the common part

is a scalar, stronger cross-correlation can lead to better fused
result.

5. Illustrative Examples

5.1. The Example for Improving the Fusion Result by
the Existence of Cross-Correlation

Example 1. In target tracking applications, constant accel-
eration (CA) model based estimator can provide position,
velocity, and acceleration estimation while constant velocity
(CV) model based estimator can only provide position and
velocity. The state vector of CA is [𝑥 𝑥̇ 𝑥̈]

󸀠 and the state
vector of CV is [𝑥 𝑥̇]

󸀠. When fusing the estimates from
two models, position and velocity estimates are considered

2 4 6 8 10
0

50

100

t

P
(3
,3

)

Acceleration variance without fusion
Acceleration variance with fusion

Figure 1: Acceleration fusion performance enhancement.

to be the common part and acceleration is considered to
be the uncommon part. Assume the two estimators are
independent.

Assume there is a target moving with constant velocity
motion. Two estimators are used to estimate the target’s state.
One estimator uses the CA model and the other one uses the
CVmodel.The two estimators’ initial covariancematrices are

𝑃CA =
[

[

100 0 0

0 100 0

0 0 100

]

]

, 𝑃CV = [
100 0

0 100
] . (21)

Assume only the position can be observed by the sensors
and the measurement noise variances are both 𝑅 = 100.
The sampling interval is 𝑇 = 1. Both estimators’ updated
state covariance matrices are achieved by the Kalman fil-
ter. Because the CV model cannot provide estimation of
the acceleration part, there are two ways to achieve the
acceleration’s estimation. One way is to use the CA model’s
acceleration estimation directly and the otherway is to use the
fusion result. Figure 1 shows the acceleration variance of the
two ways. Acceleration estimate from the CAmodel is always
correlated with the velocity and position estimates because of
the state equation. The fusion results should benefit from the
correlation and Figure 1 supports this analysis.

The following are some analyses for one step fusion.
Assume the covariance matrices of the two models are

𝑃CA =
[

[

10 4 6

4 10 8

6 8 10

]

]

, 𝑃CV = [
10 4

4 10
] . (22)

The cross covariance vector between the common part and
uncommon part is 𝑃𝑦𝑥 = [6 8].

Using (10), the fusion result is

𝑃 = [

[

5 2 3

2 5 4

3 4 6.33

]

]

. (23)
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Figure 2: Acceleration fusion performance enhancementwithmore
accurate estimator.

If there is no cross-correlation between acceleration and
the other part,

𝑃CA =
[

[

10 4 0

4 10 0

0 0 10

]

]

, 𝑃CV = [
10 4

4 10
] , (24)

the fusion result

𝑃 = [

[

5 2 0

2 5 0

0 0 10

]

]

. (25)

It can be seen that without cross-correlation, the perfor-
mance of the uncommon part cannot be improved.

However, with correlation, we have 6.33 < 10, which
means that the existence of cross-correlation can help
improve the fusion result.

5.2. The Examples for Increasing the Accuracy of the Indepen-
dent Common Part to Improve the Fusion Result

Example 2. The simulation setting is the same as in Exam-
ple 1, which is a CA-CV fusion problem. In Example 2, CA
model is the same as in Example 1, CV model’s measurement
is more accurate than in Example 1, and the measurement
noise variance is 𝑅 = 1.

Figure 2 shows the fusion results using two different
CV estimators. It is known that more accurate measurement
can lead to more accurate estimation. So the CV estimator
in Example 2 is more accurate than the CV estimator in
Example 1. Figure 2 supports the conclusion that more
accurate independent common part estimator can lead to
more accurate uncommon part’s fusion result.

The following are some more analyses compared with
Example 1. Here the covariance matrices of the two models
are assumed to be

𝑃CA =
[

[

10 4 6

4 10 8

6 8 10

]

]

, 𝑃CV = [
1 0.4

0.4 1
] , (26)

and the fusion result is

𝑃 = [

[

0.91 0.36 0.55

0.36 0.91 0.73

0.55 0.73 3.33

]

]

. (27)

In Example 1, 𝑃(3, 3) = 6.33. Here 𝑃(3, 3) = 3.33.
Since 3.33 < 6.33, it can be easily seen that more accurate

common part estimation can lead to better fusion result.

Example 3. There are two radars which observe the same
target. One is a Doppler radar, which can provide range and
range rate measurements. The other is a regular radar, which
can only provide range measurement. Doppler radar’s range
and range rate measurement errors are sometimes correlated.
The two radars’ measurement errors are independent of each
other. The state vectors are [𝑟 ̇𝑟]

󸀠 and 𝑟, respectively. The
corresponding covariance matrices are

𝑃
1
= [

𝜎
2

𝑟1
𝜌𝜎
𝑟1
𝜎 ̇𝑟

𝜌𝜎
𝑟1
𝜎 ̇𝑟 𝜎

2

̇𝑟

] , 𝑃
2
= 𝜎
2

𝑟2
. (28)

After fusion,

𝑃 ̇𝑟 = 𝜎
2

̇𝑟
(1 −

𝜌
2
𝜎
2

𝑟1

𝜎
2

𝑟1
+ 𝜎
2

𝑟2

) . (29)

When 𝜎2
𝑟2
decreases, 𝑃 ̇𝑟 will also decrease.

When 𝜎2
𝑟2
→ 0, 𝑃 ̇𝑟 → 𝜎

2

̇𝑟
(1 − 𝜌

2
).

Let

𝑃
1
= [
10 5

5 10
] . (30)

When 𝑃
2
= 10, the covariance after fusion is

𝑃 = [
5 2.5

2.5 8.75
] . (31)

When 𝑃
2
= 1, the covariance after fusion is

𝑃 = [
0.91 0.45

0.45 7.73
] . (32)

Since 7.73 < 8.75, it can be easily seen that more accurate
common part estimation can lead to more accurate fusion
result.

Figure 3 shows 𝑃 ̇𝑟 as a function of 𝜎2
𝑟2
, which changes

from 0 to 10. From the figure, it can be clearly seen that when
improving the regular radar’s range accuracy, the range rate
accuracy will be improved.

5.3. The Example for the Stronger Correlation to Improve
the Fusion Result

Example 4. The simulation setting is the same as in Exam-
ple 3. The correlation coefficient is a variable. From (29), it
can be seen that the bigger the |𝜌|, the smaller the 𝑃 ̇𝑟, which
means stronger correlation can lead to better fusion result.

When |𝜌| → 1, 𝑃 ̇𝑟 → 𝜎
2

̇𝑟
𝜎
2

𝑟1
/(𝜎
2

𝑟1
+ 𝜎
2

𝑟2
).



Mathematical Problems in Engineering 7

9

8.5

8

7.5

7
0 2 4 6 8 10

𝜎2r2

P
̇r

Figure 3: The relationship between regular radar’s range accuracy
and fused range rate accuracy.
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Figure 4: 𝑃
̇𝑟
as a function of |𝜌|.

Let

𝑃
1
= [
10 5

5 10
] , 𝑃

2
= 10; (33)

then

𝑃 = [
5 2.5

2.5 8.75
] . (34)

Let

𝑃
1
= [
10 9

9 10
] , 𝑃

2
= 10; (35)

then

𝑃 = [
5 4.5

4.5 5.95
] . (36)

Since 5.95 < 8.75, it can be easily seen that stronger
correlation can lead to better fusion result.

Figure 4 shows𝑃 ̇𝑟 as a function of |𝜌|, which changes from
0 to 1.

It can be seen that the stronger the correlation, the better
the fused result.

𝜎2r2

P
̇r

|𝜌|

0
1
2
3
4
5
6
7
8
9
10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 8 9 10

Figure 5: 𝑃
̇𝑟
as a function of 𝜎2

𝑟2
and |𝜌|.

Example 5. Examples 3 and 4 are combined together. The
range accuracy and correlation coefficient are changing
simultaneously. From (29), when |𝜌| increases and 𝜎

2

𝑟2

decreases, 𝑃 ̇𝑟 will decrease.
And if |𝜌| → 1 and 𝜎2

𝑟2
→ 0, 𝑃 ̇𝑟 → 0.

Figure 5 shows 𝑃 ̇𝑟 as a function of 𝜎2
𝑟2
and |𝜌|.

Figure 5 supports the conclusion that fusion result ben-
efits from stronger correlation and more accurate common
part.

6. Conclusion

Some sensors or estimators can provide higher dimensional
measurement or estimation. But due to some constraints,
other sensors or estimators can only provide partial mea-
surement or estimation. To fuse such kind of data with
different dimensions, a fusion algorithm based on LMMSE
estimation is provided. To reveal the relationship between
the common part and the uncommon part, the fusion
performance is analyzed and the following four conclusions
are obtained. (1) The fused common part is not affected by
the uncommon part. (2)The fused uncommon part benefits
from the common part through the cross-correlation. (3)The
more accurate independent common part will result in better
performance of the fused uncommon part. (4) In some cases,
stronger cross-correlation will result in better performance
of the fused uncommon part. The above conclusions are all
supported by some target tracking examples.
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