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To the direct weight optimization identification of the nonlinear system, we add some linear terms about input sequences in the
former linear affine function so as to approximate the nonlinear property. To choose the two classes of unknown weights in the
more linear terms, this paper derives the detailed process on how to choose these unknown weights from theoretical analysis and
engineering practice, respectively, and makes sure of their key roles between the unknown weights. From the theoretical analysis,
the added unknown weights’ auxiliary role can be known in the whole process of approximating the nonlinear system. From the
practical analysis, we learn how to transform one complex optimization problem to its corresponding common quadratic program
problem. Then, the common quadratic program problem can be solved by the basic interior point method. Finally, the efficiency

and possibility of the proposed strategies can be confirmed by the simulation results.

1. Introduction

The theory of system identification can be divided into linear
system and nonlinear system identification. In the classical
reference [1], the identification of linear system is discussed
in the time domain. Then, the whole system identification
field can be divided into four procedures and the accuracy
analyses corresponding to various identification algorithms
are explained in the probability framework. The time domain
identification can be extended to the frequency domain in
[2]. Now, the research on the nonlinear system identification
point out that the nonlinear system can be approximately
regarded as a linear term adding a distortion term in [3].
All the nonlinear characteristic factors of the nonlinear
system can be contained in this distortion term. In [4], many
special nonlinear systems are studied, for example, Wiener
system, Hammerstein system, and so forth. So, various
identification methods are proposed to solve these nonlinear
system identification problems, such as minimum probability
method, covariance instrumental variable method, and blind
maximum likelihood method. The most practical method
that is used to identify the nonlinear system is the basis

function method. After prior selecting a group of basis
functions, the nonlinear system is approximatively expanded
under the prior basis functions. In order to attain the required
accuracy, let the approximate error between the expansion
and nonlinear system converge to zero by adjusting the
unknown weights of each basis function. In [5], the process
about how to construct the orthonormal basis functions using
some prior poles of the denominator is given.

Based on the idea of adjusting the unknown weights to
improve the approximate accuracy with basis function, a
new nonlinear system identification method-direct weight
optimization was proposed in [6]. The main core is that firstly
we select an estimator that is linear in the observed output
data of the nonlinear system and the adjusted weights are
contained in this linear affine function expression. When
disturbance noise exists, we get an optimization problem
under the condition of the optimum approximate error. The
optimum adjusted weights are derived in theory through the
classical optimality KKT condition. In [7], the basic idea of
the new direct weight optimization is applied to identify each
weight that exists in the piecewise affine system. In [8], the
effect of the perturb from the direct weight optimization is



analyzed. It points out that when one parameter’s perturb
range tends to infinity, the solution can be expressed as a
piecewise linear solution path.

Based on the foundation idea of the references, we directly
collect not only the observed output sequences but also
the input sequences. Because the input sequences can be
designed freely. So, the two sequences are all known as the
prior information. From all above descriptions, we add the
observed output and input sequences in the linear affine func-
tion simultaneously. Then, there exist two kinds of unknown
weights about each observed input-output sequences. When
compared with [3], many unknown weights corresponding
to the all input sequences are added. These unknown weights
can not only alleviate the dependence coming from the
unknown weights of the only observed output sequences but
also avoid negative effect from the perturbance. After adding
some linear terms about the input sequences, the expected
minimal mean square error is adopted as a criterion func-
tion to select those unknown weights. In the optimization
problem of solving those unknown weight, the contribution
of this paper is to deduce the selection strategy from the
theory and engineering practice, respectively. We gain the
unknown adjusted weights using optimality KKT sufficient
and necessary condition and find that the second unknown
weights that correspond to the observed output sequences
are easy to get. Their concrete expressions of the second
unknown weights do not depend on the first unknown
weights corresponding to the input sequences. The whole
selection process tells us that the second unknown weights
undertake the key roles and the first unknown weights
undertake the auxiliary roles. But this auxiliary effect coming
from the first unknown weights may not be neglected.

This paper is organized as follows. In Section 2, we
describe the problem discussed in this paper. In Section 3,
we propose to add the input sequences to the linear affine
function and derive an upper bound value of the objective
function. In Section 4, we derive two kinds of unknown
weights by using optimality KKT condition from [9]. In
Section 5, the interior point algorithm is applied to solve
a quadratic programming problem to get the unknown
weights. The convergences of the two methods are analyzed,
respectively, in Section 6. In Section 7, the numerical simu-
lation results are given to validate the efficiency. Finally, the
conclusions are drawn in Section 8.

2. Problem Description

Given the observed data {¢(t), y(t)}ﬁ\i1 from the nonlinear
system,

y(®) = folep®)+e), @

where f,(¢(t)) is an unknown nonlinear system which need
to be identified, ¢(t) is called the regression vector and e(t)
is an independent zero mean stochastic white noise with
variance o,. When the regression vector ¢(t) is chosen as the
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following form, the nonlinear system is called an exogenous
input model:

o) =[u(t-1) - u(t-n) et-1) - e(t-n,)]"
@)

Suppose a linear affine function is used to approximate the
nonlinear system f,,(¢(t)) as follows:

N N
flo®) =ay+Yau)+Yby®). (3)
t=1 t=1

In (3), alinear term comprised of N terms of input sequences
{u(t)}f:r . is added. Then, we identify more N unknown

weights {ai}f\:]l additionally. As the approximation perfor-
mance depends tightly on the 2N + 1 unknown weights. The
main goal of this paper is to determine a parameter vector 0
which is consisted of 2N + 1 unknown weights:

0 = [ag . ..»an>bys ..o by ] (4)

3. Direct Weight Optimization Identification

As the nonlinear system f;(¢(t)) is approximated by the
linear affine function f (9™ (¢)), we want to find a linear affine
function f (@™ (#)) at an arbitrarily given point ¢*(t). The
approximation accuracy depends on the weights {at}fi o and
{b}Y,. A most commonly used criterion function would be
the mean square error:

W(g" f0) = E[f (9" 0)- folo* )] .  ©

Substituting (3) into (5), we obtain

N N 2

W (¢, £,,0) = E[ao + Y au(t)+ )by~ fo(e° (t))] )
t=1 t=1

(6)

Substituting (1) into (6), the objection function is expanded
to the following expression:

W (¢", fo,0) = [ao +Zat” (t) +thfo (e®) ~fo (¢ (t))]

N

2 2

+0, th .
t=1

7)
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To simplify the description, we introduce the notation @(t) =
@(t) — @" (¢). Then, after adding and subtracting the same two
terms, the equality is not changed. Consider

W (¢", f,0)
= |:a0 + Zat” (&) + th (fole®)~ fo (o™ (®)

~Vfo (9" (1)) @ (1))

(8)
N N 2

+fo (9" ) (th - 1) +Vfo (9" (1) thfﬁ(t)]
t=1 t

N
2 2
+0, th.
t=1

In (8), the square term is called the square bias term and the
last term is the variance error term caused by the unmodeled
factor. From (8), we see that the bias term will be arbitrarily
large, unless we impose two constraint conditions of the
unknown weights {bt}fi %

N

b =1,

Under (9), the objective function can be simplified to the
following expression:

N
Y () =0. )
t=1

W (¢, fo.0)

N N
=|a+ Zat” () + th (fole®) - fo(e" @)
t=1 t=1

2 (10)
~Vfo (9" (1)) @ (1))

N
2 2
+0, th.
t=1

Expanding the nonlinear system f,(¢(t)) with Taylor series
around f,(¢") gives

* d *
o) =folo >+%<w)—¢ ®)
, D
2 Cdo(t)? (t)

Assume that the nonlinear function f;, satisfies the following
Lipschitz condition:

Ifo (@ ®) = fo (@™ () = Vs (9" 1) G B] < = (1),
(12)

where L is a constant; letting us combine the above three
formulas, we obtain an upper bound on the mean square
error (10). Consider

N

W (o7, fow") < (laol + ) laflu @)l + Zlblll<p<t>|l )

t=1

(13)

The minimum mean square error expectations
W(p", fp,w") can be converted to the minimum upper
bound value of the right side in (13). Hence, an optimization
problem is getting

N LY , 2 W
pin(lal + Yol w01+ EX 150l ) +o23
i =1 25 =1

N
subject to th =1,
t=1

N
Ybe(t) = 0.
t=1
(14)

Because an additional term Zfil |a,||u()] exists in (14), so
the complexity of this paper increases.

4. Optimality KKT Sufficient and
Necessary Condition

Notice that there exist some absolute operations in (14). Some
slack variables s, w, are introduced to eliminate the absolute
operations as follows:

| <s, t=1,2,...,N,

(15)
|| <w,, t=0,1,...,N.
Using these slack variables s,, w, in (14), the optimization

problem can be formulated as

2
mn (e Sunor L sipor

Lkl (e

N
2 2
+00Y 5
t=1

(16)
subject to s, >b,, s, >2-b, t=1,...,N
w,>a, w=2-a, t=0,...,N
N N
Yb=1, Dbyt =
t=1 t=1

Now, the next problem is to solve the solutions of the
optimization problem (16)
san, by, ...

(appay ... by s wly)- 17)



Applying the optimality KKT sufficient and necessary condi-
tion to (16), the Lagrangian function is written as

ON+1 +N &N
L(@ " >St|1 ’wt|0 Ay Ay py |t oY |t 1)

N LY 2 ’ 2 y 2
- <w0 + Y w, u ()] + EZst"g’é(t)" ) +aLy s
t=1 t=1 t=1
N N N
-4 (th - 1) -1, <Zb@5<t>> - u (w, - a,)
t=1 t=1 t=0

N N N
- Z!"t_ (w +a,) - ZV: (se=b) - ZVt_ (s +b)s
=0 t=1 t=1

(18)

where A, and A, are the Lagrangian multipliers correspond—

. . ) N
ing to the equality constraint and y;[_, and y;" =N .., are the
Lagrangian multiplier vectors correspondmg to the 2N + 1
inequality constraint

+ E £\T + + £\T
= (o thseotin) > ¥ =ove) - (19

From the optimality KKT condition, we find the equality
relations for the optimal solution as follows:

oL _
=0, t=0,...,N,
aat .”t My
= M AP Y =0 E=LoLN,
ab,

§f = 2<w0+2wt|u(t>| += Zst||<p(t>|| )

x[@ @) + 2075, -y -y =0,
oL
E 2<wO+Zwt|u(t)| + Zst"(p(t)" )
Wy
~Hy o =0,
oL
S <w0+2wt|u(t>| + Zst 0] )|u(t>|
wt
— —p =0,
N N
dbh=1  YbF®n=0,
t=1 t=1
H: (w; —a,) =0, Y (w; +a,) =0,
Yt+ (ss:=b)=0, Y (ss+b)=0,
g, =0, t=0,...,N, y 20, t=1,..,N.

(20)
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Through analyzing many subformulas in (20), we find many
implicit optimal equalities:

lb|=s, t=12,...,N,
21)
|a,| =w;, t=0,1,...,N.
From the first subformula in (20), we see that p| = 4.

Further, if g, > 0 in the ninth subformula in (20), then we see
that w, + a, = |a,| + a, = 2a, > 0. The ninth subformula holds
even when y, = 0, so from the first subformula we derive that

b=y =0, (22)
In the second subformula in (20), if g, < 0, it implies that

w, —a, = |a| -a, = -2a, > 0. (23)
If the eighth subformula in (20) holds, we make y = 0 and,
from the first subformula, we see that y| =y, = 0.

When all the equalities g, = 0 hold, it means all
unknown weights of the input sequences are equal to zeros.
Synthesizing two cases a, > 0 and g, < 0, we obtain that

W=y =0,

I (24)
a—=0, t=0,...,N.
oa,

Substituting (24) into the each subformula in (20), every
subformula in (20) can be simplified

M+MeM) =y -y, t=1,..,N,

N LN T Y
2(Iaol + 2 ladluoi+ 2 [l 17 ) >||<P(t)||
t=1 t=1

+2022 |bt| =Y+

N LY 2
2 (Il Slalwor S5 llgor ) -
t=1 t=1

(25)

N

N
dYh=1,  Ybhet) =0,
t=1

t=1

¥ (o] -8) =0, ¥ (o] +b) =
The equality relations represented by the fourth and fifth
subformula in (25) are completely implied in the constructed
Lagrangian function. Substituting the third subformula into
the second subformula, we get
20, || =y + ;.- (26)

When b, > 0, from the seventh subformula in (25), we get
b + b, =2b, > 0.

If the seventh subformula holds, let y, = 0. Substituting
y, = 0 in the first subformula, we get

Y =M +A80). (27)
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Substituting the above equality into (26), the following equal-
ity holds:

_i_/\ +A2go(t)

‘202 20?2 (28)
When considering b, < 0, we get
¥ =0,
A +A,0(t) =—-y, (29)
—20,b =y, == (L + 4,9 (1),
Formulating the above the equality relations, we get
p = Mt 2P0 2}‘5(”. (30)

All the above give us how to solve the unknown weights
{bt}fi |- Substituting (28) into the third subformula in (25), we
see that

A+ 1,6
|ao|+ZIatIIu(t)|+ ZMHQ)‘@)"Z:O. 31)

=1 20;
The following three equations are established:
N

lagl =0, Y lallu@®l=0,

t=1

(32)
N
Y M+ hg) @l =o.
t=1
From (32), we can see that
ay=a,=--=ay=0,
N ) N 5 (33)
MYNEOI + 2. 8@ g @] =o.
=1 t=1
Then,

Ay le‘\il ||<'ﬁ(t)||2

Generally when considered in the complex domain, it is
easy to get that

_ZM||~@)“2 (35)

|a0|+Z|at||u(t)| =- 3
e

as |u(t)| represents the amplitude value of the input excite
signal. When this amplitude is chosen to be constant [u(t)| =
k (k is a constant), then (35) implies

AL +A
Iao|+kZ|at| ——Zz—i(’)t)ll*(ﬂll (36)

In the linear algebra from [10], the commonly used
selection method is to impose a constrained condition about
the unknown weights {at}f\i o in order to guarantee unique-
ness

N
Ya, =1 (37)
t=0

To eliminate the absolute notation in (36), assume that the
former k; + 1 weights {at}fi o are positive and the latter N -k,
weights are negative. Thus, we get

ag
1111 -1
ay
11--10--0
a
10--01 1] |
- AN (38)

- 1 .

1 A+ A,0(),
——422—?”|| ol

LI, +A,3(),
—Z 2*" ool

In the singular degradation linear equation (38), we get a
group of unknown weight sequences {a,} . , through selecting
N - 2 free variables.

5. Solve the Unknown Weights Iteratively

To solve the unknown weights iteratively from the practice

point, suppose a, = w, = 0 in (16), and there exists

three kinds of variables as the decision variables: 6*", {st}i\i b
N

{w}il)-

For convenience, introduce a column vector whose
dimension is 4N. Consider

T
L SN wl,...,wN) . (39)

N
=(9 S1see



Formulating 4N inequalities constrained conditions in (16)
to a matrix product form,

-1 -~ 0 0 00--01--07[a
-1 0 0 0--0 1] | ay
1 0 0 00--01 b,
0 1 0 00--00 1] | by
0 -1 01--00 S
0 0 10 --10 0/ sy
0 0 1 01--00 0l w,
) 0 0 10 10 0] Lwy]
> 0,

where 0 is an 4N x 1 zero vector, and denoting the above
equality’s left hand as matrix A, A is 4N x 4N. The inequality
constrain conditions can be simplified

An > 0. (41)

Similarly, the two equalities constrained conditions can be
simplified to the matrix product form as follows:

1 -1 -1 «+ -1 0--00---0
0 -0 @) - §(N) O -~ 00 -0
T
X [al . aN bl Y bN Sl Y SN wl Y wN]
:0’
(42)

where 0 is a 2 x 1 zero vector, and denoting the above
equality’s left hand as matrix B, B is 2 x 4N. The equality
constraint conditions can be simplified

By =0. (43)

It is obvious that the second term of the objective function
can be rewritten as

N
0.y s =oon' n=o Cy.  (44)
t=1

SO OO
SO OO
o O OO

0
0
E
0

Furthermore, the computation in the bracket of the objective
function can be rewritten as

N LY 2
wo+ Y lu @)+ Y s ¢ 1)
t=1 t=1

= [0---0 §||¢(1)||2---§||¢‘(N)||2 u (D] (N)| | 7

= C1T11.
(45)
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Squaring (45), we get

N Ly , 2
(wo + Zw, lu ()] + zZst"(ﬁ(t)" ) =5'C,Cly. (46)
t=1 =1

Combining (41), (43), (44), and (46), a new optimization
problem is to get

min 17T (C1CT + o?Cz) n
! (47)
subject to Ay >0, Bn=0

as the new objective function (47) is a quadratic function
about decision variable 7. Also, the inequality and equality
constraints are linear functions about 7. Generally, (47) is a
quadratic programming problem. The interior point method
is applied to solve it.

Defining the Lagrangian function according to (47),

L(gymn)=14" (CICf + ojCz) n—-mAn—-nBry.  (48)

Setting the partial derivative with respect to the fact that # is
zero, we get the equality

(C.C1 +02Cy)n-A'm-B"n=0,
(49)
mmn>0, m(An)=0,

An >0, Bn=0.

Introducing a slack variable z > 0 to eliminate the inequality
constraint Ay > 0, we rewrite (49)

(CICIT + GezCz) n- ATm-B"n=o,

(50)
Bn=0, An-z=0, zm! = 0.
Suppose that the matrix comprised by (50) is
(CICIT + 03(?2) n- ATm - B™n
F= A -z . 6D
Bn
ZA\e — ee
where
Z = diag(z,,...,24y); A = diag (my,...,muy);
(52)
eel0,1], e=[L1---1]".

The constrained minimum is solved by updating unknown
vector 7 iteratively. This minimum solution is the station-
ary point of the Lagrangian function. During the minimal
process, a new iteration value # is updated by adding a
correct term Az to the current estimation. When applying the
constrained Gauss-Newton method, the Ay must satisty the
solution of the following equality:

C,Cl+0’C, 0 -A -B][An

A -1 0 0 Az
0 B 0 0 Am
0 A Z 0 An
(53)
(CIC{ + asz) n- ATm - B™n
. An-z - F.
B
ZA\e — ee



Mathematical Problems in Engineering

At time k + 1, the new iterate is defined as the vector

k+1 _k+1 _ k+1  k+1
(11 20 ,mt,n )
(54)
= (", 2" m" ) + v (A, Az, Am, An)
where the step length of the search direction must satisfy the
following inequality:

(2 m) > 0. (55)

The search direction is determined by (53). We may add a
Levenberg-Marquardt parameter 6> based on CICIT + GjC2
in order to avoid the singular phenomenon. It makes the left
top corner matrix (1, 1) of the left matrix in (53) change to the
matrix C;C] +02C, +8°I. So, it can guarantee that an inverse
matrix exists and its inverse matrix is definite and bounded.

6. Algorithms Analysis

Now, we analyze the convergences of the two algorithms
(20) and (54), respectively. From Sections 4 and 5, we see
that the solution of (20) is derived from the optimality KKT
sufficient and necessary condition and the solution of (54) is
an iterative solution.

According to the optimality KKT necessary and sufficient
condition which is similar to [11], the convergence of the
algorithm used to identify the unknown weights is given.

Theorem 1. Assume that 5, is a solution of the quadratic
programming problem (47) which satisfies the optimality KKT
necessary and sufficient condition (20). If Matrix (C,C| +
02C,) is positive semidefinite for some Lagrangian multipliers
m and n, then n, is a global solution of quadratic programming
problem (47).

Proof. If i is any other feasible point for (47), we have that
An >0, By =0 forally € R*N. Hence, using the optimality
KKT necessary and sufficient condition, we have that

(n-n.)" (C,Cl +02Cy) = Y m;(n—1n.)+ Y. By > 0.
(56)

By elementary manipulation, we find that
a(n) = 1" (C.C) +0.C)n,

a(n)=q () +-n)" (C.Cl +02C,) (1-n.) = q(n.).
(57)

where the first inequality follows from (56) and the second
inequality follows from positive semidefinite of (C ICIT +
02C,). We have shown that q(r7) > g(,) for any feasible 7,
s0 7], is a global solution.

Theorem 1 tells us that if a solution which satisfies all the
equality (20) can be found, then it will be a global solution for
the original quadratic problem.

When the interior point algorithm is applied to solve (47)
iteratively, its convergence conclusion can be gotten. O

Theorem 2. Suppose that quadratic function nT(CICIT +
0>C,)n and linear function An, By are all continuous second
differentiable functions in a neighborhood of a regular station-
ary point nj, with associated multipliersm,, n,.

Suppose also that the functions m(), n() used to set the
value of y satisfy m(n,) = m,, n(n,) = n, and are continuous
at n,. Then, there exists a neighborhood V' of n, such that if
the first iterates 1, € V, the above interior point algorithm is
well defined and generates a sequence {1} iteratively by (54)
converging supetlinearly into 1,,.

Proof. Simplifying (53) to emphasize the iterative number, the
linear system (53) can be written as

o Any ~
(111> s 1) AAmk = —F (1o g, 1) (58)
e

If ;. is in some neighborhood of the regular stationary point
1., with associated multipliers m,, n, satisfies (my,n,) —
(m* > n* )

Furthermore, F'(qk,mk,nk) = F'(nk,m(qk),n(qk)) is
nonsingular and has a bounded inverse on that neighbor-
hood. With the notation

Mie+1 Mk N«
Ziy1 = my 5 Zk,* =|\m,|, zZ,=|\m,|,
e n, n,
(59)

and with the objective and constraint functions that are all
continuous second differentiable functions, we have

Zk+1 - Z*
-1
=z, — 2, = F (o M) F (110 my )
-1
= F' (i m )~ F (o mpo 1) (24, — 2.)
1
- F(Z*) - JO F’ (’1* + t(rlk - 7]*) ’mk’nk) (Zk,* - Z*)dt'
(60)

Using F(z,) = 0 and taking norms, we get

||Zk+1 — 2y ||
1
<C (L F' (o mom) = F' (1, + t (i = 11,) » myea ) dt)

X (rlk - 7]*) >
(61)

where C is a positive constant. Since F'(, m(y),n(n)) is
continuous at #, and the last estimate gives z;,, — z, =

o(llm — 1. 1), it implies the superlinear convergence of #; to
7, and

[r::] - [1:] = ol —n.l)- (62)

O
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Friction (N)

0 0.1 0.2 0.3 0.4 0.5 0.6
Velocity (d/s)

—— Nonlinear friction —— Classical method

—— Proposed method

F1GURE I: The relations between the friction force and the speed
under sine position input signal.

7. Simulation Example

As the nonlinear system can be approximated by a linear
affine function using direct weight optimization method, we
apply this idea to approximate the Stribeck nonlinear friction
which appears in the flight simulation turntable system.

The Stribeck nonlinear friction model is described as

F©=(for (fi= £ ) sgn (60) + KO ).
(63)

where f is the maximum static friction force, f, is coulomb
friction force, K is a viscous friction coefficient, and 6, is the
critical Stribeck speed. Let us regard (t) in (56) as o(t)in (1)
and apply the new linear affine function to approximate the
Stribeck nonlinear friction model as follows:

N N
f®) =a,+Yabt)+Ybf (), (64)
t=1 t=1

where 0(t) is treated as the input signal. We minimize the
performance function (10) to obtain the unknown parameter
vector (ay,ai,...,an,by,...,by). The interior point algo-
rithm is applied to solve it and the number of N is selected by
trying test method. When N is increased to some fixed value,
we survey whether the performance index function will not
change much. If not, then this fixed value is the number of N.
Next, we make some simulations on the Stribeck nonlinear
friction.

In Figure 1, we plot the relation curve between the friction
force and the speed under sine position input signal. We
compare the three curves of the true nonlinear friction with
the proposed method, classical method. In Figure 1, the black
curve represents the true nonlinear friction force, the green
represents the linear affine curve proposed by our method,
and the red curve represents the curve designed by [3]. From
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60} - B

Friction (N)

0 1 2 3 4 5 6
Time (s)

—— Nonlinear friction —— Classical method

—— Proposed method

FIGURE 2: The relations between the friction force and the speed
under slope position input signal.

Figure 1, when the speed is low, the difference is very much
obvious. But if the speed is increased, the black and green
curve will coincide and the red curve starts to flutter away the
black curve. It means that the relationship between the true
nonlinear friction force and the linear affine friction force
derived from our method will be equal. Then, if the speed
is chosen sufficiently high, this paper’s linear affine friction
force can be used to replace the true nonlinear friction
force. To the classical method, it should spend more time to
approximate the true nonlinear friction force.

In Figure 2, we plot the relation curve between the friction
force and the speed under slope position input signal in
the flight simulation turntable. From Figure 2, we see that
from the beginning, the linear affine function derived by our
method can tightly approximate the nonlinear friction force
and it has little swing. But to the classical method, the error
is high even from the beginning and in the approximation
process the curve has much more swings.

We plot the crawl phenomenon under slope position
input signal in Figure 3. From Figure 3, each output corre-
sponding to the nonlinear friction model is full of many
irregular curves. And each output corresponding to the linear
affine function model is full of many piecewise lines. The
embodiment of the approximation is to use these piecewise
lines to approximate the irregular curve at different time peri-
ods. In every time period, the approximation error is defined
as the derivation between the line and the corresponding
curve. At the beginning, this deviation error is bigger. As the
time goes, the lines are close to the curve and the approximate
error is small.

8. Conclusion

This paper derives how to choose the unknown weights from
the theory and engineering, respectively, in the improved
direct weight optimization method. Because the input



Mathematical Problems in Engineering

40

30F - L s L

20 N S

10f- -~ T S/ EE R L

Site (d)

b :

—20f - B R

~30 H . .

Time (s)

— Output under linear friction
—— Ideal site input
—— Output under nonlinear friction
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sequences should be designed to sufficiently excite the non-
linear system, further research on the optimal input signal
design must be dealt with in future.
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